Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters











Publication year range
1.
Nanotoxicology ; 18(4): 335-353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38907733

ABSTRACT

Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides , Neurites , Particulate Matter , tau Proteins , Humans , Particulate Matter/toxicity , Neurites/drug effects , Amyloid beta-Peptides/metabolism , Cell Line, Tumor , tau Proteins/metabolism , Plaque, Amyloid , Alzheimer Disease/chemically induced , Tretinoin/pharmacology , Nanoparticles/chemistry , Nanoparticles/toxicity
2.
Sci Rep ; 14(1): 11652, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773210

ABSTRACT

This project investigated the impact of low-temperature, in-situ synthesis of cerium oxide (CeO2) nanoparticles on various aspects of oil recovery mechanisms, including changes in oil viscosity, alterations in reservoir rock wettability, and the resulting oil recovery factor. The nanoparticles were synthesized using a microemulsion procedure and subjected to various characterization analyses. Subsequently, these synthesized nanoparticles were prepared and injected into a glass micromodel, both in-situ and ex-situ, to evaluate their effectiveness. The study also examined the movement of the injected fluid within the porous media. The results revealed that the synthesized CeO2 nanoparticles exhibited a remarkable capability at low temperatures to reduce crude oil viscosity by 28% and to lighten the oil. Furthermore, the addition of CeO2 nanoparticles to the base fluid (water) led to a shift in the wettability of the porous medium, resulting in a significant reduction in the oil drop angle from 140° to 20°. Even a minimal presence of CeO2 nanoparticles (0.1 wt%) in water increased the oil production factor from 29 to 42%. This enhancement became even more pronounced at a concentration of 0.5 wt%, where the oil production factor reached 56%. Finally, it was found that the in-situ injection, involving the direct synthesis of CeO2 nanoparticles within the reservoir using precursor salts solution and reservoir energy, led to an 11% enhancement in oil production efficiency compared to the ex-situ injection scenario, where the nanofluid is prepared outside the reservoir and then injected into it.

3.
ACS Appl Bio Mater ; 7(5): 2851-2861, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38587870

ABSTRACT

Periodontitis is a chronic oral inflammatory disease with the characteristic of excess oxidative stress in the inflammatory site, dramatically decreasing the quality of life. Studies show that nanozymes can be ideal candidates for ROS scavenging in periodontitis. Here, we design a multipath anti-inflammatory mesoporous polydopamine@cerium oxide nanobowl (mPDA@CeO2 NB) with multienzyme mimicking properties, which combines the advantages of both CeO2 NP and mPDA NB for synergistically eliminating reactive oxygen species (ROS), including hydroxyl radical (•OH), hydrogen peroxide (H2O2), and superoxide (O2•-). Besides, the erythrocyte-like structure of mNBs makes them a facility for cell uptake, and the mesopores can load both hydrophobic and hydrophilic drugs for combined anti-inflammatory therapy. In vitro and in vivo experiments prove that the combination of CeO2 and mPDA can synergistically achieve multiple complementary ROS eliminations and suppression of ROS-induced inflammation. Moreover, the ROS regulation plus anti-inflammatory drugs in one mPDA@CeO2 NB prevents the progression of periodontitis in a mouse model. Therefore, the design of mPDA@CeO2 NB with these excellent properties provides a therapeutic strategy for inflammatory diseases.


Subject(s)
Cerium , Indoles , Materials Testing , Particle Size , Periodontitis , Polymers , Cerium/chemistry , Cerium/pharmacology , Periodontitis/drug therapy , Animals , Mice , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Polymers/pharmacology , Reactive Oxygen Species/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Porosity , Erythrocytes/drug effects , Erythrocytes/metabolism , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
4.
J Hazard Mater ; 465: 133433, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38185086

ABSTRACT

Biofilms adhering to different surfaces have significant negative impacts in various fields. Cerium oxide nanoparticles can serve as mimics of haloperoxidase for biological biofilm inhibition applications. The regulation of the exposed facet of CeO2 nanoparticles influences their efficiency in various catalytic processes. However, there is still a lack of systematic studies on the facet-dependent haloperoxidase-like activity of CeO2. In the present study, the facet-dependent haloperoxidase activities and antibiofilm performance of CeO2 nanoparticles were elucidated through experiment analysis and density function theory calculation. The as-prepared CeO2 nanoparticles inhibited bacterial survival and catalyzed the oxidative bromination of quorum sensing signaling molecules, achieving biofilm inhibition performance. The antibacterial and biofilm formation suppression abilities were consistent with their haloperoxidase activities. The {111}- and {110}-facet CeO2 nanopolyhedra, as well as the {110}- and {100}-facet CeO2 nanorods, which had higher haloperoxidase activity showed better antibiofilm performance than the {100}-facet CeO2 cubes. The present findings provide a comprehensive understanding of the facet-dependent haloperoxidase-like activity of CeO2. Furthermore, engineering CeO2 morphologies with different crystal facets may represent a novel method for significantly adjusting their haloperoxidase-like activity.


Subject(s)
Cerium , Nanoparticles , Nanoparticles/chemistry , Biofilms , Quorum Sensing , Bacteria , Cerium/chemistry
5.
Mater Express ; 13(10): 1799-1811, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38009104

ABSTRACT

The objective of this research was to perform a genomics study of five cerium oxide particles, 4 nano and one micrometer-sized particles which have been studied previously by our group with respect to cytotoxicity, biochemistry and metabolomics. Human liver carcinoma HepG2 cells were exposed to between 0.3 to 300 ug/ml of CeO2 particles for 72 hours and then total RNA was harvested. Fatty acid accumulation was observed with W4, X5, Z7 and less with Q but not Y6. The gene expression changes in the fatty acid metabolism genes correlated the fatty acid accumulation we detected in the prior metabolomics study for the CeO2 particles named W4, Y6, Z7 and Q, but not for X5. In particular, the observed genomics effects on fatty acid uptake and fatty acid oxidation offer a possible explanation of why many CeO2 particles increase cellular free fatty acid concentrations in HepG2 cells. The major genomic changes observed in this study were sirtuin, ubiquitination signaling pathways, NRF2-mediated stress response and mitochondrial dysfunction. The sirtuin pathway was affected by many CeO2 particle treatments. Sirtuin signaling itself is sensitive to oxidative stress state of the cells and may be an important contributor in CeO2 particle induced fatty acid accumulation. Ubiquitination pathway regulates many protein functions in the cells, including sirtuin signaling, NRF2 mediated stress, and mitochondrial dysfunction pathways. NRF2-mediated stress response and mitochondrial were reported to be altered in many nanoparticles treated cells. All these pathways may contribute to the fatty acid accumulation in the CeO2 particle treated cells.

6.
Nanomaterials (Basel) ; 13(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37764551

ABSTRACT

As one of the most widely used nanomaterials, CeO2 nanoparticles (NPs) might be released into the aquatic environment. In this paper, the interaction of CeO2 NPs and Ce3+ ions (0~10 mg/L) with duckweed (Lemna minor L.) was investigated. CeO2 NPs significantly inhibited the root elongation of duckweed at concentrations higher than 0.1 mg/L, while the inhibition threshold of Ce3+ ions was 0.02 mg/L. At high doses, both reduced photosynthetic pigment contents led to cell death and induced stomatal deformation, but the toxicity of Ce3+ ions was greater than that of CeO2 NPs at the same concentration. According to the in situ distribution of Ce in plant tissues by µ-XRF, the intensity of Ce signal was in the order of root > old frond > new frond, suggesting that roots play a major role in the uptake of Ce. The result of XANES showed that 27.6% of Ce(IV) was reduced to Ce(III) in duckweed treated with CeO2 NPs. We speculated that the toxicity of CeO2 NPs to duckweed was mainly due to its high sensitivity to the released Ce3+ ions. To our knowledge, this is the first study on the toxicity of CeO2 NPs to an aquatic higher plant.

