Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 593
Filter
1.
Discov Oncol ; 15(1): 265, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967843

ABSTRACT

In this study, we investigated the role of the newly discovered lncRNA FLJ20021 in laryngeal cancer (LC) and its resistance to cisplatin treatment. We initially observed elevated lncRNA FLJ20021 levels in cisplatin-resistant LC cells (Hep-2/R). To explore its function, we transfected lncRNA FLJ20021 and cyclin-dependent kinase 1 (CDK1) into Hep-2/R cells, assessing their impact on cisplatin sensitivity and PANoptosis. Silencing lncRNA FLJ20021 effectively reduced cisplatin resistance and induced PANoptosis in Hep-2/R cells. Mechanistically, lncRNA FLJ20021 primarily localized in the nucleus and interacted with CDK1 mRNA, thereby enhancing its transcriptional stability. CDK1, in turn, promoted panapoptosis in a ZBP1-dependent manner, which helped overcome cisplatin resistance in Hep-2/R cells. This study suggests that targeting lncRNA FLJ20021 can be a promising approach to combat cisplatin resistance in laryngeal cancer by regulating CDK1 and promoting PANoptosis via the ZBP1 pathway. These findings open up possibilities for lncRNA-based therapies in the context of laryngeal cancer.

2.
Cell Rep ; 43(7): 114471, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996069

ABSTRACT

Low-oxygen conditions (hypoxia) have been associated primarily with cell-cycle arrest in dividing cells. Macrophages are typically quiescent in G0 but can proliferate in response to tissue signals. Here we show that hypoxia (1% oxygen tension) results in reversible entry into the cell cycle in macrophages. Cell cycle progression is largely limited to G0-G1/S phase transition with little progression to G2/M. This cell cycle transitioning is triggered by an HIF2α-directed transcriptional program. The response is accompanied by increased expression of cell-cycle-associated proteins, including CDK1, which is known to phosphorylate SAMHD1 at T592 and thereby regulate antiviral activity. Prolyl hydroxylase (PHD) inhibitors are able to recapitulate HIF2α-dependent cell cycle entry in macrophages. Finally, tumor-associated macrophages (TAMs) in lung cancers exhibit transcriptomic profiles representing responses to low oxygen and cell cycle progression at the single-cell level. These findings have implications for inflammation and tumor progression/metastasis where low-oxygen environments are common.

3.
Curr Med Chem ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38952160

ABSTRACT

OBJECTIVE: Cyclin-dependent kinase 1 (CDK1) regulates the cell cycle and is highly expressed in most tumors. CDK1 expression has been associated with poor disease prognosis. This study aimed to identify the prognostic value of CDK1 in pan-cancer and investigate the association between CDK1 expression and immune cell infiltration. METHODS: CDK1 expression and its correlation with prognosis in pan-cancer were analyzed using online databases. Immune infiltration was assessed by ESTIMATE and CIBERSORT algorithms. We then evaluated the relationship between CDK1 expression and tumor mutational burden (TMB), microsatellite instability (MSI), or tumor-infiltrating immune cells. In addition, we performed the co-expression analysis of immune-related genes and GO analysis with CDK1 expression in pan-cancer. Finally, we compared the CDK1 expression profile with the immune-related genes in 30 pairs of clinical gastrointestinal tumor samples. RESULTS: Our analysis demonstrated overexpression of CDK1 in most tumor tissues, especially in gastrointestinal tumors. The high expression of CDK1 was associated with poor overall survival, disease-specific survival, disease-free interval, and progression-free interval in kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), and sarcoma (SARC). Besides, CDK1 expression was significantly associated with TMB in 22 cancer types and MSI in 8 cancer types as well as greater frequencies of MSI-high (MSI-H) status and high tumor mutational burden (TMB-H) in uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), sarcoma (SARC), rectum adenocarcinoma (READ), mesothelioma (MESO), head and neck squamous cell carcinoma (HNSC), and colon adenocarcinoma (COAD). In addition, CDK1 expression correlated with immune cell infiltrating levels, such as M0, M1, or M2 macrophages, memory CD4 T cells, T follicular helper cells, and naive B cells. Our data showed that CDK1 was remarkably correlated with 47 immune-related and immune checkpoint genes in many cancer types. Furthermore, CDK1 was up-regulated in gastrointestinal tumor samples, especially in gastric cancer and intestinal cancer. CDK1 was positively correlated with IDO1 in gastric cancer and PD-1 in intestinal cancer. CONCLUSION: Taken together, our data demonstrated the roles of CDK1 in oncogenesis and metastasis in pan-cancer. Thus, CDK1 is a potential prognostic biomarker and a target for tumor immunotherapy.

