Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Biochem Genet ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898268

ABSTRACT

Osteoporosis, in which bones become fragile owing to low bone density and impaired bone mass, is a global public health concern. Bone mineral density (BMD) has been extensively evaluated for the diagnosis of low bone mass and osteoporosis. Circulating monocytes play an indispensable role in bone destruction and remodeling. This work proposed a machine learning-based framework to investigate the impact of circulating monocyte-associated genes on bone loss in osteoporosis patients. Females with discordant BMD levels were included in the GSE56815, GSE7158, GSE7429, and GSE62402 datasets. Circulating monocyte types were quantified via CIBERSORT, with subsequent selection of plasma cell-associated DEGs. Generalized linear models, random forests, extreme gradient boosting (XGB), and support vector machines were adopted for feature selection. Artificial neural networks and nomograms were subsequently constructed for osteoporosis diagnosis, and the molecular machinery underlying the identified genes was explored. SVM outperformed the other tuned models; thus, the expression of several genes (DEFA4, HLA-DPB1, LCN2, HP, and GAS7) associated with osteoporosis were determined. ANNs and nomograms were proposed to robustly distinguish low and high BMDs and estimate the risk of osteoporosis. Clozapine, aspirin, pyridoxine, etc. were identified as possible treatment agents. The expression of these genes is extensively posttranscriptionally regulated by miRNAs and m6A modifications. Additionally, they participate in modulating key signaling pathways, e.g., autophagy. The machine learning framework based on plasma cell-associated feature genes has the potential for estimating personalized risk stratification and treatment vulnerability in osteoporosis patients.

2.
Laryngoscope ; 134(7): 3335-3341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38332523

ABSTRACT

OBJECT: Chronic otitis media (COM) is an inflammatory disease that commonly presents with otorrhea and hearing loss. Bacteria-induced inflammation can cause inner ear damage, leading to sensorineural hearing loss (SNHL). This study aimed to compare the prevalence and severity of SNHL in patients with gram-negative versus gram-positive cultures and examine associations between the concentrations of circulating monocytes and neutrophils with bacteria species and SNHL. METHODS: This was a retrospective study. Cholesteatoma or chronic suppurative otitis media patients with otorrhea were enrolled. Middle ear secretions were collected using sterile swabs under an otoscope, and sent for bacterial detection within 30 min. Pure tone audiometry and circulating leukocyte counts were recorded and analyzed in patients infected with different pathogens. Logistic regression analysis was used to identify the risk factors associated with SNHL. RESULTS: A total of 137 patients were enrolled, including 45 patients infected with gram-negative bacteria, 41 with gram-positive bacteria, 20 with polymicrobial infection, and 31 with no bacterial growth. Logistic regression analysis showed that bacterial culture positive infections (OR = 7.265, 95% CI 2.219-23.786, p = 0.001) were an independent risk factor for SNHL. Patients with gram-negative bacteria had higher risks of SNHL (p < 0.0001) and more severe hearing loss (p = 0.005) than those with gram-positive bacteria. COM patients infected with gram-negative bacteria showed an increase in circulating monocytes, which correlated with the occurrence of SNHL (p = 0.0343). CONCLUSION: Gram-negative bacteria are associated with elevated circulating monocyte counts and have a higher risk of severe SNHL. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:3335-3341, 2024.


Subject(s)
Gram-Negative Bacteria , Hearing Loss, Sensorineural , Humans , Female , Male , Hearing Loss, Sensorineural/microbiology , Hearing Loss, Sensorineural/etiology , Hearing Loss, Sensorineural/epidemiology , Chronic Disease , Retrospective Studies , Middle Aged , Adult , Gram-Negative Bacteria/isolation & purification , Otitis Media/microbiology , Otitis Media/complications , Gram-Negative Bacterial Infections/complications , Gram-Negative Bacterial Infections/microbiology , Risk Factors , Otitis Media, Suppurative/microbiology , Otitis Media, Suppurative/complications , Aged , Prevalence , Audiometry, Pure-Tone , Young Adult , Neutrophils , Monocytes , Severity of Illness Index , Adolescent , Leukocyte Count
3.
Front Immunol ; 15: 1286382, 2024.
Article in English | MEDLINE | ID: mdl-38410507

