Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Netw Neurosci ; 8(1): 1-23, 2024.
Article in English | MEDLINE | ID: mdl-38562292

ABSTRACT

Understanding the concept of network hubs and their role in brain disease is now rapidly becoming important for clinical neurology. Hub nodes in brain networks are areas highly connected to the rest of the brain, which handle a large part of all the network traffic. They also show high levels of neural activity and metabolism, which makes them vulnerable to many different types of pathology. The present review examines recent evidence for the prevalence and nature of hub involvement in a variety of neurological disorders, emphasizing common themes across different types of pathology. In focal epilepsy, pathological hubs may play a role in spreading of seizure activity, and removal of such hub nodes is associated with improved outcome. In stroke, damage to hubs is associated with impaired cognitive recovery. Breakdown of optimal brain network organization in multiple sclerosis is accompanied by cognitive dysfunction. In Alzheimer's disease, hyperactive hub nodes are directly associated with amyloid-beta and tau pathology. Early and reliable detection of hub pathology and disturbed connectivity in Alzheimer's disease with imaging and neurophysiological techniques opens up opportunities to detect patients with a network hyperexcitability profile, who could benefit from treatment with anti-epileptic drugs.

2.
Entropy (Basel) ; 25(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37895499

ABSTRACT

An urban public traffic network is a typical high-order complex network. There are multiple types of transportation in an urban public traffic network, and each type has different impacts on urban transportation. Robustness analyses of urban public traffic networks contribute to the safe maintenance and operation of urban traffic systems. In this paper, a new cascading failure model for urban public traffic networks is constructed based on a multi-subnet composite complex network model. In order to better simulate the actual traffic flow in the composite network, the concept of traffic function is proposed in the model. Considering the different effects of various relationships on nodes in the composite network, the traditional cascading failure model has been improved and a deliberate attack strategy and a random attack strategy have been adopted to study the robustness of the composite network. In the experiment, the urban bus-subway composite network in Qingdao, China, was used as an example for simulation. The experimental results showed that under two attack strategies, the network robustness did not increase with the increase in capacity, and the proportion of multiple relationships had a significant impact on the network robustness.

3.
Neurosci Biobehav Rev ; 154: 105402, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741517

ABSTRACT

Living systems are hierarchical control systems that display a small world network structure. In such structures, many smaller clusters are nested within fewer larger ones, producing a fractal-like structure with a 'power-law' cluster size distribution (a mereology). Just like their structure, the dynamics of living systems shows fractal-like qualities: the timeseries of inner message passing and overt behavior contain high frequencies or 'states' (treble) that are nested within lower frequencies or 'traits' (bass), producing a power-law frequency spectrum that is known as a 'state-trait continuum' in the behavioral sciences. Here, we argue that the power-law dynamics of living systems results from their power-law network structure: organisms 'vertically encode' the deep spatiotemporal structure of their (anticipated) environments, to the effect that many small clusters near the base of the hierarchy produce high frequency signal changes and fewer larger clusters at its top produce ultra-low frequencies. Such ultra-low frequencies exert a tonic regulatory pressure that produces morphological as well as behavioral traits (i.e., body plans and personalities). Nested-modular structure causes higher frequencies to be embedded within lower frequencies, producing a power-law state-trait continuum. At the heart of such dynamics lies the need for efficient energy dissipation through networks of coupled oscillators, which also governs the dynamics of non-living systems (e.q., earthquakes, stock market fluctuations). Since hierarchical structure produces hierarchical dynamics, the development and collapse of hierarchical structure (e.g., during maturation and disease) should leave specific traces in system dynamics (shifts in lower frequencies, i.e. morphological and behavioral traits) that may serve as early warning signs to system failure. The applications of this idea range from (bio)physics and phylogenesis to ontogenesis and clinical medicine.


