Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 676
Filter
1.
Vet Pathol ; : 3009858241281911, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319985

ABSTRACT

Feline eosinophilic sclerosing fibroplasia (FESF) is a proliferative, inflammatory disease of the gastrointestinal tract and other sites, uncommonly diagnosed in the cat. This entity of uncertain etiology typically presents as a progressive mass lesion, mimicking a neoplastic process. In this case series, we present 17 cases of FESF associated with intralesional lymphoma. Histologic and immunohistochemical characterization of this unique lymphoma revealed that the neoplastic lymphocytes were immunopositive for CD56 and/ or CD3, suggesting a natural killer cell, natural killer T-cell, or T-cell origin. This case series represents the first description of this lymphoma subtype, for which the term eosinophilic sclerosing lymphoma is proposed.

2.
J Biol Methods ; 11(2): e99010013, 2024.
Article in English | MEDLINE | ID: mdl-39323485

ABSTRACT

Background: Clonality assessment is currently the major molecular analysis utilized to support the diagnosis of suspicious lymphoid malignancies. Clonal rearrangements of the V-J segments of T-cell receptor G chain locus (TCRγ or TRG) have been observed in almost all types of T neoplasms, such as T-cell-related non-Hodgkin lymphomas and leukemias. At present, the gold standard for clonality evaluation is multiplex polymerase chain reaction (PCR), plus subsequent capillary electrophoresis/heteroduplex analyses, and/or Sanger sequencing. This approach overcomes the problem with the conventional Southern blot hybridization and is more efficient, simple, fast, and reproducible. In the recent years, the new next-generation sequencing (NGS) technologies provided alternative techniques for the analysis of antigen receptors genes, which presented several advantages, such as increased efficiency, specificity (SP), sensitivity (ST), resolution, and objectivity of the results, leading to a better classification, stratification, and monitoring of lymphoid malignancies. Nonetheless, these technologies are still far from being the new gold standard since further studies are warranted to prove their utility. The present study aimed to assess the diagnostic accuracy of these two methods by comparing a commercial NGS-based assay for the evaluation of TRG locus with the gold standard PCR-based one, to fulfill the requirements of a phase 3 diagnostic accuracy study. Methods: We assessed the TRG gene rearrangements in 72 cases using the conventional and highly-validated PCR-based assay proposed by EuroClonality consortium, an alternative commercial PCR-based assay, namely, IdentiClone® TCR Gamma Gene Rearrangement Assay 2.0, and a commercial NGS-based assay, that is, Invivoscribe LymphoTrack® Dx MiSeq® (both by Invivoscribe Technologies Inc., San Diego, CA, USA), to determine the diagnostic accuracy of the latter, and compare them with reference diagnoses made based on observation of clinical manifestations, cytohistological, and immunohistochemical analyses. Statistical values were calculated using the Oxford CATmaker software package. Results: Using standardized criteria of interpretation, the obtained results showed a diagnostic accuracy of 90.3% (correspondence in 65 out of 72 cases) of the test under investigation, with a ST of 86%, a SP of 95%, a positive predicting value of 94%, and a negative predicting value of 88%, demonstrating that it had high efficiency and reliability in detecting clonal TRG gene rearrangements in T-cell non-Hodgkin lymphomas. Conclusions: This diagnostic accuracy study yielded comparable results using a validated PCR-based approach and a new NGS-based one. Subsequent studies and cost-effectiveness evaluation are needed to put the NGS-based clonality assessment into routine diagnostic practice.

3.
Transpl Immunol ; 87: 102129, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260676

ABSTRACT

BACKGROUND AND AIMS: Most experimental studies of allograft vasculopathy (AV) have relied on transplantation between major histocompatibility complex-mismatched inbred mouse strains, but this leads to the complete eradication of donor smooth muscle cells (SMCs) and lesions formed by recipient cells. This is unlike human AV which is thought to form mainly by donor SMCs. Here, we studied sources of neointimal cells in a minor histocompatibility antigen-mismatched AV model by combining male-to-female orthotopic carotid transplantations and lineage tracing by SMC-specific expression of fluorescent proteins. METHODS: To track SMC-derived cells in allograft vasculopathy, we used male donor mice with SMC-restricted Cre recombination of the mT/mG reporter transgene, which switches expression of membrane-bound red fluorescent protein (RFP) to green fluorescent protein (GFP), or the stochastically recombining Confetti reporter transgene, which yields a mosaic expression of four fluorescent proteins. Donor carotid segments were harvested and orthotopically allografted to female recipients that were wildtype or had non-recombined reporter transgenes. Inhibition of T cell responses by CTLA4Ig was used in some experiments. Sections of lesions harvested after 4 weeks were analyzed by fluorescence microscopy. RESULTS: Donor-derived SMCs survived and gave rise to part of the neointimal cells in experiments where carotid segments from recombined mT/mG male mice were transplanted into wild-type or non-recombined mT/mG female mice. Sex-mismatched transplants developed significant lesions, increasing the intimal and medial area 4.6-fold (p = 0.038) and 2.0-fold (p = 0.024) compared to sex- and fluorescence-matched controls, respectively. Interestingly, sex-matched fluorescence-positive transplants developed intimal lesions in 50% of fluorescence-naïve recipient controls. To study the clonal structure of the neointimal donor-derived SMC lineage cells, we then transplanted male carotids with heterozygous or homozygous recombined Confetti transgenes into female recipients. These transplants developed lesions with few surviving donor SMCs, indicating that expression of the Confetti reporter increased rejection and donor-specific SMC death. Some of the few remaining donor SMCs underwent clonal expansion. CTLA4Ig administration at the time of surgery did not improve SMC survival in mT/mG or Confetti transplants. CONCLUSION: Male-to-female transplant models feature donor-derived SMCs, some of which undergo clonal expansion, but immune rejection to fluorescence reporters appears to bias results in lineage tracing models. Overcoming these challenges with alternative reporter transgenes or tolerant recipients is necessary to study the mechanisms by which donor SMCs contribute to allograft vasculopathy.

4.
Front Vet Sci ; 11: 1439068, 2024.
Article in English | MEDLINE | ID: mdl-39280837

ABSTRACT

Cats have the highest incidence of lymphoma among all animal species. Lymphoma accounts for 41% of all malignant tumors in cats and is responsible for 90% of hematopoietic tumors in felines. Biopsies are considered the gold standard for diagnosis. Polymerase chain reaction (PCR)-based clonality assessment of antigen receptor gene rearrangements can be a valuable complementary tool for identifying infiltrating B-and T-lymphocyte clones. Many studies have focused on intestinal cases but few have addressed mediastinal lymphoma. This study aims to: (1) investigate the clonality patterns of lymphoma samples from various anatomical sites, with a particular focus on mediastinal lymphoma, and (2) evaluate the sensitivity and specificity of the clonality analysis of pleural effusion samples in comparison with cytology, histology, immunohistochemistry, and immunocytochemistry for diagnosing mediastinal lymphoma. There were 82 cases, divided into 49 formalin-fixed and paraffin-embedded biopsy specimens (FFPE), 22 cell pellets, and 11 fresh tissue. This study examined the sensitivity and specificity of PCR for antigen receptor rearrangement (PARR) compared to immunohistochemistry (IHC) and immunocytochemistry. For T-cell receptor gamma chain genes, PARR demonstrated a sensitivity of 58.33% for both fresh tissue and FFPE samples, with a specificity of 100%. Cell pellet analysis exhibited a sensitivity of 64.71% and maintained 100% specificity. A combined analysis of fresh tissue and FFPE with cell pellets showed a sensitivity of 62.07%. For IGH, the sensitivity for fresh tissue and FFPE samples was 56.25%, while cell pellet analysis showed a sensitivity of 62.50%. When considering fresh tissue and FFPE samples, the sensitivity was 57.14%. In conclusion, molecular techniques have emerged as valuable tools for detecting lymphoma, especially in cases where traditional diagnostic methods yield inconclusive results, such as mediastinal lymphoma. While biopsy may not always be feasible, cytology and cell pellets obtained from pleural effusion offer alternative immunocytochemistry and molecular analysis samples, provided they are of sufficient quality and quantity. All sample types considered in this study were suitable for PARR to aid in cases with inconclusive results. Therefore, the sample selection should be tailored to the clinical situation.

