Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 934
Filter
1.
BMC Med ; 22(1): 310, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075419

ABSTRACT

BACKGROUND: Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecologic malignancy with a favorable prognosis if detected early. However, there is a lack of accurate and reliable early detection tests for UCEC. This study aims to develop a precise and non-invasive diagnostic method for UCEC using circulating cell-free DNA (cfDNA) fragmentomics. METHODS: Peripheral blood samples were collected from all participants, and cfDNA was extracted for analysis. Low-coverage whole-genome sequencing was performed to obtain cfDNA fragmentomics data. A robust machine learning model was developed using these features to differentiate between UCEC and healthy conditions. RESULTS: The cfDNA fragmentomics-based model showed high predictive power for UCEC detection in training (n = 133; AUC 0.991) and validation cohorts (n = 89; AUC 0.994). The model manifested a specificity of 95.5% and a sensitivity of 98.5% in the training cohort, and a specificity of 95.5% and a sensitivity of 97.8% in the validation cohort. Physiological variables and preanalytical procedures had no significant impact on the classifier's outcomes. In terms of clinical benefit, our model would identify 99% of Chinese UCEC patients at stage I, compared to 21% under standard care, potentially raising the 5-year survival rate from 84 to 95%. CONCLUSION: This study presents a novel approach for the early detection of UCEC using cfDNA fragmentomics and machine learning showing promising sensitivity and specificity. Using this model in clinical practice could significantly improve UCEC management and control, enabling early intervention and better patient outcomes. Further optimization and validation of this approach are warranted to establish its clinical utility.


Subject(s)
Cell-Free Nucleic Acids , Early Detection of Cancer , Endometrial Neoplasms , Humans , Female , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/blood , Endometrial Neoplasms/genetics , Middle Aged , Cell-Free Nucleic Acids/blood , Early Detection of Cancer/methods , Aged , Machine Learning , Adult , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Sensitivity and Specificity
2.
Genes (Basel) ; 15(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39062674

ABSTRACT

Non-invasive prenatal testing (NIPT) is usually performed beyond 10 weeks of gestation, because earlier in pregnancy, the fetal fraction is low, resulting in failure to obtain reliable results. This study aimed to evaluate the clinical performance of NIPT earlier in pregnancy using a method for cell-free DNA (cfDNA) analysis that eliminates the need for polymerase chain reaction (PCR), DNA sequencing, or microarrays (Vanadis® system, PerkinElmer, Waltham, MA, USA). Cell-free DNA was extracted from the maternal plasma of 30 singleton pregnancies at 6-9 weeks of gestation (group 1) and at 11-14 weeks of gestation of the same patients (group 2). The mean crown-rump length (CRL) and gestational age in group A was 16.12 mm and that in group B was 61.45 mm. In group A, results were obtained in all, but one, cases (97%). From the remaining pregnancies, one miscarried at 8 weeks and, therefore, the follow-up NIPT at 12 weeks could not be performed. The fetal sex was diagnosed correctly in the 28 cases that had a successful early test, and the results were in accordance with the examination at 12 weeks. There were no cases of aneuploidies and disomy was diagnosed correctly in all. The "Vanadis" prenatal NIPT assay can successfully be used early during the first trimester at 6-9 weeks of gestation (early NIPT) to identify the fetal sex. Further studies are needed to explore the diagnostic potential for aneuploidies.


Subject(s)
Cell-Free Nucleic Acids , Gestational Age , Noninvasive Prenatal Testing , Pregnancy Trimester, First , Humans , Pregnancy , Female , Adult , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Noninvasive Prenatal Testing/methods , Pregnancy Trimester, First/blood , Prenatal Diagnosis/methods , Male
3.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063215

ABSTRACT

Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Glioblastoma , Neoplastic Cells, Circulating , Humans , Glioblastoma/diagnosis , Glioblastoma/blood , Glioblastoma/pathology , Liquid Biopsy/methods , Biomarkers, Tumor/blood , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Brain Neoplasms/diagnosis , Brain Neoplasms/blood , Brain Neoplasms/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/cerebrospinal fluid
4.
J Exp Clin Cancer Res ; 43(1): 182, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951853