7.
Int J Biol Macromol ; 251: 126210, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37579894

ABSTRACT

Advanced manufacturing technologies for efficient catalytic materials have triggered the rational design of catalysts as well as extensive investigation into preparative methodologies. Herein, we report the preparation of new versatile cellulose acetate/polyurethane (CA/PU) blends for efficient immobilization of CeO2 nanoparticles, the appropriate composition of polymer mixture being chosen after rigorous analysis (SEM, FTIR, optical, mechanical). The band gap energy for hybrid films ranged between 3.02 eV and 2.05 eV, the lowest value being measured for the film with Co-doped CeO2 NPs (B3 film). The best results in photodegradation of methylene blue under visible-light irradiation was attained after 50 min for B3 film (rate constant k = 45.34× 10-3 min-1), while the total mineralization of MB in the same conditions as evaluated by HPLC-ESI MS and TOC analyses was achieved after 90 min. Effect of co-ions (SO42-, Cl- or NO3-) on photocatalytic performance was studied, and scavenger tests were used to identify the active species involved in the photocatalytic mechanism. Also, the photocatalytic efficiency of B3 sample was tested for rhodamine B, metronidazole and 4-nitrophenol degradation. Evaluation of the stability and integrity of hybrid film after 5 catalysis cycles reveal that the photocatalytic potential is retained with no substantial structural changes.

8.
Nanomaterials (Basel) ; 13(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570527

ABSTRACT

Cerium oxide nanoparticles (CeO2NPs) have exceptional catalytic properties, rendering them highly effective in removing excessive reactive oxygen species (ROS) from biological environments, which is crucial in safeguarding these environments against radiation-induced damage. Additionally, the Ce atom's high Z number makes it an ideal candidate for utilisation as an X-ray imaging contrast agent. We herein show how the injection of albumin-stabilised 5 nm CeO2NPs into mice revealed substantial enhancement in X-ray contrast, reaching up to a tenfold increase at significantly lower concentrations than commercial or other proposed contrast agents. Remarkably, these NPs exhibited prolonged residence time within the target organs. Thus, upon injection into the tail vein, they exhibited efficient uptake by the liver and spleen, with 85% of the injected dose (%ID) recovered after 7 days. In the case of intratumoral administration, 99% ID of CeO2NPs remained within the tumour throughout the 7-day observation period, allowing for observation of disease dynamics. Mass spectrometry (ICP-MS) elemental analysis confirmed X-ray CT imaging observations.

9.
Bioelectrochemistry ; 153: 108496, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392577

ABSTRACT

The superiority of the sandwich over a single aptamer based aptasensor assay for the detection of the human epidermal growth factor receptor 2 (HER2) is demonstrated for the first time. Cobalt tris-3,5 dimethoxy-phenoxy pyridine (5) oxy (2)- carboxylic acid phthalocyanine (CoMPhPyCPc) and sulphur/nitrogen doped graphene quantum dots (SNGQDs) and cerium oxide nanoparticles (CeO2NPs) nanocomposite (SNGQDs@CeO2NPs) were used for electrode modification of glassy carbon electrode (GCE) both individually and combined to form the substrates: GCE/SNGQDs@CeO2NPs, GCE/CoMPhPyCPc and GCE/SNGQDs@CeO2NPs/CoMPhPyCPc. The designed substrates were used as immobilization platforms for the amino functionalized HB5 aptamer for the development of both single and sandwich aptasensor assays. A novel bioconjugate, made of the HB5 aptamer and nanocomposite (HB5-SNGQDs@CeO2NPs) was fabricated, and characterized using ultra-violet/visible, Fourier transform infrared, and Raman spectroscopies as well as scanning electron microscopy. HB5-SNGQDs@CeO2NPs was applied as a secondary aptamer in the design of novel sandwich assays towards the electrochemical detection of HER2. The performance of the designed aptasensors were evaluated using electrochemical impedance spectroscopy. The sandwich assay gave low limit of detection of 0.00088 pg/mL, high sensitivity of 773925 Ω pg-1mL, showed stability, and good precision in real samples towards HER2 detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Metal Nanoparticles , Humans , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Graphite/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , Electrodes , Limit of Detection , Gold/chemistry
10.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447530

ABSTRACT

This study aims to investigate the impact of CeO2 content and particle size on the radiation shielding abilities of polydimethylsiloxane, also known as silicon rubber (SR). We prepared different SR samples with 10, 30, and 50% of micro and nano CeO2 and we measured the linear attenuation coefficient (LAC) for these samples. We found that the LAC of the SR increases by increasing the CeO2 and all prepared SR samples had higher LACs than the pure SR. We examined the effect of the size of the particles on the LAC and the results demonstrated that the LAC for nano CeO2 is higher than that of micro CeO2. We investigated the half value layer (HVL) for the prepared SR samples and the results revealed that the SR with 10% micro CeO2 had a greater HVL than the SR with 10% nano CeO2. The HVL results demonstrated that the SR containing nanoparticles had higher attenuation effectiveness than the SR with micro CeO2. We also prepared SR samples containing CeO2 in both sizes (i.e., micro and nano) and we found that the HVL of the SR containing both sizes was lower than the HVL of the SR with nano CeO2. The radiation protection efficiency (RPE) at 0.059 MeV for the SR with 10% micro and nano CeO2 was 94.2 and 95.6%, respectively, while the RPE of SR containing both sizes (5% micro CeO2 + 5% micro CeO2) was 96.1% at the same energy. The RPE results also indicated that the attenuation ability was improved when utilizing the micro and nano CeO2 as opposed to the micro CeO2 or nano CeO2 at 0.662, 1.173, and 1.333 MeV.

11.
Angew Chem Int Ed Engl ; 62(34): e202306166, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37309017

ABSTRACT

To achieve the Fe-N-C materials with both high activity and durability in proton exchange membrane fuel cells, the attack of free radicals on Fe-N4 sites must be overcome. Herein, we report a strategy to effectively eliminate radicals at the source to mitigate the degradation by anchoring CeO2 nanoparticles as radicals scavengers adjacent (Scaad-CeO2 ) to the Fe-N4 sites. Radicals such as ⋅OH and HO2 ⋅ that form at Fe-N4 sites can be instantaneously eliminated by adjacent CeO2 , which shortens the survival time of radicals and the regional space of their damage. As a result, the CeO2 scavengers in Fe-NC/Scaad-CeO2 achieved ∼80 % elimination of the radicals generated at the Fe-N4 sites. A fuel cell prepared with the Fe-NC/Scaad-CeO2 showed a smaller peak power density decay after 30,000 cycles determined with US DOE PGM-relevant AST, increasing the decay of Fe-NCPhen from 69 % to 28 % decay.

12.
Biomaterials ; 299: 122164, 2023 08.
Article in English | MEDLINE | ID: mdl-37229807

ABSTRACT

It is a challenging task to develop a contrast agent that not only provides excellent image contrast but also protects impaired kidneys from oxidative-related stress during angiography. Clinically approved iodinated CT contrast media are associated with potential renal toxicity, making it necessary to develop a renoprotective contrast agent. Here, we develop a CeO2 nanoparticles (NPs)-mediated three-in-one renoprotective imaging strategy, namely, i) renal clearable CeO2 NPs serve as a one-stone-two-birds antioxidative contrast agent, ii) low contrast media dose, and iii) spectral CT, for in vivo CT angiography (CTA). Benefiting from the merits of advanced sensitivity of spectral CT and K-edge energy of Cerium (Ce, 40.4 keV), an improved image quality of in vivo CTA is successfully achieved with a 10 times reduction of contrast agent dosage. In parallel, the sizes of CeO2 NPs and broad catalytic activities are suitable to be filtered via glomerulus thus directly alleviating the oxidative stress and the accompanying inflammatory injury of the kidney tubules. In addition, the low dosage of CeO2 NPs reduces the hypoperfusion stress of renal tubules induced by concentrated contrast agents used in angiography. This three-in-one renoprotective imaging strategy helps prevent kidney injury from being worsened during the CTA examination.


Subject(s)
Cerium , Nanoparticles , Computed Tomography Angiography , Contrast Media , Antioxidants , Kidney/diagnostic imaging
13.
J Nanobiotechnology ; 21(1): 117, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37005668

