Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genes Brain Behav ; 22(6): e12865, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37705179

ABSTRACT

Variations in the Dlg2 gene have been linked to increased risk for psychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability, bipolar disorder, attention deficit hyperactivity disorder, and pubertal disorders. Recent studies have reported disrupted brain circuit function and behaviour in models of Dlg2 knockout and haploinsufficiency. Specifically, deficits in hippocampal synaptic plasticity were found in heterozygous Dlg2+/- rats suggesting impacts on hippocampal dependent learning and cognitive flexibility. Here, we tested these predicted effects with a behavioural characterisation of the heterozygous Dlg2+/- rat model. Dlg2+/- rats exhibited a specific, mild impairment in reversal learning in a substrate deterministic bowl-digging reversal learning task. The performance of Dlg2+/- rats in other bowl digging task, visual discrimination and reversal, novel object preference, novel location preference, spontaneous alternation, modified progressive ratio, and novelty-suppressed feeding test were not impaired. These findings suggest that despite altered brain circuit function, behaviour across different domains is relatively intact in Dlg2+/- rats, with the deficits being specific to only one test of cognitive flexibility. The specific behavioural phenotype seen in this Dlg2+/- model may capture features of the clinical presentation associated with variation in the Dlg2 gene.


Subject(s)
Guanylate Kinases , Learning , Membrane Proteins , Mental Disorders , Humans , Animals , Rats , Membrane Proteins/genetics , Guanylate Kinases/genetics , Cognition , Male , Female , Animals, Outbred Strains , Heterozygote , Mental Disorders/genetics , Hippocampus/physiopathology
2.
Front Cell Neurosci ; 15: 667046, 2021.
Article in English | MEDLINE | ID: mdl-34393723

ABSTRACT

Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.

SELECTION OF CITATIONS
SEARCH DETAIL