4.
Front Pharmacol ; 15: 1443537, 2024.
Article in English | MEDLINE | ID: mdl-38974038

ABSTRACT

[This corrects the article DOI: 10.3389/fphar.2024.1361424.].

5.
EMBO J ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014228

ABSTRACT

Topoisomerase 1 (Top1) controls DNA topology, relieves DNA supercoiling during replication and transcription, and is critical for mitotic progression to the G1 phase. Tyrosyl-DNA phosphodiesterase 1 (TDP1) mediates the removal of trapped Top1-DNA covalent complexes (Top1cc). Here, we identify CDK1-dependent phosphorylation of TDP1 at residue S61 during mitosis. A TDP1 variant defective for S61 phosphorylation (TDP1-S61A) is trapped on the mitotic chromosomes, triggering DNA damage and mitotic defects. Moreover, we show that Top1cc repair in mitosis occurs via a MUS81-dependent DNA repair mechanism. Replication stress induced by camptothecin or aphidicolin leads to TDP1-S61A enrichment at common fragile sites, which over-stimulates MUS81-dependent chromatid breaks, anaphase bridges, and micronuclei, ultimately culminating in the formation of 53BP1 nuclear bodies during G1 phase. Our findings provide new insights into the cell cycle-dependent regulation of TDP1 dynamics for the repair of trapped Top1-DNA covalent complexes during mitosis that prevents genomic instability following replication stress.

6.
Ren Fail ; 46(2): 2365408, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38874119

ABSTRACT

Podocyte loss in glomeruli is a fundamental event in the pathogenesis of chronic kidney diseases. Currently, mitotic catastrophe (MC) has emerged as the main cause of podocyte loss. However, the regulation of MC in podocytes has yet to be elucidated. The current work aimed to study the role and mechanism of p53 in regulating the MC of podocytes using adriamycin (ADR)-induced nephropathy. In vitro podocyte stimulation with ADR triggered the occurrence of MC, which was accompanied by hyperactivation of p53 and cyclin-dependent kinase (CDK1)/cyclin B1. The inhibition of p53 reversed ADR-evoked MC in podocytes and protected against podocyte injury and loss. Further investigation showed that p53 mediated the activation of CDK1/cyclin B1 by regulating the expression of Wee1. Restraining Wee1 abolished the regulatory effect of p53 inhibition on CDK1/cyclin B1 and rebooted MC in ADR-stimulated podocytes via p53 inhibition. In a mouse model of ADR nephropathy, the inhibition of p53 ameliorated proteinuria and podocyte injury. Moreover, the inhibition of p53 blocked the progression of MC in podocytes in ADR nephropathy mice through the regulation of the Wee1/CDK1/cyclin B1 axis. Our findings confirm that p53 contributes to MC in podocytes through regulation of the Wee1/CDK1/Cyclin B1 axis, which may represent a novel mechanism underlying podocyte injury and loss during the progression of chronic kidney disorder.


Subject(s)
CDC2 Protein Kinase , Cell Cycle Proteins , Cyclin B1 , Doxorubicin , Mitosis , Podocytes , Protein-Tyrosine Kinases , Tumor Suppressor Protein p53 , Podocytes/metabolism , Podocytes/pathology , Animals , CDC2 Protein Kinase/metabolism , Tumor Suppressor Protein p53/metabolism , Mice , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Doxorubicin/pharmacology , Cyclin B1/metabolism , Cell Cycle Proteins/metabolism , Disease Models, Animal , Humans , Male
7.
J Cancer Res Clin Oncol ; 150(6): 292, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842611