ABSTRACT

BACKGROUND: In a significant proportion of cancers, point mutations of TP53 gene occur within the DNA-binding domain, resulting in an abundance of mutant p53 proteins (mutp53) within cells, which possess tumor-promoting properties. A potential and straightforward strategy for addressing p53-mutated cancer involves the induction of autophagy or proteasomal degradation. Based on the previously reported findings, elevating oxidative state in the mutp53 cells represented a feasible approach for targeting mutp53. However, the nanoparticles previous reported lacked sufficient specificity of regulating ROS in tumor cells, consequently resulted in unfavorable toxicity in healthy cells. RESULTS: We here in showed that cerium oxide CeO2 nanoparticles (CeO2 NPs) exhibited an remarkable elevated level of ROS production in tumor cells, as compared to healthy cells, demonstrating that the unique property of CeO2 NPs in cancer cells provided a feasible solution to mutp53 degradation. CeO2 NPs elicited K48 ubiquitination-dependent degradation of wide-spectrum mutp53 proteins in a manner that was dependent on both the dissociation of mutp53 from the heat shock proteins Hsp90/70 and the increasing production of ROS. As expected, degradation of mutp53 by CeO2 NPs abrogated mutp53-manifested gain-of-function (GOF), leading to a reduction in cell proliferation and migration, and dramatically improved the therapeutic efficacy in a BxPC-3 mutp53 tumor model. CONCLUSIONS: Overall, CeO2 NPs increasing ROS specifically in the mutp53 cancer cells displayed a specific therapeutic efficacy in mutp53 cancer and offered an effective solution to address the challenges posed by mutp53 degradation, as demonstrated in our present study.


Subject(s)
Cerium , Nanoparticles , Pancreatic Neoplasms , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Genes, p53 , Cell Line, Tumor , Mutant Proteins/genetics , Mutant Proteins/metabolism , Reactive Oxygen Species/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics
14.
Mikrochim Acta ; 190(5): 172, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37017829

ABSTRACT

A flexible CeO2 nanostructured polydopamine-modified carbon cloth (CeO2/PDA/CC) interface was fabricated via electrodeposition for ethanol detection. The fabrication method involved two consecutive electrochemical steps in which dopamine was firstly electrodeposited on carbon fibers, followed by the electrochemical growth of CeO2 nanoparticles. The CeO2/PDA-based electroactive interface exerts an impressive electrochemical performance on the flexible sensor due to strong synergistic effect of the PDA functionalization with more active sites. Moreover, catalytic activity of CeO2 nanostructures anchored on highly conductive CC incorporate superior electrocatalytic performance of the fabricated interface. The designed electrochemical sensor showed a wide response to ethanol in the linear range 1 to 25 mM with a detection limit of 0.22 mM. The CeO2/PDA/CC flexible sensor showed good anti-interference ability and excellent repeatability and reproducibility (RSD = 1.67%). The fabricated interface performed well in saliva samples with satisfactory recoveries, corroborating the viability of CeO2/PDA/CC integrated interface for practical implementation.

15.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985863

ABSTRACT

The direct uptake of extracellular DNA (eDNA) via transformation facilitates the dissemination of antibiotic resistance genes (ARGs) in the environment. CeO2 nanoparticles (NPs) have potential in the regulation of conjugation-dominated ARGs propagation, whereas their effects on ARGs transformation remain largely unknown. Here, CeO2 NPs at concentrations lower than 50 mg L-1 have been applied to regulate the transformation of plasmid-borne ARGs to competent Escherichia coli (E. coli) cells. Three types of exposure systems were established to optimize the regulation efficiency. Pre-incubation of competent E. coli cells with CeO2 NPs at 0.5 mg L-1 inhibited the transformation (35.4%) by reducing the ROS content (0.9-fold) and cell membrane permeability (0.9-fold), thereby down-regulating the expression of genes related to DNA uptake and processing (bhsA, ybaV, and nfsB, 0.7-0.8 folds). Importantly, CeO2 NPs exhibited an excellent binding capacity with the plasmids, decreasing the amounts of plasmids available for cellular uptake and down-regulating the gene expression of DNA uptake (bhsA, ybaV, and recJ, 0.6-0.7 folds). Altogether, pre-exposure of plasmids with CeO2 NPs (10 and 25 mg L-1) suppressed the transformation with an efficiency of 44.5-51.6%. This study provides a nano-strategy for controlling the transformation of ARGs, improving our understanding on the mechanisms of nanomaterial-mediated ARGs propagation.