Subject(s)
Personality , Humans , Biophysics
4.
Comput Ind Eng ; 179: 109158, 2023 May.
Article in English | MEDLINE | ID: mdl-36960126

ABSTRACT

The outbreak of the Coronavirus Disease 2019 (COVID-19) has put the resilience of a country's healthcare infrastructure to the most severe test. The challenge of taking emergency measures to optimize the supply of medical resources and effectively meet the medical needs of residents is an important issue that needs to be resolved urgently in the prevention and control of public health emergencies. This paper analyzes cascading failures and optimization of the resilience of the hospital infrastructure system (HIS) with the presence of the COVID-19. It proposes a propagation model to describe the COVID-19 infectious process and establishes a cascading failure model of a HIS to analyze its failure mechanism. It also proposes a method for optimizing the resilience of HIS. Then the supplies and demands in maintaining the operations of HIS are studied, and a restoration strategy is obtained. Finally, simulation analysis of the spread of the COVID-19 is carried out to illustrate the applicability of the proposed method.

5.
Artif Intell Med ; 138: 102437, 2023 04.
Article in English | MEDLINE | ID: mdl-36990582

ABSTRACT

Medical risk detection is an important topic and a challenging task to improve the performance of clinical practices in Intensive Care Units (ICU). Although many bio-statistical learning and deep learning approaches have provided patient-specific mortality predictions, these existing methods lack interpretability that is crucial to gain adequate insight on why such predictions would work. In this paper, we introduce cascading theory to model the physiological domino effect and provide a novel approach to dynamically simulate the deterioration of patients' conditions. We propose a general DEep CAscading Framework (DECAF) to predict the potential risks of all physiological functions at each clinical stage. Compared with other feature-based and/or score-based models, our approach has a range of desirable properties, such as being interpretable, applicable with multi prediction tasks, and learnable from medical common sense and/or clinical experience knowledge. Experiments on a medical dataset (MIMIC-III) of 21,828 ICU patients show that DECAF reaches up to 89.30 % on AUROC, which surpasses the best competing methods for mortality prediction.


Subject(s)
Critical Care , Intensive Care Units , Humans
6.
Sensors (Basel) ; 23(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36850385

ABSTRACT

The interspersed railway track is an enhanced timber railway track, spot-replacing damaged wooden sleepers with new concrete sleepers to improve the bearing capacity of existing railway lines. Although this interspersed solution is characterised by low cost and short maintenance time, the interspersed tracks have worse stability than concrete tracks and can deteriorate quickly when exposed to extreme weather conditions such as heavy rains and floods. In many cases, heavy rains and floods are accompanied by strong winds. Ballast washaway can often be observed under flood conditions while the mass of trains is unevenly distributed on two rails due to the effect of lateral wind load and rail irregularities. The current work is the first in the world to investigate the collective multi-hazard effects of ballast washway and uneven axle loads on the vulnerability of conventional and interspersed railway tracks using nonlinear FEM software, STRAND 7. The train bogie is modelled by two sets of point loads. The maximum displacement, bending moment and twists have been studied to evaluate the worst condition. The novel insights will help the railway industry develop proper operations of interspersed railway tracks against naturally hazardous conditions.

7.
Nonlinear Dyn ; 110(3): 2931-2947, 2022.
Article in English | MEDLINE | ID: mdl-36035015

ABSTRACT

Supply chain viability concerns the entire supply system rather than one company or one single chain to survive COVID-19 disruptions. Mobility restriction and overall demand decline lead to systematically cascading disruptions that are more severe and longer lasting than those caused by natural disasters and political conflicts. In the present study, the authors find that large companies and manufacturers with traditional advantages suffer greater losses than small ones, which is conceptualized as the "Hub Paradox" by empirically investigating one Warp Knitting Industrial Zone of China. An underload cascading failure model is employed to simulate supply chain viability under disruptions. Numerical simulations demonstrate that when the load decreases beyond a threshold, the viability will drop down critically. Besides, supply chain viability depends on two aspects: the adaptive capability of the manufacturers themselves and the adaptive capability of the connections of the supply network. The comparison study demonstrates that enhancing cooperative relations between hub and non-hub manufacturers will facilitate the entire supply network viability. The present study sheds light on viable supply chain management. Compared with conventionally linear or resilient supply chains, intertwined supply networks can leverage viability with higher adaptation of redistributing production capacities among manufacturers to re-establish overall scale advantages. Finally, the present study also suggests solving the "Hub Paradox" from the perspective of complex adaptive system. Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-022-07741-8.