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly aggressive and prevalent brain tumor that poses significant challenges in treatment. SRSF9, an RNA-binding protein, is essential for cellular processes and implicated in cancer progression. Yet, its function and mechanism in GBM need clarification. METHODS: Bioinformatics analysis was performed to explore differential expression of SRSF9 in GBM and its prognostic relevance to glioma patients. SRSF9 and CDK1 expression in GBM cell lines and patients' tissues were quantified by RT-qPCR, Western blot or immunofluorescence assay. The role of SRSF9 in GBM cell proliferation and migration was assessed by MTT, Transwell and colony formation assays. Additionally, transcriptional regulation of CDK1 by SRSF9 was investigated using ChIP-PCR and dual-luciferase assays. RESULTS: The elevated SRSF9 expression correlates to GBM stages and poor survival of glioma patients. Through gain-of-function and loss-of-function strategies, SRSF9 was demonstrated to promote proliferation and migration of GBM cells. Bioinformatics analysis showed that SRSF9 has an impact on cell growth pathways including cell cycle checkpoints and E2F targets. Mechanistically, SRSF9 appears to bind to the promoter of CDK1 gene and increase its transcription level, thus promoting GBM cell proliferation. CONCLUSIONS: These findings uncover the cellular function of SRSF9 in GBM and highlight its therapeutic potential for GBM.


Subject(s)
Brain Neoplasms , CDC2 Protein Kinase , Cell Movement , Cell Proliferation , Glioblastoma , Serine-Arginine Splicing Factors , Humans , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Prognosis , Female , Male , Middle Aged
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167305, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880159

ABSTRACT

PURPOSE: This study aimed to elucidate the role of the Cdk1/p53/p21 feedback loop in the pathogenesis of interstitial cystitis (IC)/bladder pain syndrome (BPS). MATERIALS AND METHODS: An IC/BPS cell model was established. Cell viability was determined using the CCK-8 assay. Flow cytometry was adopted to assess cell apoptosis rates. ELISA was employed to measure secretion levels of inflammatory factors (IL-6, IL-8, and TNF-α). Gene expressions were assessed using PCR, while protein expressions were analyzed through Western blotting analysis. Epithelial permeability was demonstrated using the phenol red leakage experiment and FITC-dextran permeability assay. The interaction between proteins was determined using co-immunoprecipitation, and protein localization was investigated using immunofluorescence. RESULTS: The CCK-8 assay revealed a significantly reduced viability of IC/BPS cells compared to normal epithelial cells (p < 0.05). Elevated levels of IL-6, IL-8, and TNF-α were detected in IC/BPS cells. Changes in the expressions of E-cadherin and ZO-1 were evident, leading to increased epithelial permeability in IC/BPS cells. Furthermore, within IC/BPS cells, Cdk1 phosphorylated p53 in the nucleus. The Cdk1/p53/p21 feedback loop was established to influence urothelial permeability. Both p21 and Cdk1 inhibitors notably reduced the epithelial permeability in IC/BPS cells. CONCLUSION: The Cdk1/p53/p21 feedback loop was instrumental in IC/BPS, acting as a regulator of urothelial permeability. This discovery offered a novel therapeutic approach for IC/BPS management.