5.
Sci China Life Sci ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39190128

ABSTRACT

Understanding the maintenance and shift in reproductive strategies is a fundamental question in evolutionary research. Although many efforts have been made to compare different reproductive strategies, the association between reproductive strategies and lineage divergence is largely unknown. To explore the impact of different reproductive strategies on lineage divergence, we investigated the evolution of clonality in Saxifraga sect. Irregulares+Heterisia. By integrating several lines of evidence, we found that the loss of clonality in Irregulares+Heterisia was associated with a progressive increase in diversification rate and intraspecific morphological diversity but with a reduction in species distribution range. Our findings provide insights into the ecological and evolutionary effects of different reproductive strategies, suggesting the necessity of integrating clonality into ecological and evolutional research.

6.
Mol Cancer ; 23(1): 180, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217332

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is a heterogeneous embryonal malignancy and the deadliest tumor of infancy. It is a complex disease that can result in diverse clinical outcomes. In some children, tumors regress spontaneously. Others respond well to existing treatments. But for the high-risk group, which constitutes approximately 40% of all patients, the prognosis remains dire despite collaborative efforts in basic and clinical research. While its exact cellular origin is still under debate, NB is assumed to arise from the neural crest cell lineage including multipotent Schwann cell precursors (SCPs), which differentiate into sympatho-adrenal cell states eventually producing chromaffin cells and sympathoblasts. METHODS: To investigate clonal development of neuroblastoma cell states, we performed haplotype-specific analysis of human tumor samples using single-cell multi-omics, including joint DNA/RNA sequencing of sorted single cells (DNTR-seq). Samples were also assessed using immunofluorescence stainings and fluorescence in-situ hybridization (FISH). RESULTS: Beyond adrenergic tumor cells, we identify subpopulations of aneuploid SCP-like cells, characterized by clonal expansion, whole-chromosome 17 gains, as well as expression programs of proliferation, apoptosis, and a non-immunomodulatory phenotype. CONCLUSION: Aneuploid pre-malignant SCP-like cells represent a novel feature of NB. Genetic evidence and tumor phylogeny suggest that these clones and malignant adrenergic populations originate from aneuploidy-prone cells of migrating neural crest or SCP origin, before lineage commitment to sympatho-adrenal cell states. Our findings expand the phenotypic spectrum of NB cell states. Considering the multipotency of SCPs in development, we suggest that the transformation of fetal SCPs may represent one possible mechanism of tumor initiation in NB with chromosome 17 aberrations as a characteristic element.


Subject(s)
Gene Expression Profiling , Neuroblastoma , Schwann Cells , Single-Cell Analysis , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Schwann Cells/metabolism , Schwann Cells/pathology , Transcriptome , Gene Expression Regulation, Neoplastic , In Situ Hybridization, Fluorescence
7.
Clin Transl Med ; 14(8): e1780, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39162183

ABSTRACT

While paediatric blood cancers are deadly, modern medical advances have enabled clinicians to measure levels of residual cancer cells to manage therapeutic strategies for patients. However, blood cancers, including leukaemias and lymphomas, are highly heterogeneous and is comprised of complex clonal populations that can hinder efforts in detecting the cancer cells as well as managing treatments. Furthermore, the tumour microenvironment is comprised of heterogenous immune dynamics that may be different between patients. High-throughput sequencing has constributed to new discoveries in genetic and transcriptomic alterations underpinning cancer, including blood cancers, and has changed how patients are monitored and managed. Here we discuss the recent efforts using single-cell approach, particularly on efforts to track clonal heterogenity of paediatric blood cancer and the underlying immune response, highlighting avenues for novel biomarker discovery that may have significant impact on clinical oncology practice.


Subject(s)
Hematologic Neoplasms , Single-Cell Analysis , Humans , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Single-Cell Analysis/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
8.
Vet Sci ; 11(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39195785

ABSTRACT

Feline lymphoma, a prevalent cancer in cats, exhibits varied prognoses influenced by anatomical site and cellular characteristics. In this study, we investigated the utility of flow cytometry and clonality analysis via PCR for antigen receptor rearrangement (PARR) with respect to characterizing the disease and predicting prognosis. For this purpose, we received fine needle aspirates and/or blood from 438 feline patients, which were subjected to flow cytometry analysis and PARR. We used a subset of the results from patients with confirmed B- or T-cell lymphomas for comparison to cytological or histological evaluation (n = 53). Using them as a training set, we identified the optimal set of flow cytometry parameters, namely forward scatter thresholds, for cell size categorization by correlating with cytology-defined sizes. Concordance with cytological sizing among this training set was 82%. Furthermore, 90% concordance was observed when the proposed cell sizing was tested on an independent test set (n = 24), underscoring the reliability of the proposed approach. Additionally, lymphoma subtypes defined by flow cytometry and PARR demonstrated significant survival differences, validating the prognostic utility of these methods. The proposed methodology achieves high concordance with cytological evaluations and provides an additional tool for the characterization and management of feline lymphoproliferative diseases.

9.
Clin Lab Med ; 44(3): 465-477, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089752

ABSTRACT

Multiparameter flow cytometry (MPF) is an essential component of the diagnostic workup of hematologic malignancies. Recently developed tools have expanded the utility of MPF in detecting T-cell clonality and myelomonocytic dysplasia. Minimal/measurable residual disease analysis has long been established as critical in the management of B-lymphoblastic leukemia and is emerging as a useful tool in myeloid malignancies. With the continued increased complexity of MPF assays, emerging tools for data collection and analysis will allow users to take full advantage of MPF in the diagnosis of hematologic disease.


Subject(s)
Flow Cytometry , Hematologic Neoplasms , Humans , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/pathology , Immunophenotyping , Neoplasm, Residual/diagnosis
10.
Int J Surg Pathol ; : 10668969241266927, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155593

ABSTRACT

In the diagnostic workup of poorly differentiated tumors, T-cell receptor (TCR) clonality has long been considered as evidence of T-cell lymphoma. MET exon 14 skipping (METex14) is a mutation typically seen in lung adenocarcinoma. Herein, we present the first report of METex14 lung adenocarcinoma with isolated monoclonal TCRγ gene rearrangement. A 69-year-old woman presented to an outside hospital with pleural effusions. A pleural decortication demonstrated malignant cells positive for CD30 and CD138 but negative for BerEP4, KRT5, and EMA. An equivocal HHV8 staining was interpreted as positive, leading to the erroneous outside diagnosis of primary effusion lymphoma. Additional workup at our institution revealed a lack of HHV8 and T-cell markers but the presence of TCRγ clonality, pankeratin, and TTF1 expression. Repeat TCRγ testing on the in-house biopsy was negative for clonality. Next-generation sequencing detected METex14, confirming the diagnosis of lung adenocarcinoma. The potential diagnostic pitfall and prognostic/predictive implications are discussed.

11.
Genome Biol ; 25(1): 214, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123248

ABSTRACT

Analysis of clonal dynamics in human tissues is enabled by somatic genetic variation. Here, we show that analysis of mitochondrial mutations in single cells is dramatically improved in females when using X chromosome inactivation to select informative clonal mutations. Applying this strategy to human peripheral mononuclear blood cells reveals clonal structures within T cells that otherwise are blurred by non-informative mutations, including the separation of gamma-delta T cells, suggesting this approach can be used to decipher clonal dynamics of cells in human tissues.


Subject(s)
Mutation , Single-Cell Analysis , X Chromosome Inactivation , Humans , Female , Leukocytes, Mononuclear/metabolism , Chromosomes, Human, X/genetics , Clone Cells , T-Lymphocytes/metabolism , Male , DNA, Mitochondrial/genetics
12.
J Cutan Pathol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021266

ABSTRACT

The diagnosis of cutaneous T-cell lymphoma (CTCL) remains challenging. Demonstration of a clonal T-cell population using T-cell receptor (TCR) gene rearrangement studies by next-generation sequencing (NGS) has been explored in several studies. This review summarizes the current literature on NGS-based sequencing methods for the assessment of TCR clonality in the evaluation of atypical cutaneous lymphoid infiltrates and CTCL on behalf of the American Society of Dermatopathology Appropriate Use Criteria Committee (lymphoproliferative subgroup). PubMed was searched for relevant articles, including CTCL and NGS, for clonality from 1967 to 2022. Thirteen studies were included in the analysis. The skin was the most commonly assayed compartment with TCR NGS. Sensitivity for TCR NGS in the skin ranged between 69% and 100%, compared to 44%-72% for polymerase chain reaction (PCR)-capillary electrophoresis. Specificity for TCR NGS in the skin ranged from 86% to 100%, compared to 77%-88% for PCR capillary electrophoresis. TCR NGS was also reported to have potential prognostic value in CTCL and can also be used to detect relapse and/or minimal residual disease after treatment.

13.
Pathology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39025724

ABSTRACT

Measurable residual disease (MRD) testing is an essential aspect of disease prognostication in acute lymphoblastic leukaemia (ALL) and informs clinical decisions. The depth of MRD clearance is highly relevant and requires assays with sufficient sensitivity. Austin Pathology is one of the few laboratories in Australia currently utilising a fully validated and National Association of Testing Authorities (NATA)-accredited ultrasensitive next-generation sequencing (NGS) platform for MRD monitoring in ALL. This technology is based on the detection of clonal rearrangement of immunoglobulin and T cell receptor genes in leukaemic cells, and is capable of achieving a limit of detection at least one to two logs below that of multiparametric flow cytometry (MFC). In this retrospective analysis, we report a clonotype detection rate of up to 85.7% at diagnosis, and a concordance rate of 78.7% in MRD results between NGS and MFC. Of the discordant samples, nearly all were NGS+/MFC-, highlighting the superior sensitivity of NGS. The enhanced sensitivity is clinically relevant, as discordant MRD results often heralded fulminant relapse, and therefore offer clinicians additional lead time and a window of opportunity to initiate pre-emptive therapy. Notwithstanding a small and heterogeneous cohort, our real-world survival data indicate an intermediate relapse risk for NGS+/MFC- patients. In light of recent approval of Medicare rebatable ALL MRD testing, we discuss how NGS can complement other techniques such as MFC in personalising management strategies. We recommend routine clonality testing by NGS at diagnosis and use a multi-modality approach for subsequent MRD monitoring.

14.
Biol Direct ; 19(1): 51, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956687

ABSTRACT

BACKGROUND: Esophageal carcinoma (EC) and gastric cardiac adenocarcinoma (GCA) have high incidence rates in the Chaoshan region of South China. Multifocal esophageal and cardiac cancer (MECC) is commonly observed in this region in clinical practice. However, the genomic characteristics of MECC remains unclear. MATERIALS AND METHODS: In this study, a total of 2123 clinical samples of EC and GCA were analyzed to determine the frequency of multifocal tumors, as well as their occurrence sites and pathological types. Cox proportional hazards regression was used to model the relationship between age, sex, and tumor state concerning survival in our analysis of the cohort of 541 patients with available follow-up data. We performed whole-genome sequencing on 20 tumor foci and 10 normal samples from 10 MECC patients to infer clonal structure on 6 MECC patients to explore genome characteristics. RESULT: The MECC rate of EC and GCA was 5.65% (121 of 2123). Age and sex were potential factors that may influence the risk of MECC (p < 0.001). Furthermore, MECC patients showed worse survival compared with single tumor patients. We found that 12 foci from 6 patients were multicentric origin model (MC), which exhibited significant heterogeneity of variations in paired foci and had an increased number of germline mutations in immune genes compared to metastatic model. In MC cases, different lesions in the same patient were driven by distinct mutation and copy number variation (CNV) events. Although TP53 and other driver mutation genes have a high frequency in the samples, their mutation sites show significant heterogeneity in paired tumor specimens. On the other hand, CNV genes exhibited higher concordance in paired samples, especially in the amplification of oncogenes and the deletion of tumor suppressor genes. CONCLUSIONS: The extent of inter-tumor heterogeneity suggests both monoclonal and polyclonal origins of MECC, which could provide insight into the genome diversity of MECC and guide clinical implementation.


Subject(s)
Esophageal Neoplasms , Stomach Neoplasms , Humans , Esophageal Neoplasms/genetics , Male , Female , Stomach Neoplasms/genetics , Middle Aged , Aged , Genomics , Whole Genome Sequencing , China/epidemiology , Adenocarcinoma/genetics , Adult
15.
Front Immunol ; 15: 1423689, 2024.
Article in English | MEDLINE | ID: mdl-39040115

ABSTRACT

Purpose: Natural killer (NK) cells are traditionally identified by flow cytometry using a combination of markers (CD16/CD56/CD3), because a specific NK-cell marker is still missing. Here we investigated the utility of CD314, CD335 and NKp80, compared to CD16/CD56/CD3, for more robust identification of NK-cells in human blood, for diagnostic purposes. Methods: A total of 156 peripheral blood (PB) samples collected from healthy donors (HD) and patients with diseases frequently associated with loss/downregulation of classical NK-cell markers were immunophenotyped following EuroFlow protocols, aimed at comparing the staining profile of total blood NK-cells for CD314, CD335 and NKp80, and the performance of distinct marker combinations for their accurate identification. Results: NKp80 showed a superior performance (vs. CD314 and CD335) for the identification of NK-cells in HD blood. Besides, NKp80 improved the conventional CD16/CD56/CD3-based strategy to identify PB NK-cells in HD and reactive processes, particularly when combined with CD16 for further accurate NK-cell-subsetting. Although NKp80+CD16 improved the identification of clonal/tumor NK-cells, particularly among CD56- cases (53%), aberrant downregulation of NKp80 was observed in 25% of patients, in whom CD56 was useful as a complementary NK-cell marker. As NKp80 is also expressed on T-cells, we noted increased numbers of NKp80+ cytotoxic T-cells at the more advanced maturation stages, mostly in adults. Conclusion: Here we propose a new robust approach for the identification of PB NK-cells, based on the combination of NKp80 plus CD16. However, in chronic lymphoproliferative disorders of NK-cells, addition of CD56 is recommended to identify clonal NK-cells, due to their frequent aberrant NKp80- phenotype.


Subject(s)
Immunophenotyping , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Male , Adult , Female , Middle Aged , Neoplasms/immunology , Neoplasms/diagnosis , Flow Cytometry/methods , Young Adult , Aged , Biomarkers , Adolescent , GPI-Linked Proteins/blood , Lectins, C-Type , Receptors, Natural Killer Cell , B7 Antigens
16.
EJHaem ; 5(3): 599-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895078

ABSTRACT

Primary large B-cell lymphomas of immune-privileged sites (IP-LBCLs) comprise LBCLs arising within "immune sanctuaries," including the central nervous system (CNS), vitreoretina, and testes. Although patients present with localized disease, the prognosis remains poor with high relapse rates, either at the originating site or within another immune-privileged site. Generally, in the presence of an antecedent IP-LBCL, subsequent LBCLs are expected to be clonally related. However, we present a primary CNS LBCL and later primary testicular LBCL in a middle-aged man, diagnosed over a decade apart, which proved to be clonally unrelated by targeted ultra-deep next-generation sequencing of the IgH locus.

17.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38903078

ABSTRACT

The opportunistic fungal pathogen Candida parapsilosis is a major causative agent of candidiasis leading to death in immunocompromised individuals. Azoles are the first line of defense in treatment by inhibiting ERG11, involved in the synthesis of ergosterol, the main sterol fungal sterol. Resistance to azoles is on the increase worldwide including in Lebanon. The purpose of this study is to characterize nine hospital isolates labeled as C. parapsilosis: four resistant and five sensitive to fluconazole. Phenotypic characterization was achieved through a battery of tests that target pathogenicity attributes such as virulence, biofilm formation, stress resistance, and ergosterol content. Genotypic analysis was done through whole genome sequencing to mutations in key virulence and resistance genes. Phylogenetic comparison was performed to determine strain relatedness and clonality. Genomic data and phylogenetic analysis revealed that three of the nine C. parapsilosis isolates were misidentified; two as C. orthopsilosis and C. metapsilosis belonging to the C. parapsilosis complex, while the third was C. albicans. Moreover, several known and novel mutations in key drug resistance and virulence genes were identified such as ERG11, ERG3, ERG6, CDR1, and FAS2. Phylogenetic analysis revealed a high degree of relatedness and clonality within our C. parapsilosis isolates. Our results showed that resistant isolates had no increased ergosterol content, no statistically significant difference in virulence, but exhibited an increase in biofilm content compared to the sensitive isolates. In conclusion, our study, the first of its kind in Lebanon, suggests several mechanisms of antifungal drug resistance in C. parapsilosis hospital isolates.

18.
Plants (Basel) ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931019

ABSTRACT

The tree fern Culcita macrocarpa, a threatened Iberian-Macaronesian endemism, represents the sole European species of the order Cyatheales. Considered a Tertiary relict of European Palaeotropical flora, its evolutionary history and genetic diversity, potentially influenced by presumed high clonal propagation, remain largely unknown. This study elucidates the phylogeographic history of C. macrocarpa, assessing the impact of vegetative reproduction on population dynamics and genetic variability. We provide genetic data from eight newly identified nuclear microsatellite loci and one plastid DNA region for 17 populations spanning the species' range, together with species distribution modeling data. Microsatellites reveal pervasive clonality in C. macrocarpa, which has varied among populations. We assess the impact of clonality on genetic diversity and evaluate how estimates of intra-population genetic diversity indices and genetic structuring are affected by the chosen definition of "individual" (focusing exclusively on genetically distinct individuals, genets, as opposed to considering all independent clonal replicates, ramets). We identify two main population groups, one in the northern Iberian Peninsula and the other in the Macaronesian archipelagos and southern Iberian Peninsula. Within each group, we found relict populations (in the Azores and the Cantabrian Cornice) as well as recent originated populations. This population structure suggests colonization dynamics in which recent populations originated from one or a few genets of relict populations and became established through intra-gametophytic self-fertilization and vegetative expansion. DAPC analysis facilitated the identification of alleles that most significantly contributed to the observed population structure. The current Andalusian populations appear to have originated from colonization events from the Azores and the Cantabrian Cornice. Our findings suggest that C. macrocarpa persisted through the Last Glacial Maximum in two refugia: the Azores and the Cantabrian Cornice. Colonization into new areas occurred presumably from these refuges, generating two large population groups with structured genetic diversity. This study underscores the significance of clonality in establishing new populations and shaping genetic structure.

19.
MedComm (2020) ; 5(6): e604, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840771

ABSTRACT

Tumor mutational burden (TMB) and T-cell receptor (TCR) might predict the response to immunotherapy in patients with non-small cell lung cancer (NSCLC). However, the predictive value of the combination of TMB and TCR was not clear. Targeted DNA and TCR sequencing were performed on tumor biopsy specimens. We combined TMB and TCR diversity into a TMB-and-TCR (TMR) score using logistic regression. In total, 38 patients with advanced NSCLC were divided into a discovery set (n = 17) and validation set (n = 21). A higher TMR score was associated with better response and longer progression-free survival to immunotherapy in both the discovery set and validation set. The performance of TMR score was confirmed in the two external validation cohorts of 225 NSCLC patients and 306 NSCLC patients. Tumors with higher TMR scores were more likely to combine with LRP1B gene mutation (p = 0.027) and top 1% CDR3 sequences (p = 0.001). Furthermore, LRP1B allele frequency was negatively correlated with the top 1% CDR3 sequences (r = -0.55, p = 0.033) and positively correlated with tumor shrinkage (r = 0.68, p = 0.007). The TMR score could serve as a potential predictive biomarker for the response to immunotherapy in advanced NSCLC.

20.
Vet Pathol ; : 3009858241257920, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842072

ABSTRACT

Fixation and demineralization protocols for bone marrow (BM) across diagnostic laboratories are not standardized. How different protocols affect histomorphology and DNA amplification is incompletely understood. In this study, 2 fixatives and 3 demineralization methods were tested on canine BM samples. Twenty replicate sternal samples obtained within 24 hours of death were fixed overnight in either acetic acid-zinc-formalin (AZF) or 10% neutral-buffered formalin (NBF) and demineralized with formic acid for 12 hours. Another 53 samples were fixed in AZF and demineralized with hydrochloric acid for 1-hour, formic acid for 12 hours, or ethylenediamine tetraacetic acid (EDTA) for 24 hours. Histologic sections were scored by 4 raters as of insufficient, marginal, good, or excellent quality. In addition, DNA samples extracted from sections treated with the different fixation and demineralization methods were amplified with 3 sets of primers to conserved regions of T cell receptor gamma and immunoglobulin heavy chain genes. Amplification efficiency was graded based on review of capillary electrophoretograms. There was no significant difference in the histomorphology scores of sections fixed in AZF or NBF. However, EDTA-based demineralization yielded higher histomorphology scores than demineralization with hydrochloric or formic acid, whereas formic acid resulted in higher scores than hydrochloric acid. Demineralization with EDTA yielded DNA amplification in 29 of 36 (81%) samples, whereas demineralization with either acid yielded amplification in only 2 of 72 (3%) samples. Although slightly more time-consuming and labor-intensive, tissue demineralization with EDTA results in superior morphology and is critical for polymerase chain reaction (PCR) amplification with the DNA extraction method described in this article.

SELECTION OF CITATIONS
SEARCH DETAIL