8.
Entropy (Basel) ; 24(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35205566

ABSTRACT

We explore recent contributions to research in Econophysics, switching between Macroscopic complexity and microscopic modelling, showing how each leads to the other and detailing the everyday applicability of both approaches and the tools they help develop. Over the past decades, the world underwent several major crises, leading to significant increase in interdependence and, thus, complexity. We show here that from the perspective of network science, these processes become more understandable and, to some extent, also controllable.

9.
Entropy (Basel) ; 25(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36673163

ABSTRACT

The higher-order structure of networks is a hot research topic in complex networks. It has received much attention because it is closely related to the functionality of networks, such as network transportation and propagation. For instance, recent studies have revealed that studying higher-order networks can explore hub structures in transportation networks and information dissemination units in neuronal networks. Therefore, the destruction of the connectivity of higher-order networks will cause significant damage to network functionalities. Meanwhile, previous works pointed out that the function of a complex network depends on the giant component of the original(low-order) network. Therefore, the network functionality will be influenced by both the low-order and its corresponding higher-order network. To study this issue, we build a network model of the interdependence of low-order and higher-order networks (we call it ILH). When some low-order network nodes fail, the low-order network's giant component shrinks, leading to changes in the structure of the higher-order network, which further affects the low-order network. This process occurs iteratively; the propagation of the failure can lead to an eventual network crash. We conducted experiments on different networks based on the percolation theory, and our network percolation results demonstrated a first-order phase transition feature. In particular, we found that an ILH is more fragile than the low-order network alone, and an ILH is more likely to be corrupted in the event of a random node failure.

10.
Entropy (Basel) ; 24(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-37420469

ABSTRACT

Vulnerability is a major concern for power networks. Malicious attacks have the potential to trigger cascading failures and large blackouts. The robustness of power networks against line failure has been of interest in the past several years. However, this scenario cannot cover weighted situations in the real world. This paper investigates the vulnerability of weighted power networks. Firstly, we propose a more practical capacity model to investigate the cascading failure of weighted power networks under different attack strategies. Results show that the smaller threshold of the capacity parameter can enhance the vulnerability of weighted power networks. Furthermore, a weighted electrical cyber-physical interdependent network is developed to study the vulnerability and failure dynamics of the entire power network. We perform simulations in the IEEE 118 Bus case to evaluate the vulnerability under various coupling schemes and different attack strategies. Simulation results show that heavier loads increase the likelihood of blackouts and that different coupling strategies play a crucial role in the cascading failure performance.

11.
Entropy (Basel) ; 23(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946007

ABSTRACT

What do bacteria, cells, organs, people, and social communities have in common? At first sight, perhaps not much. They involve totally different agents and scale levels of observation. On second thought, however, perhaps they share everything. A growing body of literature suggests that living systems at different scale levels of observation follow the same architectural principles and process information in similar ways. Moreover, such systems appear to respond in similar ways to rising levels of stress, especially when stress levels approach near-lethal levels. To explain such communalities, we argue that all organisms (including humans) can be modeled as hierarchical Bayesian controls systems that are governed by the same biophysical principles. Such systems show generic changes when taxed beyond their ability to correct for environmental disturbances. Without exception, stressed organisms show rising levels of 'disorder' (randomness, unpredictability) in internal message passing and overt behavior. We argue that such changes can be explained by a collapse of allostatic (high-level integrative) control, which normally synchronizes activity of the various components of a living system to produce order. The selective overload and cascading failure of highly connected (hub) nodes flattens hierarchical control, producing maladaptive behavior. Thus, we present a theory according to which organic concepts such as stress, a loss of control, disorder, disease, and death can be operationalized in biophysical terms that apply to all scale levels of organization. Given the presumed universality of this mechanism, 'losing control' appears to involve the same process anywhere, whether involving bacteria succumbing to an antibiotic agent, people suffering from physical or mental disorders, or social systems slipping into warfare. On a practical note, measures of disorder may serve as early warning signs of system failure even when catastrophic failure is still some distance away.

12.
Sensors (Basel) ; 21(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770403

ABSTRACT

The safety and reliability of the power grid are related to national power security, economic development and people's daily life. The occurrence of extreme weather changes the external environment greatly. Including generators and transmission lines, many power grid units cannot resist such a huge attack and get damaged easily, which forces units to quit from the power grid running system for a while. Furthermore, if the number of influenced units is high enough, the whole power system will be destroyed by cascading failure caused by extreme weather. Aiming at dealing with the cascading failure emergencies, this paper is trying to improve the traditional power structural vulnerability model so that it can be used to discuss extreme weather and propose a theoretical topological model to help scholars measure the damage caused by extreme cases. Based on previous research in this field, this paper utilizes complex network knowledge to build the power grid topology model. Then, considering extreme cases and the three attack modes simulation process, this paper makes use of the characteristic parameters of the power grid topology model and designs an algorithm, according to the realistic situation of the propagation mechanism of cascading failure of the power grid model as well as extreme weather research. Finally, taking IEEE-30 and IEEE-118 node bus system as examples, which shows that the structural vulnerability method proposed in this paper can properly address the mechanism of unbalanced load of cascading failure of power grid units under extreme conditions and can provide theoretical reference for preventing and reducing the impact of extreme cases on power grid which improves the reliability of the power grid.


Subject(s)
Algorithms , Models, Theoretical , Computer Simulation , Humans , Reproducibility of Results , Systems Analysis
13.
Entropy (Basel) ; 23(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207235

ABSTRACT

A cyber-physical supply network is composed of an undirected cyber supply network and a directed physical supply network. Such interdependence among firms increases efficiency but creates more vulnerabilities. The adverse effects of any failure can be amplified and propagated throughout the network. This paper aimed at investigating the robustness of the cyber-physical supply network against cascading failures. Considering that the cascading failure is triggered by overloading in the cyber supply network and is provoked by underload in the physical supply network, a realistic cascading model for cyber-physical supply networks is proposed. We conducted a numerical simulation under cyber node and physical node failure with varying parameters. The simulation results demonstrated that there are critical thresholds for both firm's capacities, which can determine whether capacity expansion is helpful; there is also a cascade window for network load distribution, which can determine the cascading failures occurrence and scale. Our work may be beneficial for developing cascade control and defense strategies in cyber-physical supply networks.

14.
Sci Total Environ ; 792: 148439, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34147790

ABSTRACT

Artificial dams are one of the most common hydraulic structures for mitigating debris flow disasters in alpine valley regions. However, performance alteration and failure after successive debris flows can lead to dam failure, releasing large amounts of materials within a very short time; moreover, the contribution of artificial dam failures to debris flows is poorly understood. This study quantitatively analyzed the artificial dam failure effects based on the numerical simulations of the Zhouqu '8.8' debris flow, with three scenarios: all nine dams failed (S1); no dams were ever built (S2); all nine dams remained intact (S3). The results showed that artificial dam failures had a significant amplifying effect on the magnitude of a debris flow. The maximum velocity and flow depth decreased by 20% and 11.2% if all the dams did not collapse; comparison of S1 and S2 showed that discharge and velocity at the front of the debris flow increased by 54.6% and 89%, the bulk density and yield stress increased by 3.3% and 5.7%, due to artificial dam failures. This could increase the destructive capacity of a debris flow and the possibility of a river blockage. A single artificial dam failure could locally amplify the magnitude of debris flow. Overall, on the catchment scale, the magnitude of a debris flow was dominated by topography and channel geometry, which can reduce the amplification effect of dam failures at locations where the channel was curved. However, where the channel was straight and flat, the flow velocity and discharge increased cumulatively by 3 m/s and 637 m3/s due to cascading failure. In addition, a comprehensive scheme combining ecological and engineering measures to mitigate debris flow disasters is discussed. This quantitative study is important and urgent needed to understand the amplification effect of dam failures and to implement debris flow mitigation in alpine valley regions.


Subject(s)
Disasters , Rivers , China , Engineering
15.
Sensors (Basel) ; 21(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921091

ABSTRACT

With the advent of the Internet of Everything era, the Industrial Internet is increasingly showing mutual integration and development. Its core framework, the industrial CPS (Cyber-Physical Systems), has received more and more attention and in-depth research in recent years. These complex industrial CPS systems are usually composed of multiple interdependent sub-networks (such as physical networks and control networks, etc.). Minor faults or failure behaviors between sub-networks may cause serious cascading failure effects of the entire system. In this paper, we will propose a security scheme based on intranal-adding links in the face of the integrated and converged industrial CPS system environment. Firstly, by calculating the size of the largest connected component in the entire system, we can compare and analyze industrial CPS systems' security performance under random attacks. Secondly, we compare and analyze the risk of cascading failure between integrated industrial CPS systems under different intranal-adding link strategies. Finally, the simulation results verify the system security strategy's effectiveness under different strategies and show a relatively better exchange strategy to enhance the system's security. In addition, this paper's research work can help us design how to further optimize the interdependent industrial CPS system's topology to cope with the integrated and converged industrial CPS system environment.

16.
Article in English | MEDLINE | ID: mdl-35010463

ABSTRACT

Analysis of the robustness and vulnerability of metro networks has great implications for public transport planning and emergency management, particularly considering passengers' dynamic behaviors. This paper presents an improved coupled map lattices (CMLs) model based on graph attention networks (GAT) to study the cascading failure process of metro networks. The proposed model is applied to the Shanghai metro network using the automated fare collection (AFC) data, and the passengers' dynamic behaviors are simulated by GAT. The quantitative cascading failure analysis shows that Shanghai metro network is robust to random attacks, but fragile to intentional attacks. Moreover, there is an approximately normal distribution between instant cascading failure speed and time step and the perturbation in a station which leads to steady state is approximately a constant. The result shows that a station surrounded by other densely distributed stations can trigger cascading failure faster and the cascading failure triggered by low-level accidents will spread in a short time and disappear quickly. This study provides an effective reference for dynamic safety evaluation and emergency management in metro networks.


Subject(s)
Accidents , Transportation , China
17.
Appl Netw Sci ; 5(1): 71, 2020.
Article in English | MEDLINE | ID: mdl-32984501

ABSTRACT

Supply chains enable the flow of goods and services within economic systems. When mapped for the entire economy and geographic locations of a country, supply chains form a spatial web of interactions among suppliers and buyers. One way to characterize supply chains is through multiregional input-output linkages. Using a multiregional input-output dataset, we build the multilayer network of supply chains in the United States. Together with a network cascade model, the multilayer network is used to explore the propagation of economic shocks along intranational supply chains. We find that the effect of economic shocks, measured using the avalanche size or total number of collapsed nodes, varies widely depending on the geographic location and economic sector of origin of a shock. The response of the supply chains to shocks reveals a threshold-like behavior. Below a certain failure or fragility level, the avalanche size increases relatively quickly for any node in the network. Based on this result, we find that the most fragile regions tend to be located in the central United States, which are regions that tend to specialize in food production and manufacturing. The most fragile layers are chemical and pharmaceutical products, services and food-related products, which are all sectors that have been disrupted by the Coronavirus Disease 2019 (COVID-19) pandemic in the United States. The fragility risk, measured by the intersection of the fragility level of a node and its exposure to shocks, varies across regions and sectors. This suggests that interventions aiming to make the supply-chain network more robust to shocks are likely needed at multiple levels of network aggregation.

18.
Proc Natl Acad Sci U S A ; 116(45): 22452-22457, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31624122

ABSTRACT

Catastrophic and major disasters in real-world systems, such as blackouts in power grids or global failures in critical infrastructures, are often triggered by minor events which originate a cascading failure in interdependent graphs. We present here a self-consistent theory enabling the systematic analysis of cascading failures in such networks and encompassing a broad range of dynamical systems, from epidemic spreading, to birth-death processes, to biochemical and regulatory dynamics. We offer testable predictions on breakdown scenarios, and, in particular, we unveil the conditions under which the percolation transition is of the first-order or the second-order type, as well as prove that accounting for dynamics in the nodes always accelerates the cascading process. Besides applying directly to relevant real-world situations, our results give practical hints on how to engineer more robust networked systems.

19.
J Integr Neurosci ; 18(2): 133-139, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31321954

ABSTRACT

The dynamic process of epilepsy is modeled as a cascading failure model in functional networks derived from graph theory. The aim is to test whether cascading failure identified from functional magnetic resonance imaging data could simulate epileptic discharges in 18 subjects with generalized tonic-clonic seizure and 17 demographically matched healthy controls. A cascading failure model was used to simulate the neural networks underlying generalized tonic-clonic seizure and healthy controls by stimulation of the node with the greatest number of connections. Results showed that the efficiency of generalized tonic-clonic seizure dropped significantly when compared to controls. Particular nodes whose efficiency altered significantly showed a correlation with the symptoms of generalized tonic-clonic seizure. Results also indicated that the left middle frontal lobe may be a potential focal area in the initiation of generalized tonic-clonic seizure.


Subject(s)
Brain/physiopathology , Models, Neurological , Seizures/physiopathology , Adult , Child , Computer Simulation , Female , Humans , Male , Middle Aged , Neural Networks, Computer , Neural Pathways/physiopathology , Seizures/etiology , Young Adult
20.
Article in English | MEDLINE | ID: mdl-30682868

ABSTRACT

In recent years, the frequent occurrence of rainstorms has seriously affected urban⁻public transport systems. In this study, we examined the impact of rainstorms on the vulnerability of urban⁻public transport systems consisting of both ground bus and metro systems, which was abstracted into an undirected weighted Bus⁻Metro complex bilayer network (Bus⁻Metro CBN) and the passenger volume was regarded as its weight. Through the changes in the node scale, network efficiency, and passenger volume in the maximal connected component of the Bus⁻Metro CBN, we constructed a vulnerability operator to quantitatively calculate the vulnerability of the Bus⁻Metro CBN. Then, the flow-based couple map lattices (CMLs) model was proposed to simulate cascading failure scenarios of the Bus⁻Metro CBN under rainstorm conditions, in which the rainstorm is introduced through a perturbation variable. The simulation results show that under the condition of passenger flow overload, the network may have a two-stage cascading failure process. The impact analysis shows that there is a rainstorm intensity threshold that causes the Bus⁻Metro CBN to collapse. Meanwhile, we obtained the optimal node and edge capacity through capacity analysis. In addition, our analysis implies that the vulnerability of the Bus⁻Metro CBN network in most scenarios is mainly caused by the degradation of network structure rather than the loss of passenger flow. The network coupling strength analysis results show that the node coupling strength has greater potential to reduce the vulnerability than edge coupling strength. This indicates that traffic managers should prioritize controlling the mutual influence between bus stops (or metro stations) to reduce the vulnerability of the Bus⁻Metro CBN more effectively.


Subject(s)
Models, Theoretical , Transportation , Weather
SELECTION OF CITATIONS
SEARCH DETAIL