9.
Chem Biol Drug Des ; 103(6): e14567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858165

ABSTRACT

BACKGROUND: To explore the anti-tumor and anti-virus key active ingredients of Sini Decoction Plus Ginseng Soup (SNRS) and their mechanisms. METHODS: The main ingredients of SNRS were analyzed by network pharmacology, and quercetin was identified as the key active ingredient. Then, we obtained the targets of quercetin by using Drugbank, PharmMapper, and SwissTargetPrediction databases. Then, the targets of HBV-related hepatocellular carcinoma (HBV-related HCC) were obtained by using Genecards database. In addition, using the gene expression profiles of HBV-related HCC patients in GEO database and the genes with the greatest survival difference in GEPIA 2 database identified the potential targets of quercetin. In addition, the mechanism of potential genes was studied through GO, KEGG analysis, and PPI network. Using AUC and survival analysis to evaluate the diagnostic and prognostic value of cyclin-dependent kinase 1 (CDK1) and CCNB1. Finally, the effects of quercetin on proliferation of Hep3B and HepG2215 cells and the level of CDK1 and CCNB1 were verified in vitro. ELISA was used to measure the expression levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) after the intervention by quercetin for 24 h and 48 h in HepG2215 cell. RESULTS: The first 10 key ingredients of SNRS were identified, and quercetin was the most key ingredient. The 101 potential quercetin targets were identified for the treatment of HBV-related HCC. GO and KEGG showed that 101 potential target enrichment in cancer and cell cycle regulation. By Venn analysis, CDK1 and CCNB1 were intersection targets, which could be used as potential targets for the action of quercetin on HBV-related HCC. Moreover, the expression of CDK1 and CCNB1 was highly expressed in the high-risk group, while the OS rate was low. The 1-year, 3-year and 5-year area under the curve (AUC) curves of CDK1 and CCNB1 were 0.724, 0.676, 0.622 and 0.745, 0.678, 0.634, respectively. Moreover, experimental results also showed that quercetin inhibited cell proliferation and reduced CDK1 expression in Hep3B and HepG2215 cells. The expressions of HBsAg and HBeAg in HepG2215 cell supernatant and cell gradually decreased with the increase of intervention time of quercetin and CDK1 inhibitor. CONCLUSIONS: Quercetin is a key ingredient of anti-HBV-related HCC activity and inhibits HBV replication in SNRS by inhibiting CDK1.


Subject(s)
CDC2 Protein Kinase , Drugs, Chinese Herbal , Liver Neoplasms , Panax , Quercetin , Virus Replication , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , CDC2 Protein Kinase/drug effects , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin B1/drug effects , Cyclin B1/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Hep G2 Cells , Hepatitis B virus/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/virology , Panax/chemistry , Quercetin/pharmacology , Virus Replication/drug effects
10.
Arch Dermatol Res ; 316(6): 208, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787443

ABSTRACT

BACKGROUND: Psoriasis is a chronic inflammation-associated skin disorder, and interleukin-22 (IL-22) is involved in psoriasis pathogenesis by boosting the proliferation and migration of keratinocytes. Mounting evidence has shown that circRNAs might play an important role in several aspects of psoriasis. This study is designed to explore the role and mechanism of circ_0056856 in regulating the phenotypes of IL-22-induced keratinocytes (HaCaT cells). METHODS: Circ_0056856, microRNA-197-3p (miR-197-3p), Cyclin-dependent kinase 1 (CDK1), and Wilms tumor 1-associated protein (WTAP) levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, migration, and invasion were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Wound scratch, and Transwell assays. After being predicted by Circinteractome or TargetScan, binding between miR-197-3p and circ_0056856 or CDK1 was verified by a dual-luciferase reporter assay. CDK1 and WTAP protein levels were determined using Western blot. Interaction between WTAP and circ_0056856 was assessed using methylated RNA immunoprecipitation (MeRIP) assay. RESULTS: Increased circ_0056856, CDK1, and WTAP were observed in psoriasis patients and IL-22-treated HaCaT cells. Moreover, circ_0056856 knockdown might repress IL-22-induced HaCaT cell proliferation, migration, and invasion in vitro. In mechanism, circ_0056856 might function as a sponge of miR-197-3p to modulate CDK1 expression, and WTAP improved circ_0056856 expression via m6A methylation. CONCLUSION: WTAP-guided m6A modified circ_0056856 facilitates IL-22-stimulated HaCaT cell damage through the miR-197-3p/CDK1 axis, which could provide novel insights into psoriasis treatment.