ABSTRACT

BACKGROUND: During targeted treatment, HER2-positive breast cancers invariably lose HER2 DNA amplification. In contrast, and interestingly, HER2 proteins may be either lost or gained. To longitudinally and systematically appreciate complex/discordant changes in HER2 DNA/protein stoichiometry, HER2 DNA copy numbers and soluble blood proteins (aHER2/sHER2) were tested in parallel, non-invasively (by liquid biopsy), and in two-dimensions, hence HER2-2D. METHODS: aHER2 and sHER2 were assessed by digital PCR and ELISA before and after standard-of-care treatment of advanced HER2-positive breast cancer patients (n=37) with the antibody-drug conjugate (ADC) Trastuzumab-emtansine (T-DM1). RESULTS: As expected, aHER2 was invariably suppressed by T-DM1, but this loss was surprisingly mirrored by sHER2 gain, sometimes of considerable entity, in most (30/37; 81%) patients. This unorthodox split in HER2 oncogenic dosage was supported by reciprocal aHER2/sHER2 kinetics in two representative cases, and an immunohistochemistry-high status despite copy-number-neutrality in 4/5 available post-T-DM1 tumor re-biopsies from sHER2-gain patients. Moreover, sHER2 was preferentially released by dying breast cancer cell lines treated in vitro by T-DM1. Finally, sHER2 gain was associated with a longer PFS than sHER2 loss (mean PFS 282 vs 133 days, 95% CI [210-354] vs [56-209], log-rank test p=0.047), particularly when cases (n=11) developing circulating HER2-bypass alterations during T-DM1 treatment were excluded (mean PFS 349 vs 139 days, 95% CI [255-444] vs [45-232], log-rank test p=0.009). CONCLUSIONS: HER2 gain is adaptively selected in tumor tissues and recapitulated in blood by sHER2 gain. Possibly, an increased oncogenic dosage is beneficial to the tumor during anti-HER2 treatment with naked antibodies, but favorable to the host during treatment with a strongly cytotoxic ADC such as T-DM1. In the latter case, HER2-gain tumors may be kept transiently in check until alternative oncogenic drivers, revealed by liquid biopsy, bypass HER2. Whichever the interpretation, HER2-2D might help to tailor/prioritize anti-HER2 treatments, particularly ADCs active on aHER2-low/sHER2-low tumors. TRIAL REGISTRATION: NCT05735392 retrospectively registered on January 31, 2023 https://www. CLINICALTRIALS: gov/search?term=NCT05735392.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Liquid Biopsy/methods , Middle Aged , Ado-Trastuzumab Emtansine/therapeutic use , Aged , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Adult , Biomarkers, Tumor
5.
Biol Sport ; 41(3): 105-118, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952916

ABSTRACT

This study examined the acute effects of exercise testing on immunology markers, established blood-based biomarkers, and questionnaires in endurance athletes, with a focus on biological sex differences. Twenty-four healthy endurance-trained participants (16 men, age: 29.2± 7.6 years, maximal oxygen uptake ( V ˙ O 2 max ): 59.4 ± 7.5 ml · min-1 · kg-1; 8 women, age: 26.8 ± 6.1 years, V ˙ O 2 max : 52.9 ± 3.1 ml · min-1 · kg-1) completed an incremental submaximal exercise test and a ramp test. The study employed exploratory bioinformatics analysis: mixed ANOVA, k-means clustering, and uniform manifold approximation and projection, to assess the effects of exhaustive exercise on biomarkers and questionnaires. Significant increases in biomarkers (lymphocytes, platelets, procalcitonin, hemoglobin, hematocrit, red blood cells, cell-free DNA (cfDNA)) and fatigue were observed post-exercise. Furthermore, differences pre- to post-exercise were observed in cytokines, cfDNA, and other blood biomarkers between male and female participants. Three distinct groups of athletes with differing proportions of females (Cluster 1: 100% female, Cluster 2: 85% male, Cluster 3: 37.5% female and 65.5% male) were identified with k-means clustering. Specific biomarkers (e.g., interleukin-2 (IL-2), IL-10, and IL-13, as well as cfDNA) served as primary markers for each cluster, potentially informing individualized exercise responses. In conclusion, our study identified exercise-sensitive biomarkers and provides valuable insights into the relationships between biological sex and biomarker responses.

6.
BMC Cancer ; 24(1): 840, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009999

ABSTRACT

BACKGROUND: Detection of cancer and identification of tumor origin at an early stage improve the survival and prognosis of patients. Herein, we proposed a plasma cfDNA-based approach called TOTEM to detect and trace the cancer signal origin (CSO) through methylation markers. METHODS: We performed enzymatic conversion-based targeted methylation sequencing on plasma cfDNA samples collected from a clinical cohort of 500 healthy controls and 733 cancer patients with seven types of cancer (breast, colorectum, esophagus, stomach, liver, lung, and pancreas) and randomly divided these samples into a training cohort and a testing cohort. An independent validation cohort of 143 healthy controls, 79 liver cancer patients and 100 stomach cancer patients were recruited to validate the generalizability of our approach. RESULTS: A total of 57 multi-cancer diagnostic markers and 873 CSO markers were selected for model development. The binary diagnostic model achieved an area under the curve (AUC) of 0.907, 0.908 and 0.868 in the training, testing and independent validation cohorts, respectively. With a training specificity of 98%, the specificities in the testing and independent validation cohorts were 100% and 98.6%, respectively. Overall sensitivity across all cancer stages was 65.5%, 67.3% and 55.9% in the training, testing and independent validation cohorts, respectively. Early-stage (I and II) sensitivity was 50.3% and 45.7% in the training and testing cohorts, respectively. For cancer patients correctly identified by the binary classifier, the top 1 and top 2 CSO accuracies were 77.7% and 86.5% in the testing cohort (n = 148) and 76.0% and 84.0% in the independent validation cohort (n = 100). Notably, performance was maintained with only 21 diagnostic and 214 CSO markers, achieving a training AUC of 0.865, a testing AUC of 0.866, and an integrated top 2 accuracy of 83.1% in the testing cohort. CONCLUSIONS: TOTEM demonstrates promising potential for accurate multi-cancer detection and localization by profiling plasma methylation markers. The real-world clinical performance of our approach needs to be investigated in a much larger prospective cohort.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , DNA Methylation , Neoplasms , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Neoplasms/genetics , Neoplasms/blood , Neoplasms/diagnosis , Female , Male , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Middle Aged , Aged , Early Detection of Cancer/methods , Case-Control Studies , Sensitivity and Specificity , Adult , Prognosis
7.
Article in English | MEDLINE | ID: mdl-39018481

ABSTRACT

Temporomandibular joint osteoarthritis (TMJ OA) is characterized by the degeneration of cartilage and subchondral bone. In this study, we observed a significant increase in cell-free DNA (cfDNA) levels during the progression of TMJ OA. Bioinformatics analysis identified TLR9 as a pivotal molecule in TMJ OA pathogenesis. The polyamidoamine (PAMAM) dendrimer characterized by a well-structured, highly branched, and reactive nature, exhibits robust binding and clearance capabilities for cfDNA. However, the abundant amino groups on the surface of PAMAM lead to its inherent toxicity. To mitigate this, PEG-5000 was conjugated to the surface of PAMAM dendrimers, enhancing safety. Our results indicate that PEG-PAMAM effectively inhibits the upregulation of the TLR9 protein in TMJ OA, significantly suppressing the activation of the p-IκBα/p-NF-κB signaling pathway and subsequently decreasing chondrocyte inflammation and apoptosis, as evidenced by both in vivo and in vitro experiments. We conclude that PEG-PAMAM is a safe and effective material for in vivo applications, offering a promising therapeutic strategy for TMJ OA by targeting cfDNA clearance.

8.
Article in English | MEDLINE | ID: mdl-39054404

ABSTRACT

Advances in technology have correlated with expanding prenatal genetic testing options for pregnant people. Leading medical organizations recommend cell-free DNA as the most sensitive screening test for trisomies 13, 18, and 21, as well as for fetal sex chromosome aneuploidies. The commercially available testing options go beyond these recommended tests, and prenatal care professionals should be familiar with the tests that their patients may choose despite being beyond the scope of current medical recommendations. This article explains updates in cell-free DNA technology and clinical considerations for prenatal care professionals, recognizing that this is a rapidly changing field of science and health care.

9.
J Fungi (Basel) ; 10(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057334

ABSTRACT

We present a case of a man immunocompromised due to myelodysplastic syndrome with Candida krusei fungemia who had a rising cell-free DNA (cfDNA) giant magnetoresistance (GMR) signal when tested daily using plasma blood samples. With the rise in GMR signal paralleling the development of skin lesions in this patient, we conclude that cfDNA can be used to indicate uncontrolled infection and thus help monitor response to therapy. This index patient provides evidence that an invasive fungal infection requires both direct antifungal therapy and an intact immune system to control the infection. This biosensing platform has been simplified to potentially serve as a point-of-care test, setting it apart by overcoming the three common barriers of cfDNA testing: complexity, cost, and time.

10.
Clin Chim Acta ; 562: 119878, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047884

ABSTRACT

Worldwide, female breast cancer (BC) has surpassed lung cancer as the most commonly diagnosed cancer. Early diagnosis of cancer recurrence can provide substantial benefits for BC patients who are at high risk of relapse. We aimed to investigate the role of ALU 247, ALU 115, cfDNA integrity index, CA15-3 and CEA as potential diagnostic markers in BC patients and as markers for early prediction of recurrence. Fifty BC patients (10 patients showed recurrence), 26 BBD patients and 22 healthy controls were included. Real-time q-PCR was used to measure the concentration of ALU 247 and ALU 115 in plasma then cfDNA integrity index was calculated. "ECLIA" was used to measure the concentration of CA15-3 and CEA in serum. Our results showed significant higher levels of ALU 247, ALU 115, CA15-3 and CEA in BC patients in comparison to healthy controls (P=0.02, 0.008, <0.001 and < 0.001 respectively). Also, cfDNA integrity index was higher in BC patients in comparison to healthy controls but statistically insignificance (p = 0.46). In recurrent BC patients; ALU 247, ALU 115, cfDNA integrity index, CA15-3 and CEA levels were higher compared to non-recurrent BC patients but with no statistic significant (p = 0.46, 0.59, 0.09, 0.85 and 0.84 respectively). This may result from the short period of follow up (1-2 years) and the relatively small sample size due to exclusion of patients with chronic diseases or inflammation as well as those who received therapy or post-surgery. By using the ROC curve, the sensitivity of ALU 247, ALU 115, CA15-3 and CEA for discriminating BC patients from BBD patients and healthy controls was 79 %, 79.2 %, 76.0 % and 88.0 % respectively. This study suggested that ALU 247, ALU 115, CA15-3 and CEA could be promising non-invasive markers of BC for diagnosis and early prediction of recurrence after validation in large-scale future studies.

11.
Gene ; 928: 148771, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032702

ABSTRACT

BACKGROUND: Liquid biopsy is considered a complementary and recently also an alternative method to surgical biopsy. It allows for the acquisition of valuable information regarding the potential presence of tumors, particularly through the analysis of circulating tumor DNA (ctDNA). CtDNA is a fraction of circulating free DNA (cfDNA) that can be extracted from various tissues, with blood being the most readily available. RESULTS: To maximize the yield of plasma separation, specific Streck tubes are recommended for blood collection. The MagPurix CFC DNA Extraction Kit can be used for cfDNA extraction, and the TWIST Library Preparation protocol can be optimized for further analysis. Next-generation sequencing (NGS) can be employed to compare somatic and germline lineages, enabling the identification of somatic variants with a Variant Allele Frequency (VAF) of 5 % or higher, which are absent in the germline lineage. CONCLUSION: This analysis helps in the assessment of recurrence, analysis, and monitoring of cancer tissue.

12.
Mol Ther Oncol ; 32(2): 200818, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38966038

ABSTRACT

Bladder cancer (BlCa) is an extensively heterogeneous disease that leads to great variability in tumor evolution scenarios and lifelong patient surveillance, emphasizing the need for modern, minimally invasive precision medicine. Here, we explored the clinical significance of copy number alterations (CNAs) in BlCa. CNA profiling was performed in 15 patient-derived xenografts (PDXs) and validated in The Cancer Genome Atlas BlCa (TCGA-BLCA; n = 408) and Lindgren et al. (n = 143) cohorts. CDKN2A copy number loss was identified as the most frequent CNA in bladder tumors, associated with reduced CDKN2A expression, tumors of a papillary phenotype, and prolonged PDX survival. The study's screening cohort consisted of 243 BlCa patients, and CDKN2A copy number was assessed in genomic DNA and cell-free DNA (cfDNA) from 217 tumors and 189 pre-treatment serum samples, respectively. CDKN2A copy number loss was correlated with superior disease-free and progression-free survival of non-muscle-invasive BlCa (NMIBC) patients. Moreover, a higher CDKN2A index (CDKN2A/LEP ratio) in pre-treatment cfDNA was associated with advanced tumor stage and grade and short-term NMIBC progression to invasive disease, while multivariate models fitted for CDKN2A index in pre-treatment cfDNA offered superior risk stratification of T1/high-grade and EORTC high-risk patients, enhancing prediction of treatment outcome. CDKN2A copy number status could serve as a minimally invasive tool to improve risk stratification and support personalized prognosis in BlCa.

13.
Front Oncol ; 14: 1382369, 2024.
Article in English | MEDLINE | ID: mdl-38983931

ABSTRACT

Background: The diagnostic and prognostic clinical value of circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) in pancreatic malignancies are unclear. Herein, we aimed to perform a meta-analysis to evaluate ctDNA and cfDNA as potential diagnostic and prognostic biomarkers. Methods: PRISMA reporting guidelines were followed closely for conducting the current meta-analysis. The PubMed/Medline, Scopus, and Web of Science (WoS) databases were scanned in detail to identify eligible papers for the study. A quality assessment was performed in accordance with the REMARK criteria. The risk ratios (RRs) of the diagnostic accuracy of ctDNA compared to that of carbohydrate antigen 19.9 (CA 19.9) in all disease stages and the hazard ratios (HRs) of the prognostic role of ctDNA in overall survival (OS) were calculated with 95% confidence intervals (CIs). Results: A total of 18 papers were evaluated to assess the diagnostic accuracy and prognostic value of biomarkers related to pancreatic malignancies. The pooled analysis indicated that CA19.9 provides greater diagnostic accuracy across all disease stages than ctDNA or cfDNA (RR = 0.64, 95% CI: 0.50-0.82, p < 0.001). Additionally, in a secondary analysis focusing on prognosis, patients who were ctDNA-positive were found to have significantly worse OS (HR = 2.00, 95% CI: 1.51-2.66, p < 0.001). Conclusion: The findings of this meta-analysis demonstrated that CA19-9 still has greater diagnostic accuracy across all disease stages than KRAS mutations in ctDNA or cfDNA. Nonetheless, the presence of detectable levels of ctDNA was associated with worse patient outcomes regarding OS. There is a growing need for further research on this topic. Systematic review registration: https://doi.org/10.37766/inplasy2023.12.0092, identifier INPLASY2023120092.

14.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000323

ABSTRACT

Neutrophil extracellular traps (NETs) have a dual role in the innate immune response to thermal injuries. NETs provide an early line of defence against infection. However, excessive NETosis can mediate the pathogenesis of immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure (MOF) in sepsis. Recent studies suggest that high interleukin-8 (IL-8) levels in intensive care unit (ICU) patients significantly contribute to excessive NET generation. This study aimed to determine whether IL-8 also mediates NET generation in patients with severe thermal injuries. IL-8 levels were measured in serum samples from thermally injured patients with ≥15% of the total body surface area (TBSA) and healthy controls (HC). Ex vivo NET generation was also investigated by treating isolated neutrophils with serum from thermal injured patients or normal serum with and without IL-8 and anti-IL-8 antibodies. IL-8 levels were significantly increased compared to HC on days 3 and 5 (p < 0.05) following thermal injury. IL-8 levels were also significantly increased at day 5 in septic versus non-septic patients (p < 0.001). IL-8 levels were also increased in patients who developed sepsis compared to HC at days 3, 5 and 7 (p < 0.001), day 10 (p < 0.05) and days 12 and 14 (p < 0.01). Serum containing either low, medium or high levels of IL-8 was shown to induce ex vivo NETosis in an IL-8-dependent manner. Furthermore, the inhibition of DNase activity in serum increased the NET-inducing activity of IL-8 in vitro by preventing NET degradation. IL-8 is a major contributor to NET formation in severe thermal injury and is increased in patients who develop sepsis. We confirmed that DNase is an important regulator of NET degradation but also a potential confounder within assays that measure serum-induced ex vivo NETosis.


Subject(s)
Extracellular Traps , Interleukin-8 , Neutrophils , Humans , Extracellular Traps/metabolism , Interleukin-8/metabolism , Interleukin-8/blood , Male , Female , Middle Aged , Adult , Neutrophils/metabolism , Neutrophils/immunology , Burns/immunology , Burns/metabolism , Burns/complications , Burns/pathology , Burns/blood , Sepsis/metabolism , Sepsis/immunology , Sepsis/blood , Aged
15.
Trends Microbiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38997867

ABSTRACT

Infectious diseases pose serious threats to public health worldwide. Conventional diagnostic methods for infectious diseases often exhibit low sensitivity, invasiveness, and long turnaround times. User-friendly point-of-care tests are urgently needed for early diagnosis, treatment monitoring, and prognostic prediction of infectious diseases. Cell-free DNA (cfDNA), a promising non-invasive biomarker widely used in oncology and pregnancy, has shown great potential in clinical applications for diagnosing infectious diseases. Here, we discuss the most recent cfDNA research on infectious diseases from both the pathogen and host perspectives. We also discuss the technical challenges in this field and propose solutions to overcome them. Additionally, we provide an outlook on the potential of cfDNA as a diagnostic, treatment, and prognostic marker for infectious diseases.

16.
Epigenetics ; 19(1): 2374988, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39003776

ABSTRACT

Early detection is crucial for increasing the survival rate of gastric cancer (GC). We aimed to identify a methylated cell-free DNA (cfDNA) marker panel for detecting GC. The differentially methylated CpGs (DMCs) were selected from datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The selected DMCs were validated and further selected in tissue samples (40 gastric cancer and 36 healthy white blood cell samples) and in a quarter sample volume of plasma samples (37 gastric cancer, 12 benign gastric disease, and 43 healthy individuals). The marker combination selected was then evaluated in a normal sample volume of plasma samples (35 gastric cancer, 39 control diseases, and 40 healthy individuals) using real-time methylation-specific PCR (MSP). The analysis of the results compared methods based on 2-ΔΔCt values and Ct values. In the results, 30 DMCs were selected through bioinformatics methods, and then 5 were selected for biological validation. The marker combination of two fragments of IRF4 (IRF4-1 and IRF4-2) and one of ZEB2 was selected due to its good performance. The Ct-based method was selected for its good results and practical advantages. The assay, IRF4-1 and IRF4-2 in one fluorescence channel and ZEB2 in another, obtained 74.3% sensitivity for the GC group at any stage, at 92.4% specificity. In conclusion, the panel of IRF4 and ZEB2 in plasma cfDNA demonstrates good diagnostic performance and application potential in clinical settings.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , DNA Methylation , Interferon Regulatory Factors , Stomach Neoplasms , Zinc Finger E-box Binding Homeobox 2 , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/blood , Stomach Neoplasms/diagnosis , Interferon Regulatory Factors/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Female , Male , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism , Cell-Free Nucleic Acids/genetics , Middle Aged , Aged , Adult
17.
J Transl Med ; 22(1): 618, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961476

ABSTRACT

BACKGROUND: Cell free DNA (cfDNA)-based assays hold great potential in detecting early cancer signals yet determining the tissue-of-origin (TOO) for cancer signals remains a challenging task. Here, we investigated the contribution of a methylation atlas to TOO detection in low depth cfDNA samples. METHODS: We constructed a tumor-specific methylation atlas (TSMA) using whole-genome bisulfite sequencing (WGBS) data from five types of tumor tissues (breast, colorectal, gastric, liver and lung cancer) and paired white blood cells (WBC). TSMA was used with a non-negative least square matrix factorization (NNLS) deconvolution algorithm to identify the abundance of tumor tissue types in a WGBS sample. We showed that TSMA worked well with tumor tissue but struggled with cfDNA samples due to the overwhelming amount of WBC-derived DNA. To construct a model for TOO, we adopted the multi-modal strategy and used as inputs the combination of deconvolution scores from TSMA with other features of cfDNA. RESULTS: Our final model comprised of a graph convolutional neural network using deconvolution scores and genome-wide methylation density features, which achieved an accuracy of 69% in a held-out validation dataset of 239 low-depth cfDNA samples. CONCLUSIONS: In conclusion, we have demonstrated that our TSMA in combination with other cfDNA features can improve TOO detection in low-depth cfDNA samples.


Subject(s)
DNA Methylation , Genome, Human , Neoplasms , Neural Networks, Computer , Humans , DNA Methylation/genetics , Neoplasms/genetics , Neoplasms/blood , Neoplasms/diagnosis , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Organ Specificity/genetics , Algorithms
18.
Breast Cancer Res ; 26(1): 112, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965610

ABSTRACT

BACKGROUND: Gene expression profiles in breast tissue biopsies contain information related to chemotherapy efficacy. The promoter profiles in cell-free DNA (cfDNA) carrying gene expression information of the original tissues may be used to predict the response to neoadjuvant chemotherapy in breast cancer as a non-invasive biomarker. In this study, the feasibility of the promoter profiles in plasma cfDNA was evaluated as a novel clinical model for noninvasively predicting the efficacy of neoadjuvant chemotherapy in breast cancer. METHOD: First of all, global chromatin (5 Mb windows), sub-compartments and promoter profiles in plasma cfDNA samples from 94 patients with breast cancer before neoadjuvant chemotherapy (pCR = 31 vs. non-pCR = 63) were analyzed, and then classifiers were developed for predicting the efficacy of neoadjuvant chemotherapy in breast cancer. Further, the promoter profile changes in sequential cfDNA samples from 30 patients (pCR = 8 vs. non-pCR = 22) during neoadjuvant chemotherapy were analyzed to explore the potential benefits of cfDNA promoter profile changes as a novel potential biomarker for predicting the treatment efficacy. RESULTS: The results showed significantly distinct promoter profile in plasma cfDNA of pCR patients compared with non-pCR patients before neoadjuvant chemotherapy. The classifier based on promoter profiles in a Random Forest model produced the largest area under the curve of 0.980 (95% CI: 0.978-0.983). After neoadjuvant chemotherapy, 332 genes with significantly differential promoter profile changes in sequential cfDNA samples of pCR patients was observed, compared with non-pCR patients, and their functions were closely related to treatment response. CONCLUSION: These results suggest that promoter profiles in plasma cfDNA may be a powerful, non-invasive tool for predicting the efficacy of neoadjuvant chemotherapy breast cancer patients before treatment, and the on-treatment cfDNA promoter profiles have potential benefits for predicting the treatment efficacy.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell-Free Nucleic Acids , Neoadjuvant Therapy , Promoter Regions, Genetic , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Middle Aged , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Adult , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Treatment Outcome , Gene Expression Profiling
19.
Int J Neonatal Screen ; 10(3)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39051404

