Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Astrobiology ; 23(10): 1019-1026, 2023 10.
Article in English | MEDLINE | ID: mdl-37737584

ABSTRACT

The enantiomeric excess (ee) of l-form amino acids found in the Murchison meteorite poses some issues about the cosmic origin of their chirality. Circular dichroism (CD) spectra of amino acids in the far-ultraviolet (FUV) at around 6.8 eV (182 nm) indicate that the circularly polarized light can induce ee through photochemical reactions. Here, we resort to ab initio calculations to extract the CD spectra up to the vacuum-ultraviolet (VUV) region (∼11 eV), and we propose a novel equation to compute the ee applicable to a wider range of light frequency than what is available to date. This allows us to show that the strength of the induced ee (|ee|) in the 10 eV VUV region is comparable to the one in the 6.8 eV FUV region. This feature is common for some key amino acids (alanine, 2-aminobutyric acid, and valine). In space, intense Lyman-α (Lyα) light of 10.2 eV is emitted from star forming regions. This study provides a theoretical basis that Lyα emitter from an early starburst in the Milky Way plays a crucial role in initiating the ee of amino acids.


Subject(s)
Alanine , Amino Acids , Amino Acids/chemistry , Circular Dichroism , Stereoisomerism
2.
Angew Chem Int Ed Engl ; 61(52): e202214161, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36325645

ABSTRACT

A pair of zero-dimensional lead-free chiral perovskites is introduced towards the detection of circularly polarized light (CPL). Although spin-polarized carriers are generated in the perovskites under the CPL, the absorption anisotropy remained low leading to mostly similar density of photogenerated carriers under the two CPLs. Interestingly, due to the intrinsic chirality in the perovskites, they exhibited chirality-induced spin-selectivity (CISS) allowing the transport of only one type of spin-half states. A high anisotropy in photocurrent along the out-of-plane direction has therefore appeared resulting in a spin-dependent photovoltaic effect in vertical heterojunction devices and making them suitable for CPL detection. While a self-powered CPL detector showed a limited (but one of the highest to date) anisotropy factor of 0.3 due to possible spin-flips during the transport process, the factor rose to 0.6 under bias prompting extension of the effective spin-diffusion length.

SELECTION OF CITATIONS
SEARCH DETAIL