Subject(s)
CDC2 Protein Kinase , Cell Movement , Cell Proliferation , Interleukin-22 , Interleukins , Keratinocytes , MicroRNAs , Psoriasis , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Keratinocytes/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Interleukins/metabolism , Interleukins/genetics , Psoriasis/pathology , Psoriasis/genetics , Psoriasis/metabolism , Cell Movement/genetics , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , HaCaT Cells , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Signal Transduction
11.
Article in English | MEDLINE | ID: mdl-38785131

ABSTRACT

OBJECTIVE: This study aims to investigate the mechanism of Huangqin Tang in treating liver cancer. METHODS: Active ingredients and corresponding targets of Huangqin Tang were obtained from the Traditional Chinese Medicine Systems Pharmacology Database. Differentially expressed genes in liver cancer were identified from mRNA expression data. A protein-protein interaction (PPI) network was constructed using differentially expressed genes and Huangqin Tang targets. Random walk with restart (RWR) analysis was performed on the PPI network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted. A drug-active ingredient-gene interaction network was established, and molecular docking and molecular dynamics simulations were performed. Finally, the stability of binding between CDK1 and oroxylin was tested according to cellular thermal shift assay (CETSA). RESULTS: 160 active ingredients, 239 targets, and 1093 differentially expressed genes were identified. RWR analysis identified 10 potential targets for liver cancer. Enrichment analysis revealed protein kinase regulator activity and Steroid hormone biosynthesis as significant pathways. Molecular docking suggested a stable complex between oroxylin A and CDK1. CETSA demonstrated that the combination of oroxylin A and CDK1 increased the stability of CDK1, and the combination efficiency was high. CONCLUSION: Huangqin Tang may treat liver cancer by targeting CDK1 with oroxylin A. Protein kinase regulator activity and Steroid hormone biosynthesis pathways may play a role in liver cancer treatment with Huangqin Tang. This study provides insight into the mechanistic basis of Huangqin Tang for liver cancer treatment.

12.
Am J Reprod Immunol ; 91(5): e13863, 2024 May.
Article in English | MEDLINE | ID: mdl-38796740

ABSTRACT

PROBLEM: Hypertensive disorders of pregnancy (HDP) are a common pregnancy disease. NANOG and Cyclin-dependent kinase 1 (CDK1) are essential for regulating the function of cell proliferation and apoptosis. However, the mechanism of action in HDP is yet unclear. METHOD: The microarray dataset GSE6573 was downloaded from the GEO database. Emt-related gene set was downloaded from Epithelial-Mesenchymal Transition gene database 2.0 were screened differentially expressed genes by bioinformatics analysis. Pathway Commons and Scansite 4.0 databases were used to predict the interaction between proteins. Placental tissue samples were collected from HDP patients and patients with uneventful pregnancies. RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of NANOG, CDK1, MMP-2, MMP-9, EMT markers and the JAK/STAT3 pathway proteins. Transfection NANOG overexpression/knockdown, and CDK1 knockdown into the human chorionic trophoblast cells (HTR-8/Svneo). CCK-8, Transwell and Wound-healing assay were used to evaluate cell proliferation, invasion and migration. CO-IP and GST pull-down assays were used to confirm the protein interaction. RESULTS: A total obtained seven EMT-related differentially expressed genes, wherein NANOG, NODAL and LIN28A had protein interaction. In the HDP patients' tissue found that NANOG and CDK1 had lower expression. NANOG overexpression promoted HTR-8/Svneo proliferation, migration and EMT, while NANOG knockdown had the opposite effect. Further a protein interaction between STAT3 and CDK1 with NANOG. NANOG overexpression downregulated the JAK/STAT3 pathway to promote HTR-8/Svneo proliferation, migration and EMT, which was reversed by CDK1 knockdown. CONCLUSIONS: NANOG downregulated the JAK/STAT3 pathway to promote trophoblast cell proliferation, migration and EMT through protein interaction with CDK1.


Subject(s)
CDC2 Protein Kinase , Cell Movement , Epithelial-Mesenchymal Transition , Janus Kinases , Nanog Homeobox Protein , STAT3 Transcription Factor , Signal Transduction , Trophoblasts , Humans , Female , STAT3 Transcription Factor/metabolism , Epithelial-Mesenchymal Transition/genetics , Trophoblasts/metabolism , Pregnancy , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Janus Kinases/metabolism , Hypertension, Pregnancy-Induced/metabolism , Hypertension, Pregnancy-Induced/pathology , Hypertension, Pregnancy-Induced/genetics , Adult , Cell Proliferation , Cell Line
13.
J Asthma ; : 1-9, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38696283

ABSTRACT

OBJECTIVE: Paclitaxel exhibits outstanding biological activities in inhibiting cell proliferation and inducing cell apoptosis. However, the effects of paclitaxel on airway smooth muscle cells (ASMCs) have not been reported yet. The purpose of this study is to determine the effects of paclitaxel on the proliferation and apoptosis of ASMCs. METHODS: Rat primary ASMCs were isolated and used in all the experiments. Cell Counting Kit-8 assay and Edu assay were used to analyze the cell viability and proliferation, respectively. Flow cytometry was used to detect the cell cycle and apoptosis. Quantitative real-time PCR (qRT-PCR), western blotting, and immunostaining were used to detect the expression of cyclin-dependent kinase 1 (Cdk1). RESULTS: Our study showed that paclitaxel inhibits the proliferation of ASMCs in a dose- and time-gradient-dependent manner. Further study displayed that cell cycle is arrested at G2/M phase. And Cdk1 was dramatically down-regulated by paclitaxel treatment. Cell morphological analysis showed that ASMCs are elliptical with a larger surface area after paclitaxel treatment. Nucleus morphological analysis showed that the nuclei are in a diffuse state after paclitaxel treatment. However, paclitaxel did not induce the apoptosis of ASMCs. CONCLUSIONS: Our study demonstrated that paclitaxel inhibits the proliferation of ASMCs at least partly by negatively regulating Cdk1-cell cycle axis.

14.
Front Pharmacol ; 15: 1361424, 2024.
Article in English | MEDLINE | ID: mdl-38576486

ABSTRACT

Among women, breast carcinoma is one of the most complex cancers, with one of the highest death rates worldwide. There have been significant improvements in treatment methods, but its early detection still remains an issue to be resolved. This study explores the multifaceted function of hyaluronan-mediated motility receptor (HMMR) in breast cancer progression. HMMR's association with key cell cycle regulators (AURKA, TPX2, and CDK1) underscores its pivotal role in cancer initiation and advancement. HMMR's involvement in microtubule assembly and cellular interactions, both extracellularly and intracellularly, provides critical insights into its contribution to cancer cell processes. Elevated HMMR expression triggered by inflammatory signals correlates with unfavorable prognosis in breast cancer and various other malignancies. Therefore, recognizing HMMR as a promising therapeutic target, the study validates the overexpression of HMMR in breast cancer and various pan cancers and its correlation with certain proteins such as AURKA, TPX2, and CDK1 through online databases. Furthermore, the pathways associated with HMMR were explored using pathway enrichment analysis, such as Gene Ontology, offering a foundation for the development of effective strategies in breast cancer treatment. The study further highlights compounds capable of inhibiting certain pathways, which, in turn, would inhibit the upregulation of HMMR in breast cancer. The results were further validated via MD simulations in addition to molecular docking to explore protein-protein/ligand interaction. Consequently, these findings imply that HMMR could play a pivotal role as a crucial oncogenic regulator, highlighting its potential as a promising target for the therapeutic intervention of breast carcinoma.

15.
J Virol ; 98(5): e0019524, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38656209

ABSTRACT

The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE: Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.


Subject(s)
Encephalitis Virus, Japanese , Vimentin , Viral Nonstructural Proteins , Virus Replication , Animals , Humans , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/virology , Encephalitis, Japanese/metabolism , HEK293 Cells , Host-Pathogen Interactions , Phosphorylation , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases/metabolism , Vimentin/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics
16.
Biosensors (Basel) ; 14(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667185

ABSTRACT

Separase is a key cysteine protease in the separation of sister chromatids through the digestion of the cohesin ring that inhibits chromosome segregation as a trigger of the metaphase-anaphase transition in eukaryotes. Its activity is highly regulated by binding with securin and cyclinB-CDK1 complex. These bindings prevent the proteolytic activity of separase until the onset of anaphase. Chromosome missegregation and aneuploidy are frequently observed in malignancies. However, there are some difficulties in biochemical examinations due to the instability of separase in vitro and the fact that few spatiotemporal resolution approaches exist for monitoring live separase activity throughout mitotic processes. Here, we have developed FRET-based molecular sensors, including GFP variants, with separase-cleavable sequences as donors and covalently attached fluorescent dyes as acceptor molecules. These are applicable to conventional live cell imaging and flow cytometric analysis because of efficient live cell uptake. We investigated the performance of equivalent molecular sensors, either localized or not localized inside the nucleus under cell cycle control, using flow cytometry. Synchronized cell cycle progression rendered significant separase activity detections in both molecular sensors. We obtained consistent outcomes with localized molecular sensor introduction and cell cycle control by fluorescent microscopic observations. We thus established live cell separase activity monitoring systems that can be used specifically or statistically, which could lead to the elucidation of separase properties in detail.