16.
Anal Bioanal Chem ; 415(14): 2655-2664, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36995409

ABSTRACT

Acetylcholinesterase (AChE), a crucial enzyme related to liver function, is involved in numerous physiological processes such as neurotransmission and muscular contraction. The currently reported techniques for detecting AChE mainly rely on a single signal output, limiting their high-accuracy quantification. The few reported dual-signal assays are challenging to implement in dual-signal point-of-care testing (POCT) because of the need for large instruments, costly modifications, and trained operators. Herein, we report a colorimetric and photothermal dual-signal POCT sensing platform based on CeO2-TMB (3,3',5,5'-tetramethylbenzidine) for the visualization of AChE activity in liver-injured mice. The method compensates for the false positives of a single signal and realizes the rapid, low-cost portable detection of AChE. More importantly, the CeO2-TMB sensing platform enables the diagnosis of liver injury and provides an effective tool for studying liver disease in basic medicine and clinical applications. Rapid colorimetric and photothermal biosensor for sensitive detection of acetylcholinesterase (I) and acetylcholinesterase levels in mouse serum (II).


Subject(s)
Acetylcholinesterase , Biosensing Techniques , Mice , Animals , Colorimetry/methods , Liver , Benzidines , Biosensing Techniques/methods
17.
Adv Healthc Mater ; 12(8): e2202418, 2023 03.
Article in English | MEDLINE | ID: mdl-36459700

ABSTRACT

The hypoxic character of tumors and the poor targeting ability of photosensitizers often limit the efficacy of photodynamic therapy (PDT). In recent years, the discovery of metal nanoenzymes and nanocarriers has improved PDT. Thereby, to improve the effective utilization of photosensitizers and oxygen (O2 ) in tumors, herein, a nanosystem (LS-HB@HvCeO2 -NRP1 mAb, LHCN1) is reported, in which a hollow virus-like cerium oxide (HvCeO2 ) is surface-decorated with tumor-targeting neuropilin-1 monoclonal antibody (NRP1 mAb), and loaded with a photosensitizer (chlorin e6-C-15-ethyl ester, LS-HB). In vitro and in vivo experiments demonstrate that LHCN1 can efficiently accumulate within the tumor sites via the targeting guidance of NRP1 mAb and is then rapidly endocytosed into cells. Furthermore, HvCeO2 with catalase-mimetic activity can decompose the endogenous hydrogen peroxide (H2 O2 ) to promote O2 via the valence transformation between Ce4+ and Ce3+ , relieving tumor hypoxia and improving the PDT efficacy. Upon near-infrared laser irradiation, LS-HB produces large amounts of cytotoxic reactive oxygen species. Moreover, LHCN1 is used in fluorescence/photoacoustic multimodal imaging for in vivo drug localization, and its use in PDT evidently helps inhibit tumor growth with no apparent toxicity to normal tissues. Thus, LHCN1 may provide a promising strategy for precise tumor-specific diagnosis and treatment.


Subject(s)
Nanoparticles , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Oncogenic Viruses , Cell Line, Tumor , Hydrogen Peroxide , Oxygen
18.
Environ Sci Pollut Res Int ; 30(11): 30308-30320, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36434455

ABSTRACT

Water pollution by antibiotics is a global crisis, and its risk is critically more severe due to the explosive use of these drug compounds. A critical effective removal method to diminish this risk is heterogeneous photocatalysis and optimizing the conditions to reach higher mineralization efficiency. CeO2 anoparticles (NPs) were synthesized and characterized by X-ray diffraction (XRD), UV-Vis diffuse reflection spectroscopy (DRS), and Fourier transform infrared spectroscopy (FTIR) techniques. A cubic structural crystallite phase was detected that had crystallite sizes of 17.9 and 16.7 nm estimated by the Scherrer and Williamson-Hall models. A typical FTIR absorption band for the Ce-O stretching absorption has appeared at 554 cm-1. Based on DRS data and the Kubelka-Munk and Tauc models, Eg values of 2.80, 3.06, 3.12, and 3.13 eV were obtained for n-values of 1/2, 2, 3/2, and 3, respectively. pHpzc of CeO2 NPs was about 5.7. The direct photolysis and surface adsorption processes have no critical role in phenazopyridine (PP) removal by appearing with 2.7 and 6.7% removal efficiencies, respectively. Due to the highest photocatalytic activity of CeO2 NPs toward PP, the effects of the critical operating variable on the activity were evaluated, and the optimal conditions were as catalyst dose, 0.7 g/L; pH, 6; irradiation time, 90 min; and CPP, 20 ppm. The Hinshelwood kinetics equation plot was y = - 6.6442 - 0.4677x (r2 = 0.9296), in which its slope as the rate constant of the photodegradation process was 0.4677 min-1 (corresponding to a t1/2 value of 1.48 min).