ABSTRACT

Sex chromosome aneuploidies (SCAs) collectively occur in 1 in 500 livebirths, and diagnoses in the neonatal period are increasing with advancements in prenatal and early genetic testing. Inevitably, SCA will be identified on either routine prenatal or newborn screening in the near future. Tetrasomy SCAs are rare, manifesting more significant phenotypes compared to trisomies. Prenatal cell-free DNA (cfDNA) screening has been demonstrated to have relatively poor positive predictive values (PPV) in SCAs, directing genetic counseling discussions towards false-positive likelihood rather than thoroughly addressing all possible outcomes and phenotypes, respectively. The eXtraordinarY Babies study is a natural history study of children prenatally identified with SCAs, and it developed a longitudinal data resource and common data elements with the Newborn Screening Translational Research Network (NBSTRN). A review of cfDNA and diagnostic reports from participants identified a higher than anticipated rate of discordance. The aims of this project are to (1) compare our findings to outcomes from a regional clinical cytogenetic laboratory and (2) describe discordant outcomes from both samples. Twenty-one (10%), and seven (8.3%) cases were found to be discordant between cfDNA (result or indication reported to lab) and diagnosis for the Babies Study and regional laboratory, respectively. Discordant results represented six distinct discordance categories when comparing cfDNA to diagnostic results, with the largest groups being Trisomy cfDNA vs. Tetrasomy diagnosis (66.7% of discordance in eXtraordinarY Babies study) and Mosaicism (57.1% in regional laboratory). Traditional genetic counseling for SCA-related cfDNA results is inadequate given a high degree of discordance that jeopardizes the accuracy of the information discussed and informed decision making following prenatal genetic counseling.

20.
Fertil Steril ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39069216

ABSTRACT

OBJECTIVE: To evaluate the positive predictive value (PPV) of prenatal cell-free DNA screening for chromosomal aneuploidies in pregnancies achieved either after single euploid transfer in IVF/PGT cycles or transfer of single untested embryo, and to assess the concordance of prenatal-cfDNA-screening and PGT-A results. DESIGN: Single centre retrospective cohort study SUBJECTS: 2973 prenatal-cfDNA-screening results for the most common trisomies(T)(T13,T18,T21,X,Y) and microdeletions(1p36;4p16.3;5p15.2;15q11.2;22q11.2) from singleton pregnancies allocated into 2 groups: PGT-A group (n=1204) pregnancy after single euploid transfer and non-PGT-A group (n=1769) pregnancy after transfer of single untested embryo, between 2016 and 2023. MAIN OUTCOME MEASURES: Primary outcome measure was accuracy of prenatal-cell-free-DNA-screening. Positive and negative prenatal-cell-free-DNA-screening results, and subsequent prenatal or postnatal diagnostic testing were used to classify each positive prenatal-cell-free-DNA-screening result as a true or a false positive. Secondary endpoints were to evaluate the concordance of PGT-A and prenatal-cell-free-DNA-screening results and to assess the differences of the fetal fraction of cell-free-DNA used for prenatal-cell-free-DNA-screening report between the study groups. RESULTS: Prenatal-cell-free-DNA-screening was performed at mean 11.3±1.8weeks gestational age (GA) and yielded results in 99.9% of the patients (0.1% cancellation rate). There was no difference in the fetal fraction between PGT-A tested and not tested pregnancies (9.5%±4% vs 10.3%±4%). 13 positive prenatal-cell-free-DNA-screening results (2-T21,2-X0,4-XXX,1-XYY, 1-indeterminate sex, 2-22q11 del/dup, 1-15q11.2) were received for PGT-A group. Only one (22q11 dup) was confirmed with amniocentesis and fetal autopsy, giving a PPV for an abnormal prenatal-cfDNA-screening of 7.7%, the rest had results concordant with PGT-A. Sex chromosomes were 100% concordant between prenatal-cell-free-DNA-screening and PGT-A results, giving a 100% PPV for PGT-A for sex chromosomes and 100% NPV for aneuploidies. Positive prenatal-cell-free-DNA-screening results were received for 27 pregnancies from untested embryos (1.5%), follow up testing was electively performed for 21, and 8 had confirmed the prenatal-cell-free-DNA-screening result, giving a PPV for the non-PGT-A group of 38%. CONCLUSION: This study demonstrates that patients undergoing IVF/PGT and single euploid embryo transfer can reliably do prenatal-cell-free-DNA-screening during their first trimester. Fetal fraction in singleton pregnancies after PGT-A tested embryos is not different from pregnancies with untested embryos. PPV for an abnormal prenatal-cell-free-DNA-screening result after euploid embryo transfer was reassuringly low (7.7%). PGT-A reliably selects against aneuploidy with 100% concordance with fetal sex.

SELECTION OF CITATIONS
SEARCH DETAIL