ABSTRACT

Introduction: The impact of cardiovascular disease (CVD) risk factors, encompassing various biological determinants and unhealthy lifestyles, on the functional dynamics of circulating monocytes-a pivotal cell type in CVD pathophysiology remains elusive. In this study, we aimed to elucidate the influence of CVD risk factors on monocyte transcriptional responses to an infectious stimulus. Methods: We conducted a comparative analysis of monocyte gene expression profiles from the CTMM - CIRCULATING CELLS Cohort of coronary artery disease (CAD) patients, at baseline and after lipopolysaccharide (LPS) stimulation. Gene co-expression analysis was used to identify gene modules and their correlations with CVD risk factors, while pivotal transcription factors controlling the hub genes in these modules were identified by regulatory network analyses. The identified gene module was subjected to a drug repurposing screen, utilizing the LINCS L1000 database. Results: Monocyte responsiveness to LPS showed a highly significant, negative correlation with blood pressure levels (ρ< -0.4; P<10-80). We identified a ZNF12/ZBTB43-driven gene module closely linked to diastolic blood pressure, suggesting that monocyte responses to infectious stimuli, such as LPS, are attenuated in CAD patients with elevated diastolic blood pressure. This attenuation appears associated with a dampening of the LPS-induced suppression of oxidative phosphorylation. Finally, we identified the serine-threonine inhibitor MW-STK33-97 as a drug candidate capable of reversing this aberrant LPS response. Conclusions: Monocyte responses to infectious stimuli may be hampered in CAD patients with high diastolic blood pressure and this attenuated inflammatory response may be reversed by the serine-threonine inhibitor MW-STK33-97. Whether the identified gene module is a mere indicator of, or causal factor in diastolic blood pressure and the associated dampened LPS responses remains to be determined.


Subject(s)
Coronary Artery Disease , Hypertension , Humans , Coronary Artery Disease/metabolism , Monocytes/metabolism , Gene Regulatory Networks , Lipopolysaccharides/pharmacology , Hypertension/genetics , Arteries/metabolism , Serine/metabolism , Threonine/genetics , Protein Serine-Threonine Kinases/metabolism , Kruppel-Like Transcription Factors/genetics
5.
Cells ; 11(21)2022 10 25.
Article in English | MEDLINE | ID: mdl-36359758

ABSTRACT

Neurological disorders are highly prevalent and often lead to chronic debilitating disease. Neuroinflammation is a major driver across the spectrum of disorders, and microglia are key mediators of this response, gaining wide acceptance as a druggable cell target. Moreover, clinical providers have limited ability to objectively quantify patient-specific changes in microglia status, which can be a predictor of illness and recovery. This necessitates the development of diagnostic biomarkers and imaging techniques to monitor microglia-mediated neuroinflammation in coordination with neurological outcomes. New insights into the polarization status of microglia have shed light on the regulation of disease progression and helped identify a modifiable target for therapeutics. Thus, the detection and monitoring of microglia activation through the inclusion of diagnostic biomarkers and imaging techniques will provide clinical tools to aid our understanding of the neurologic sequelae and improve long-term clinical care for patients. Recent achievements demonstrated by pre-clinical studies, using novel depletion and cell-targeted approaches as well as single-cell RNAseq, underscore the mechanistic players that coordinate microglial activation status and offer a future avenue for therapeutic intervention.


Subject(s)
Microglia , Nervous System Diseases , Animals , Mice , Humans , Microglia/physiology , Mice, Inbred C57BL , Myeloid Cells , Biomarkers
6.
Front Immunol ; 13: 754557, 2022.
Article in English | MEDLINE | ID: mdl-35663976

ABSTRACT

Delivery of plasmid DNA to transfect human primary macrophages is extremely difficult, especially for genetic engineering. Engineering macrophages is imperative for the treatment of many diseases including infectious diseases, cancer, neurological diseases, and aging. Unfortunately, plasmid does not cross the nuclear membranes of terminally differentiated macrophages to integrate the plasmid DNA (pDNA) into their genome. To address this issue, we have developed a core-shell nanoparticle (NP) using our newly created cationic lipid to deliver the anti-inflammatory cytokine IL-4 pDNA (IL-4pDNA-NPs). Human blood monocyte-derived macrophages (MDM) were effectively transfected with IL-4pDNA-NPs. IL-4pDNA-NPs were internalized in MDM within 30 minutes and delivered into the nucleus within 2 hours. Exogenous IL-4 expression was detected within 1 - 2 days and continued up to 30 days. Functional IL-4 expression led to M2 macrophage polarization in vitro and in an in vivo mouse model of inflammation. These data suggest that these NPs can protect pDNA from degradation by nucleases once inside the cell, and can transport pDNA into the nucleus to enhance gene delivery in macrophages in vitro and in vivo. In this research, we developed a new method to deliver plasmids into the nucleus of monocytes and macrophages for gene-editing. Introducing IL-4 pDNA into macrophages provides a new gene therapy solution for the treatment of various diseases.