Subject(s)
Cell Cycle , Chromosome Segregation , Fluorescence Resonance Energy Transfer , Separase , Separase/metabolism , Humans , Biosensing Techniques , HeLa Cells
17.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675475

ABSTRACT

The natural flavonoid compound chrysin has promising anti-tumor effects. In this study, we aimed to investigate the mechanism by which chrysin inhibits the growth of non-small cell lung cancer (NSCLC). Through in vitro cell culture and animal models, we explored the impact of chrysin on the growth of NSCLC cells and the pro-cancer effects of tumor-associated macrophages (TAMs) and their mechanisms. We observed that M2-TAMs significantly promoted the growth and migration of NSCLC cells, while also markedly activating the autophagy level of these cells. Chrysin displayed a significant inhibitory effect on the growth of NSCLC cells, and it could also suppress the pro-cancer effects of M2-TAMs and inhibit their mediated autophagy. Furthermore, combining network pharmacology, we found that chrysin inhibited TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 signaling pathway, rather than the classical mTOR/ULK1 signaling pathway. Our study reveals a novel mechanism by which chrysin inhibits TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 pathway, thereby suppressing NSCLC growth. This discovery not only provides new therapeutic strategies for NSCLC but also opens up new avenues for further research on chrysin.

18.
Environ Pollut ; 349: 123875, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38548152

ABSTRACT

With the evidence emerging that abnormal expression of long noncoding RNAs (lncRNAs) are involved in onset of Parkinson's disease (PD), the role of NR_030777 contributing to this disease is of great interest. We recently found that a novel lncRNA "NR_030777" demonstrates protective effects on PQ-induced neurodegeneration. However, the underlying molecular mechanisms of NR_030777 in the regulation of mitochondrial fission and mitophagy involved in PQ-induced neuronal damage remain to be explored. NR_030777 brain conditional overexpressing mice as well as in vitro primary neuronal cells from cerebral cortex and Neuro2a cells were adopted. Immunofluorescence, Immunohistochemistry, qRT-PCR and Western blotting were used to evaluate the expression levels of RNA and proteins. RNA immunoprecipitation and RNA pulldown experiment were used to evaluate the interaction of NR_030777 with its target proteins. NR_030777 and mitophagy were increased, and tyrosine hydroxylase (TH) levels recovered after NR_030777 overexpression upon PQ treatment. The overexpression and knockdown of NR_030777 unveiled that NR_030777 positively regulated mitophagy such as the upregulation of LC3B-II:I, ATG12-ATG5, p62 and NBR1. Moreover, the application of mdivi-1, a DRP-1 inhibitor, in combination with NR_030777 genetic modified cells unveiled that NR_030777 promoted DRP1-mediated mitochondrial fission and mitophagy. Furthermore, NR_030777 were directly bound to CDK1 to increase p-DRP1 levels at the Ser616 site, leading to mitochondrial fission and mitophagy. On the other hand, NR_030777 acted directly on ATG12 within the ATG12-ATG5 complex in the 800-1400 nt region to modulate the membrane formation. Accordingly, NR_030777 deficiency in neuron cells compromised cell mitophagy. Finally, the above findings were confirmed using NR_030777-overexpressing mice. NR_030777 exerted a protective effect on PQ-exposed mice by enhancing mitophagy. Our data provide the first scientific evidence for the precise invention of PQ-induced PD. Our findings further propose a breakthrough for understanding the regulatory relationship between NR_030777, CDK1, ATG12 and mitophagy in PQ-induced PD.


