Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
Fa Yi Xue Za Zhi ; 37(3): 318-324, 2021 Jun.
Article in English, Chinese | MEDLINE | ID: mdl-34379899

ABSTRACT

ABSTRACT: Objective To study the growth regulation, environmental adaption and epigenetic regulation of Chrysomyia Megacephala pupae, in order to obtain the transcriptome data of Chrysomyia Megacephala in different growing periods, and lay the foundation for forensic application. Methods The Chrysomyia Megacephala was cultivated and after pupation, 3 pupae were collected every 24 h from pupation to emergence, and stored at -80 ℃ for later use. High-throughput sequencing was performed by Illumina Hiseq 4000 and Unigenes were obtained. The Unigenes were compared by comparison tool BLAST from NCBI in databases such as NR, STRING, SWISS-PROT (including Pfam), GO, COG, KEGG in order to obtain the corresponding annotation information. The expression amount of Unigenes obtained by sequencing in Chrysomyia Megacephala in six different growing periods was calculated by FPKM method, and the discrepant genes were screened according to the following standards: the log2 multiple absolute value of FPKM expression amount between two different growing periods must be larger than 1 (log2|FC|>1), and the false discovery rate must be less than 0.05. Results When the mean temperature was 25.6 ℃, Chrysomyia Megacephala emerged 6 d after they pupated. A total of 43 408 pieces of Unigenes were obtained and their mean length was 905 bp, of which 32 500, 18 720, 13 542, 9 191 and 18 720 pieces were annotated by NR, SWISS-PORT, Pfam, STRING and KEGG databases. According to the discrepant gene analysis of pupae in two different growing periods, the number of genes with variants ranged from 801 to 5 307, and the total number of discrepant genes was 45 676. Conclusion The gene expressions of the transcriptome data of Chrysomyia Megacephala pupae in different growing periods are different. The results provided a good foundation for further research on the transcriptome changes in each period of the pupae of sarcosaprophagous flies and provided the basis for exploring the genes associated with the growth of Chrysomyia Megacephala pupae.


Subject(s)
Epigenesis, Genetic , Transcriptome , Animals , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Pupa/genetics
2.
Journal of Forensic Medicine ; (6): 318-324, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-985220

ABSTRACT

Objective To study the growth regulation, environmental adaption and epigenetic regulation of Chrysomyia Megacephala pupae, in order to obtain the transcriptome data of Chrysomyia Megacephala in different growing periods, and lay the foundation for forensic application. Methods The Chrysomyia Megacephala was cultivated and after pupation, 3 pupae were collected every 24 h from pupation to emergence, and stored at -80 ℃ for later use. High-throughput sequencing was performed by Illumina Hiseq 4000 and Unigenes were obtained. The Unigenes were compared by comparison tool BLAST from NCBI in databases such as NR, STRING, SWISS-PROT (including Pfam), GO, COG, KEGG in order to obtain the corresponding annotation information. The expression amount of Unigenes obtained by sequencing in Chrysomyia Megacephala in six different growing periods was calculated by FPKM method, and the discrepant genes were screened according to the following standards: the log2 multiple absolute value of FPKM expression amount between two different growing periods must be larger than 1 (log2|FC|>1), and the false discovery rate must be less than 0.05. Results When the mean temperature was 25.6 ℃, Chrysomyia Megacephala emerged 6 d after they pupated. A total of 43 408 pieces of Unigenes were obtained and their mean length was 905 bp, of which 32 500, 18 720, 13 542, 9 191 and 18 720 pieces were annotated by NR, SWISS-PORT, Pfam, STRING and KEGG databases. According to the discrepant gene analysis of pupae in two different growing periods, the number of genes with variants ranged from 801 to 5 307, and the total number of discrepant genes was 45 676. Conclusion The gene expressions of the transcriptome data of Chrysomyia Megacephala pupae in different growing periods are different. The results provided a good foundation for further research on the transcriptome changes in each period of the pupae of sarcosaprophagous flies and provided the basis for exploring the genes associated with the growth of Chrysomyia Megacephala pupae.


Subject(s)
Animals , Epigenesis, Genetic , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Pupa/genetics , Transcriptome
3.
BMC Complement Med Ther ; 20(1): 264, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32854685

ABSTRACT

BACKGROUND: The purpose of this study was to assess the antioxidative activity of selenium-enriched Chrysomyia Megacephala (Fabricius) (C. megacephala) larvae powder (SCML) and its impact on the diversity and structure of intestinal microflora in a mouse model of D-galactose (D-gal)-induced oxidative damage. METHODS: Sixty male ICR mice were equally randomized to a normal control (NC) group, a model group, a positive group, a low-dose SCML (L-SCML) group, a mid-dose SCML (M-SCML) group, and a high-dose SCML (H-SCML) group. Animals in NC and model groups received water, animals in the positive group received 40 mg/Kg vitamin E (VE), and those in the three SCML groups received SCML which include 300, 1000 and 3000 µg/Kg selenium (Se) respectively. An oxidative damage model induced by subcutaneous injection of D-gal for 6 weeks via the neck was established. Serum oxidative stress levels and tissue appearance were evaluated. Tissues oxidative stress levels were detected by commercially available kit. Nuclear erythroid 2-related factor (Nrf2) and gut microbiota were determined by western blot and high throughput sequencing 16S rRNA gene respectively. RESULTS: An oxidative damage model was established successfully as represented by a significant elevation of malondialdehyde (MDA) and protein carbonylation, and inhibition of the antioxidants including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC) and glutathione (GSH). It was found that oxidative damage and histological alterations were attenuated, the expression of Kelch-like ECH-associated protein (Keap1) was decreased, and the expression of Nrf2 and hemeoxygenase-1 (HO-1) was increased after SCML treatment. In addition, significant changes were observed in the gut microbiota, including Proteobacteria and the ratio of Bacteroidetes to Firmicutes at the phylum level, as well as Helicobacter, Clostridium and Lactobacillus at the genus level. CONCLUSION: SCML exerted an antioxidative effect in vivo, probably by increasing the antioxidant activity and reducing the production of oxidation products via the Nrf2 signaling pathway. SCML could also redress the intestinal flora imbalance induced by oxidative stress. All these findings suggest that SCML could serve as a functional food and natural drug additive to protect the human body against oxidative damage.


Subject(s)
Aging/drug effects , Antioxidants/pharmacology , Gastrointestinal Microbiome/drug effects , Larva , Medicine, Chinese Traditional , Oxidative Stress/drug effects , Selenium/pharmacology , Animals , Diptera , Dose-Response Relationship, Drug , Galactose , Male , Mice , Mice, Inbred ICR , Powders
SELECTION OF CITATIONS
SEARCH DETAIL