Subject(s)
Gene Editing , Monocytes , Animals , DNA/metabolism , Humans , Interleukin-4/genetics , Interleukin-4/metabolism , Macrophages/metabolism , Mice , Monocytes/metabolism
7.
Biomedicines ; 10(2)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35203703

ABSTRACT

Fcγ receptors (FcγRs) interact with the C-reactive protein (CRP) and mediate activation of inflammation-related pathogenic mechanisms affecting cardiovascular health. Our study evaluated whether FcγRIIA and FcγRIIIA profiles are associated with the recurrence of adverse cardiovascular events during the first year after a primary acute coronary syndrome (ACS). The primary endpoint was the recurrence of cardiovascular events (RCE), identified as a composite outcome comprising acute heart failure (AHF) and major adverse cardiovascular events (MACE). We obtained blood samples of 145 ACS patients to measure hsCRP circulating levels, to identify FcγRIIA-131RH rs1801274 and FcγRIIIA-158FV rs396991 polymorphisms, to analyze circulating monocytes and NK cell subsets expressing CD16 and CD32, and to detect serum-mediated FCGR2A-HH activation by luciferase reporter assays. The hsCRP, CD32-expression, and Fc-R mediated activation levels were similar in all patients regardless of their MACE risk. In contrast, the hsCRP levels and the proportion of CD14+ circulating monocytes expressing the CD32 receptor for CRP were significantly higher in the patients who developed AHF. The FCGR2A rs1801274 HH genotype was significantly more common in patients who developed RCE and MACE than in RCE-free patients and associated with an enhanced percentage of circulating CD32+CD14+ monocytes. The FCGR2A-HH genotype was identified as an independent predictor of subsequent RCE (OR, 2.7; p = 0.048; CI, 1.01-7.44) by multivariate analysis. These findings bring preliminary evidence that host FCGR2A genetic variants can influence monocyte CD32 receptor expression and may contribute to the fine-tuning of CD32-driven chronic activating signals that affect the risk of developing RCEs following primary ACS events.

8.
Biomedicines ; 9(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34572439

ABSTRACT

An early analysis of circulating monocytes may be critical for predicting COVID-19 course and its sequelae. In 131 untreated, acute COVID-19 patients at emergency room arrival, monocytes showed decreased surface molecule expression, including low HLA-DR, in association with an inflammatory cytokine status and limited anti-SARS-CoV-2-specific T cell response. Most of these alterations had normalized in post-COVID-19 patients 6 months after discharge. Acute COVID-19 monocytes transcriptome showed upregulation of anti-inflammatory tissue repair genes such as BCL6, AREG and IL-10 and increased accessibility of chromatin. Some of these transcriptomic and epigenetic features still remained in post-COVID-19 monocytes. Importantly, a poorer expression of surface molecules and low IRF1 gene transcription in circulating monocytes at admission defined a COVID-19 patient group with impaired SARS-CoV-2-specific T cell response and increased risk of requiring intensive care or dying. An early analysis of monocytes may be useful for COVID-19 patient stratification and for designing innate immunity-focused therapies.

9.
J Inflamm (Lond) ; 17: 14, 2020.
Article in English | MEDLINE | ID: mdl-32256215

ABSTRACT

BACKGROUND: Chronic inflammation is involved in the initiation and progression of various cancers, including liver cancer. The current study focuses on the characterization of the peripheral immune response in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) patients, before and after surgical procedure, in order to assess the effect of tumor resection in the immune system homeostasis and to determine possible prognostic factors associated with high-grade tumors. We developed a whole-blood assay to monitor immune alterations and functional competence of peripheral monocytes in a group of 10 healthy individuals (HG), in 20 HCC patients and 8 CCA patients, by multi-color flow cytometry, qRT-PCR, and ELISA techniques. RESULTS: The qRT-PCR analysis showed an upregulation of TNFα expression by classical and intermediate monocytes purified from HCC patients presenting tumors in grade G3-G4 as compared to G1-G2 HCC patients. Moreover, ELISA assay confirmed elevated serum levels of TNFα in G3-G4 compared to G1-G2 HCC patients. A significant decrease of circulating non-classical monocytes was detected in both CCA and HCC patients before and after surgical procedure. In addition, a functional defect in circulating classical and intermediate monocytes was observed in both groups of cancer patients when compared to the HG, with partial recovery after the surgical intervention. CONCLUSIONS: This integrated analysis permitted the identification of altered functional competence of monocyte subsets in CCA and HCC patients. In addition, our results point to a potential role of TNFα as a prognostic peripheral biomarker in HCC patients, indicating the presence of high-grade tumors that should be further validated.

10.
Carbohydr Polym ; 229: 115435, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31826424

ABSTRACT

Micelles are one of the most investigated nanocarriers for drug delivery. In this study, polymeric micelles based on chitosan were prepared to explore the delivery mechanism which was critical for enhancing tumor targeting but still remain elusive. The chitosan polymer COSA was synthesized and the polymeric micelles showed good self-assembly ability, good dispersion stability and low toxicity. After being intravenously administered, the micelles were selectively taken up by circulating monocytes in a receptor-mediated way (almost 94% uptake in Ly-6Chi monocytes, below 7% in all other circulating cells) and reach the tumor with the subsequent travel of these cells. In addition, the micelles in macrophages (differentiated from circulating monocytes) can be exocytosed and subsequently taken up by cancer cells. The delivery mechanism of COSA micelles is directional for the novel strategies to enhance tumor targeting and the micelles are promising candidates for diseases in which monocytes are directly implicated.


Subject(s)
Chitosan/metabolism , Drug Carriers/metabolism , Micelles , Monocytes/metabolism , Animals , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Liberation , Endocytosis , Exocytosis , Female , Mice , Mice, Inbred BALB C , Neoplasms/metabolism , RAW 264.7 Cells
11.
Front Immunol ; 10: 893, 2019.
Article in English | MEDLINE | ID: mdl-31068952

ABSTRACT

Control of homeostasis and rapid response to tissue damage in the liver is orchestrated by crosstalk between resident and infiltrating inflammatory cells. A crucial role for myeloid cells during hepatic injury and repair has emerged where resident Kupffer cells, circulating monocytes, macrophages, dendritic cells and neutrophils control local tissue inflammation and regenerative function to maintain tissue architecture. Studies in humans and rodents have revealed a heterogeneous population of myeloid cells that respond to the local environment by either promoting regeneration or driving the inflammatory processes that can lead to hepatitis, fibrogenesis, and the development of cirrhosis and malignancy. Such plasticity of myeloid cell responses presents unique challenges for therapeutic intervention strategies and a greater understanding of the underlying mechanisms is needed. Here we review the role of myeloid cells in the establishment and progression of liver disease and highlight key pathways that have become the focus for current and future therapeutic strategies.


Subject(s)
Disease Susceptibility , Liver Diseases/etiology , Liver Diseases/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Acute Disease , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Chronic Disease , Disease Progression , Humans , Kupffer Cells/immunology , Kupffer Cells/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Diseases/pathology , Liver Diseases/therapy , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Phenotype
12.
Cancer Cell ; 35(4): 588-602.e10, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30930117

ABSTRACT

The roles of tumor-associated macrophages (TAMs) and circulating monocytes in human cancer are poorly understood. Here, we show that monocyte subpopulation distribution and transcriptomes are significantly altered by the presence of endometrial and breast cancer. Furthermore, TAMs from endometrial and breast cancers are transcriptionally distinct from monocytes and their respective tissue-resident macrophages. We identified a breast TAM signature that is highly enriched in aggressive breast cancer subtypes and associated with shorter disease-specific survival. We also identified an auto-regulatory loop between TAMs and cancer cells driven by tumor necrosis factor alpha involving SIGLEC1 and CCL8, which is self-reinforcing through the production of CSF1. Together these data provide direct evidence that monocyte and macrophage transcriptional landscapes are perturbed by cancer, reflecting patient outcomes.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Cellular Reprogramming , Macrophages/metabolism , Monocytes/metabolism , Paracrine Communication , Transcription, Genetic , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chemokine CCL8/genetics , Chemokine CCL8/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Induced Pluripotent Stem Cells/metabolism , Macrophage Colony-Stimulating Factor/genetics , Macrophages/pathology , Molecular Targeted Therapy , Monocytes/pathology , Sialic Acid Binding Ig-like Lectin 1/genetics , Sialic Acid Binding Ig-like Lectin 1/metabolism , Signal Transduction , THP-1 Cells , Tumor Microenvironment
13.
Exp Ther Med ; 17(4): 2529-2534, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30906441

ABSTRACT

Differential expression pathways and hub genes in circulating monocytes from healthy Chinese women with high peak bone mass (PBM) vs. low PBM were explored using a Markov chain Monte Carlo (MCMC) algorithm. Human circulating monocytes transcription profiling (containing 14 samples with high PBM and 12 samples with low PBM) and KEGG pathways were all downloaded from the public database. Initial state of all the pathways were constructed and Gibbs sampling was performed to obtain a Markov chain and the posterior values of all the pathways were calculated. The probability (α) of occurrence of each pathway was calculated based on the posterior value and it was adjusted by taking gene expression variation into account. Pathways with αadj >0.8 were considered as differentially expressed pathways. Then, these steps were performed again on all the genes in the differentially expressed pathways to find the hub genes in the differential pathways. After Gibbs sampling, neuroactive ligand-receptor interaction (hsa04080) with αadj = 0.986 was screened out as the differentially expressed pathway. Analyzing the genes in this pathway, three genes (neurotensin, tachykinin receptor 3 and follicle-stimulating hormone receptor) with αadj >0.8 were identified as hub genes in circulating monocytes which may associate with osteoporosis development. One pathway and three genes which may possess close relationship with osteoporosis development were found in this study. These results provide insights into our understanding of the role of circulating monocytes in osteoporosis development.

14.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L231-L242, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27913426

ABSTRACT

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is an important cause of mortality in critically ill patients. Macrophages play an important role in the pathogenesis of ALI/ARDS. To investigate the role and underlying mechanisms of circulating monocytes and resident alveolar macrophages (AMs) in ALI/ARDS, we depleted circulating monocytes and AMs by clodronate-loaded liposome (CL) in a lipopolysaccharide (LPS)-induced ALI/ARDS mouse model. Our results indicated that depletion of circulating monocytes by intravenous injection of CL 2 days before intratracheal LPS treatment significantly suppressed the acute lung injury in mice with ALI/ARDS, accompanied with significant reduction in neutrophil influx, interleukin-17, monocyte chemoattractant protein 1, high-mobility group box 1 protein, suppressor of cytokine signaling 3, and surfactant protein D (SP-D) in the lungs of 2 days intratracheal LPS-treated mice. In contrast, depletion of AMs by intratracheal delivery of CL enhanced the acute lung injury in association with upregulation of these mediators. Blocking monocyte chemoattractant protein 1 signaling by intraperitoneal instillation of anti-mouse CCL2 neutralizing antibody significantly reduced acute lung injury and neutrophil influx. In addition, SP-D was upregulated by mediators released from AMs because primary murine type II alveolar epithelial cells expressed more SP-D after treatment with bronchoalveolar lavage from LPS-treated mice or the conditioned media from LPS-treated RAW 264.7 cells. The results indicated that circulating monocytes are proinflammatory, but AMs have anti-inflammatory functions in the early phase of ALI/ARDS. The study provided a molecular basis for the treatment of ALI/ARDS through modulation of circulating monocytes and AMs.


Subject(s)
Acute Lung Injury/metabolism , HMGB1 Protein/metabolism , Interleukin-17/metabolism , Monocytes/metabolism , Acute Lung Injury/pathology , Alveolar Epithelial Cells/metabolism , Animals , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokines/metabolism , Female , Lipopolysaccharides , Macrophage Activation , Mice, Inbred C57BL , Pulmonary Surfactant-Associated Protein D/metabolism , Signal Transduction , Th17 Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
15.
Glia ; 62(7): 1041-52, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24648328

ABSTRACT

The expansion of the microglial population is one of the hallmarks of numerous brain disorders. The addition of circulating progenitors to the pool of brain macrophages can contribute to the progression of brain disease and needs to be precisely defined to better understand the evolution of the glial and inflammatory reactions in the brain. We have analyzed the degree of infiltration/recruitment of circulating monocytes to the microglial pool, in a prion disease model of chronic neurodegeneration. Our results indicate a minimal/absent level of CCR2-dependent recruitment of circulating monocytes, local proliferation of microglia is the main driving force maintaining the amplification of the population. A deficiency in CCR2, and thus the absence of recruitment of circulating monocytes, does not impact microglial dynamics, the inflammatory profile or the temporal behavioral course of prion disease. However, the lack of CCR2 has unexpected effects including the failure to recruit perivascular macrophages in diseased but not healthy CNS and a small reduction in microglia proliferation. These data define the composition of the CNS-resident macrophage populations in prion disease and will help to understand the dynamics of the CNS innate immune response during chronic neurodegeneration.


Subject(s)
CA1 Region, Hippocampal/immunology , Macrophages/immunology , Microglia/immunology , Monocytes/immunology , Prion Diseases/immunology , Receptors, CCR2/metabolism , Animals , Antigens, CD34/metabolism , Behavior, Animal/physiology , CA1 Region, Hippocampal/blood supply , Cell Proliferation , Chronic Disease , Disease Models, Animal , Disease Progression , Female , Mice, Inbred C57BL , Mice, Knockout , Neurodegenerative Diseases/immunology , Receptors, CCR2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL