ABSTRACT
Mycobacterium tuberculosis is an acid-fast bacterium that causes tuberculosis worldwide. The role of epistatic interactions among different loci of the M. tuberculosis genome under selective pressure may be crucial for understanding the disease and the molecular basis of antibiotic resistance acquisition. Here, we analyzed polymorphic loci interactions by applying a model-free method for epistasis detection, SpydrPick, on a pan-genome-wide alignment created from a set of 254 complete reference genomes. By means of the analysis of an epistatic network created with the detected epistatic interactions, we found that glgB (α-1,4-glucan branching enzyme) and oppA (oligopeptide-binding protein) are putative targets of co-selection in M. tuberculosis as they were associated in the network with M. tuberculosis genes related to virulence, pathogenesis, transport system modulators of the immune response, and antibiotic resistance. In addition, our work unveiled potential pharmacological applications for genotypic antibiotic resistance inherent to the mutations of glgB and oppA as they epistatically interact with fprA and embC, two genes recently included as antibiotic-resistant genes in the catalog of the World Health Organization. Our findings showed that this approach allows the identification of relevant epistatic interactions that may lead to a better understanding of M. tuberculosis by deciphering the complex interactions of molecules involved in its metabolism, virulence, and pathogenesis and that may be applied to different bacterial populations.
ABSTRACT
Coastal areas with important economic activities have high levels of contamination by metals, pathogenic bacteria, among other contaminants. The emergence of antibiotic-resistant bacteria is a global problem of public health. Carbapenem resistant Enterobacteriaceae (CRE) are a serious threat. The occurrence of carbapenem resistant bacteria was investigated in waters and sediments of a Brazilian coastal area, characterized by high levels of contamination. The samples of water and sediment were collected in two areas of the coast of São Paulo (Brazil). The study involved the characterization of the molecular mechanisms associated with the carbapenem resistance phenotype. No genes were detected for ß-lactamases but the absence and/or presence of mutations in outer membrane proteins (OMPs) may justify the detected phenotype. The presented results show the need for further studies that allow a review of the current legislation and the importance of the reevaluation of monitoring policies of these environments.
Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Anti-Bacterial Agents , Bacterial Proteins , Brazil , Carbapenems , beta-LactamasesABSTRACT
Despite the importance of strain compatibility, most of the enological strain selection studies are carried out separately on yeasts and lactic acid bacteria (LAB). In this study, the enological traits and interactions between native yeasts and LAB were studied. The H2 S and acetic acid production, growth rates at 8 °C, killer phenotypes, flocculation, and tolerance to must and wine inhibitors were determined for 25 Saccharomyces yeasts. The ability to grow under two wine-like conditions was also determined in 37 LAB (Oenococcus oeni and Lactobacillus plantarum). The yeast-LAB compatibility of selected strains was tested in a sequential scheme. Finally, microvinification trials were performed using two strains from each group to determine the efficiencies and quality parameters. The phenotypic characterization by the K-means and hierarchical clusters indicated a correlation between flocculation and optical density increase in simulated must and wine medium (r = -0.415) and grouped the prominent yeasts SR19, SR26, and N05 as moderately flocculent, killer, acid producing, and highly tolerant strains. Among the LAB, L. plantarum FU39 grew 230% more than the rest. With regard to interactions, LAB growth stimulation (14-fold on average) due to the previous action of yeasts, particularly of SR19, was observed. The final quality of all wines was similar, but yeast SR19 performed a faster and more efficient fermentation than did N05, Also L. plantarum FU39 fermented faster than did O. oeni VC32. The use of quantitative data, and multivariate analyses allowed an integrative approach to the selection of a compatible and efficient pair of enological yeast-LAB strains. PRACTICAL APPLICATION: An alternative scheme is proposed for the joint selection of yeast and lactic acid bacteria strains, which allows us to foresee the interactions that may occur between them during winemaking. The kinetic parameters, turbidimetrically measured and analyzed by multivariate methods, simplify the detection of outstanding selectable microorganisms. This methodology can be implemented at any cellar or even any fermentative industry that aims to select compatible yeast and lactic acid bacteria.
Subject(s)
Lactobacillales/metabolism , Saccharomyces/metabolism , Wine/microbiology , Fermentation , Food Microbiology , Lactic Acid/analysis , Mexico , Wine/analysisABSTRACT
Forty-five multi-resistant Salmonella enterica subsp. enterica serovar (S.) Typhimurium isolates obtained at five pig abattoirs in Southern Brazil were characterized. Their relatedness was determined by XbaI-macrorestriction analysis. Resistance genes, integrons and plasmid-mediated quinolone resistance genes (PMQR) were investigated by PCR. Amplicons for the variable part of class 1 integrons and the quinolone resistance-determining regions (QRDR) were sequenced. Plasmids were characterized by conjugation assays and replicon typing. Eighteen XbaI-macrorestriction patterns and 19 plasmid profiles were seen. Resistance to ampicillin (blaTEM), chloramphenicol (catA1 and floR), streptomycin (strA-strB), streptomycin/spectinomycin (aadA variants), sulphonamides (sul1, sul2, sul3) and tetracyclines [tet(A) and tet(B)] were commonly found. A trimethoprim resistance gene, dfrA8, was identified on a 100-kb plasmid. Single substitutions in the QRDR of GyrA but no PMQR genes were found. Twenty-five isolates carried class 1 integrons with an aadA23 gene cassette or unusual class 1 integrons with a dfrA12-orfF-aadA27 gene cassette array. Both integrons were found on large conjugative plasmids. Salmonella plasmid-located virulence genes spvR, spvA, spvB, rck and pefA were found on an IncFIB resistance plasmid. Hybrid virulence-resistance plasmids or plasmids harbouring class 1 integrons may play a role in the maintenance and dissemination of antimicrobial resistance among S. Typhimurium in this pig production system.