Subject(s)
CDC2 Protein Kinase , Mitochondrial Dynamics , Mitophagy , Parkinson Disease , RNA, Long Noncoding , Animals , Mice , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Neurons/metabolism , Neurons/drug effects , Paraquat/toxicity , Parkinson Disease/metabolism , Parkinson Disease/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
19.
Blood Res ; 59(1): 4, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38485838

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy with an unfavorable outcome. The present research aimed to identify novel biological targets for AML diagnosis and treatment. In this study, we performed an in-silico method to identify antisense RNAs (AS-RNAs) and their related co-expression genes. GSE68172 was selected from the AML database of the Gene Expression Omnibus and compared using the GEO2R tool to find DEGs. Antisense RNAs were selected from all the genes that had significant expression and a survival plot was drawn for them in the GEPIA database, FOXD2-AS1 was chosen for further investigation based on predetermined criteria (logFC ≥|1| and P < 0.05) and its noteworthy association between elevated expression level and a marked reduction in the overall survival (OS) in patients diagnosed with AML. The GEPIA database was utilized to investigate FOXD2-AS1-related co-expression and similar genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene ontology (GO) function analysis of the mentioned gene lists were performed using the DAVID database. The protein-protein interaction (PPI) network was then constructed using the STRING database. Hub genes were screened using Cytoscape software. Pearson correlation analysis was conducted using the GEPIA database to explore the relationship between FOXD2-AS1 and the hub genes. The transcription of the selected coding and non-coding genes, including FOXD2-AS1, CDC45, CDC20, CDK1, and CCNB1, was validated in 150 samples, including 100 primary AML non-M3 blood samples and 50 granulocyte colony stimulating factor (G-CSF)-mobilized healthy donors, using quantitative Real-Time PCR (qRT-PCR). qRT-PCR results displayed significant upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples compared to healthy blood samples (P = 0.0032, P = 0.0078, and P = 0.0117, respectively). The expression levels of CDC20 and CCNB1 were not statistically different between the two sets of samples (P = 0.8315 and P = 0.2788, respectively). We identified that AML patients with upregulation of FOXD2-AS1, CDK1, and CDC45 had shorter overall survival (OS) and Relapse-free survival (RFS) compared those with low expression of FOXD2-AS1, CDK1, and CDC45. Furthermore, the receiver operating characteristic (ROC) curve showed the potential biomarkers of lnc -FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples. This research proposed that the dysregulation of lnc-FOXD2-AS1, CDC45, and CDK1 can contribute to both disease state and diagnosis as well as treatment. The present study proposes the future evolution of the functional role of lnc-FOXD2-AS1, CDC45, and CDK1 in AML development.

20.
Res Sq ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464014

ABSTRACT

The Survivin protein has roles in repairing incorrect microtubule-kinetochore attachments at prometaphase, and the faithful execution of cytokinesis, both as part of the chromosomal passenger complex (CPC) (1). In this context, errors frequently lead to aneuploidy, polyploidy and cancer (1). Adding to these well-known roles of this protein, this paper now shows for the first time that Survivin is required for cancer cells to enter mitosis, and that, in its absence, HeLa cells accumulate at early prophase, or prior to reported before (2, 3). This early prophase blockage is demonstrated by the presence of an intact nuclear lamina and low Cdk1 activity (4). Importantly, escaping the arrest induced by Survivin abrogation leads to multiple mitotic defects, or mitotic catastrophe, and eventually cell death. Mechanistically, Cdk1 does not localize at the centrosome in the absence of Survivin pointing at an impairment in signaling through the Cdc25B-Cdk1 axis. In agreement, even though Survivin directly interacts with Cdc25B, both in vitro and in vivo, in its absence, an inactive cytosolic Cdc25B-Cdk1-Cyclin B1 complex accumulates. This flaw in Cdc25B activation can however be reversed in Survivin-depleted HeLa cell extracts to which the recombinant Survivin protein is added back. Finally, a role for Survivin in the Cdc25B-mediated activation of Cdk1 is confirmed by overriding the early prophase blockage induced in cells lacking Survivin through the expression of a gain-of-function Cdc25B mutant.

SELECTION OF CITATIONS
SEARCH DETAIL