Subject(s)
Cerium , Phenazopyridine , Anti-Bacterial Agents/chemistry , Cerium/chemistry
19.
Biogerontology ; 24(1): 47-66, 2023 02.
Article in English | MEDLINE | ID: mdl-36030453

ABSTRACT

Due to its unique redox chemistry, nanoceria is considered as potent free radical scavenger and antioxidant. However, their protective capacity in aging organisms remains controversial. To detect the anti-aging effects associated with the redox activity of 2 and 10 nm nano-CeO2, different test systems were used, including in vitro analysis, in situ assay of mitochondria function and in vivo studies of suitable nano-CeO2 on aging of male Wistar rats from 22 months-old to the end of life. The 2 nm nanoparticles exhibited not only antioxidant (·OH scavenging; chemiluminescence assay; decomposition of H2O2, phosphatidylcholine autooxidation) but also prooxidant properties (reduced glutathione and reduced nicotinamide adenine dinucleotide phosphate oxidation) as well as affected mitochondria whereas in most test systems 10 nm nano-CeO2 showed less activity or was inert. Prolonged use of the more redox active 2 nm nano-CeO2 (0.25-0.3 mg/kg/day) in vivo with drinking water resulted in improvement in physiological parameters and normalization of the prooxidant/antioxidant balance in liver and blood of aging animals. Survival analysis using Kaplan-Meier curve and Gehan tests with Yates' correction showed that by the time the prooxidant-antioxidant balance was assessed (32 months), survival rates exceeded the control values most considerably. The apparent median survival for the control rats was 900 days, and for the experimental rats-960 days. In general, the data obtained indicate the ability of extra-small 2 nm nano-CeO2 to improve quality of life and increase the survival rate of an aging organism.


Subject(s)
Antioxidants , Nanoparticles , Male , Rats , Animals , Reactive Oxygen Species , Quality of Life , Hydrogen Peroxide , Rats, Wistar , Nanoparticles/chemistry
20.
Environ Sci Pollut Res Int ; 30(7): 18901-18920, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36217050

ABSTRACT

This research work aims at the eco-friendly preparation of cerium oxide nanoparticles (CeSD NPs) utilizing the natural extract of Scoparia dulsis L. An attempt was made to analyze the influence of the fuel load on the size, shape, and optical properties of the nanoparticles. The p-XRD studies revealed the controlled formation of NPs with a size not more than 12.74 nm. The surface area studies appraise the mesoporous nature of the synthesized ceria particles, with the maximum specific surface area of 36.06 m2g-1. The nano-regime CeO2 nanoparticles had a definite impact on biomedical and electrochemical studies. The CeSD NPs with minuscule size (10.69 nm) manifested promising antioxidant and human RBC protection activity. The antioxidant properties were evaluated using % DPPH inhibition with of maximum of 83.38. The stabilization of RBC's by CeSD NPs was maximum at 94.97%. However, the CeSD NPs with apparent size (12.74 nm) that utilized greater volume fuel (25 mL) had noticeable results on adenocarcinomic lung (A549) cancer cell viability and antidiabetic study which was maximum of 70.16% at concentration 500 µg/mL. A satisfactory antibacterial application was proffered against chosen bacterial stains. The smallest size CeO2 NPs exhibited the best proton diffusion coefficient (8.16 × 10-6 cm2s-1), and the capacitance values of the CeSD NPs are near in all samples (~ 1.17 to 2.00 F) manifest their compact nano-regime sizes. The paracetamol drug was chosen as analyte to appreciating the superlative efficiency for sensing paracetamol drug with the lowest detection limit.


Subject(s)
Cerium , Lung Neoplasms , Metal Nanoparticles , Nanoparticles , Scoparia , Humans , Acetaminophen , Antioxidants/pharmacology , Nanoparticles/chemistry , Cerium/chemistry , Lung , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL