Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Int J Biol Macromol ; 279(Pt 4): 135341, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255879

ABSTRACT

Lysozymes have gained attention for their antiseptic properties. In silico studies have shown that the enzyme containing lysM can act as an antibacterial agent. Binding of the lysM motif of rSELys to peptidoglycan and molecular dynamics simulations showed that the protein-ligand binding is very stable. rSELys (2016 bp) is a new recombinant glycoside hydrolase from the thermophilic bacterium Cohnella sp. A01 (PTCC number: 1921). Protein expression and purification, a single band with an apparent molecular weight of ∼74 kDa was observed by SDS-PAGE. The kinetic parameters were Km 1.163 mg/ml, Vmax 670.3 U/mg, kcat 1675.75 (S-1), and kcat/Km 1440.88 (M-1S-1). Its optimum temperature was 55 °C and pH 8. Temperature stability also showed that the temperature of 50-60 °C retained more than half of its activity after 90 min. Based on the results, rSELys demonstrated antibacterial effects on both Gram-positive and Gram-negative strains, with inhibition zones of 11 and 9 mm, respectively. SEM analysis confirmed hydrolysis activity, the MIC was determined to be 31.25 µg/ml and 3.9 µg/ml, and MBC 0.97 µg/ml, respectively. CD and fluorescence studies showed that up to a temperature of 85 °C and a pH value of 8-12 no structural changes occur, and thermal stability protein was confirmed.

2.
Heliyon ; 5(9): e02543, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31687608

ABSTRACT

Laccase (EC 1.10.3.2; benzenediol; oxygen oxidoreductases) is a multi-copper oxidase that catalyzes the oxidation of phenols, polyphenols, aromatic amines, and different non-phenolic substrates with concomitant reduction of O2 to H2O. Enzymatic oxidation techniques have the potential of implementation in different areas of industrial fields. In this study, the Cohnella sp. A01 laccase gene was cloned into pET-26 (b+) vector and was transformed to E. coli BL21. Then it was purified using His tag affinity (Ni sepharose resin) chromatography. The estimated molecular weight was approximately 60 kDa using SDS-PAGE. The highest enzyme activity and best pH for 2,6-dimethoxyphenol (DMP) oxidation were recorded as 8 at 90 °C respectively. The calculated half-life and kinetic values including Km, Vmax, turn over number (kcat), and catalytic efficiency (kcat/Km) of the enzyme were 106 min at 90 °C and 686 µM, 10.69 U/ml, 20.3 S-, and 0.029 s-1 µM-1, respectively. The DMP was available as the substrate in all the calculations. Enzyme activity enhanced in the presence of Cu2+, NaCl, SDS, n-hexane, Triton X-100, tween 20, and tween 80, significantly. The binding residues were predicted and mapped upon the modeled tertiary structure of identified laccase. The remaining activity and structural properties of Cohnella sp. A01 laccase in extreme conditions such as high temperatures and presence of metals, detergents, and organic solvents suggest the potential of this enzyme in biotechnological and industrial applications. This process has been patented in Iranian Intellectual Property Centre under License No: 91325.

3.
Braz. j. microbiol ; 47(4): 931-940, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828205

ABSTRACT

Abstract Twelve bacterial strains isolated from shrimp farming ponds were screened for their growth activity on chitin as the sole carbon source. The highly chitinolytic bacterial strain was detected by qualitative cup plate assay and tentatively identified to be Cohnella sp. A01 based on 16S rDNA sequencing and by matching the key morphological, physiological, and biochemical characteristics. The cultivation of Cohnella sp. A01 in the suitable liquid medium resulted in the production of high levels of enzyme. The colloidal chitin, peptone, and K2HPO4 represented the best carbon, nitrogen, and phosphorus sources, respectively. Enzyme production by Cohnella sp. A01 was optimized by the Taguchi method. Our results demonstrated that inoculation amount and temperature of incubation were the most significant factors influencing chitinase production. From the tested values, the best pH/temperature was obtained at pH 5 and 70 °C, with Km and V max values of chitinase to be 5.6 mg/mL and 0.87 µmol/min, respectively. Ag+, Co2+, iodoacetamide, and iodoacetic acid inhibited the enzyme activity, whereas Mn2+, Cu2+, Tweens (20 and 80), Triton X-100, and EDTA increased the same. In addition, the study of the morphological alteration of chitin treated by enzyme by SEM revealed cracks and pores on the chitin surface, indicating a potential application of this enzyme in several industries.


Subject(s)
Bacillus/metabolism , Chitinases/metabolism , Phosphorus/metabolism , Temperature , Bacillus/isolation & purification , Bacillus/genetics , Bacillus/ultrastructure , Enzyme Stability/drug effects , Carbon/metabolism , RNA, Ribosomal, 16S/genetics , Kinetics , Chitinases/chemistry , Sequence Analysis, DNA , Enzyme Activation , Hydrogen-Ion Concentration , Ions , Metals , Nitrogen/metabolism
4.
Braz J Microbiol ; 47(4): 931-940, 2016.
Article in English | MEDLINE | ID: mdl-27528085

ABSTRACT

Twelve bacterial strains isolated from shrimp farming ponds were screened for their growth activity on chitin as the sole carbon source. The highly chitinolytic bacterial strain was detected by qualitative cup plate assay and tentatively identified to be Cohnella sp. A01 based on 16S rDNA sequencing and by matching the key morphological, physiological, and biochemical characteristics. The cultivation of Cohnella sp. A01 in the suitable liquid medium resulted in the production of high levels of enzyme. The colloidal chitin, peptone, and K2HPO4 represented the best carbon, nitrogen, and phosphorus sources, respectively. Enzyme production by Cohnella sp. A01 was optimized by the Taguchi method. Our results demonstrated that inoculation amount and temperature of incubation were the most significant factors influencing chitinase production. From the tested values, the best pH/temperature was obtained at pH 5 and 70°C, with Km and Vmax values of chitinase to be 5.6mg/mL and 0.87µmol/min, respectively. Ag+, Co2+, iodoacetamide, and iodoacetic acid inhibited the enzyme activity, whereas Mn2+, Cu2+, Tweens (20 and 80), Triton X-100, and EDTA increased the same. In addition, the study of the morphological alteration of chitin treated by enzyme by SEM revealed cracks and pores on the chitin surface, indicating a potential application of this enzyme in several industries.


Subject(s)
Bacillus/metabolism , Chitinases/metabolism , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/ultrastructure , Carbon/metabolism , Chitinases/chemistry , Enzyme Activation , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Ions , Kinetics , Metals , Nitrogen/metabolism , Phosphorus/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature
5.
Protein Expr Purif ; 109: 120-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25306875

ABSTRACT

Lipases form one of the most important groups of biocatalysts used in biotechnology. We studied the lipase from the bacterium Cohnella sp. A01 due to the versatility of thermophilic lipases in industry. In this study lipase 3646 gene from the thermophilic bacterium Cohnella sp. A01 was expressed in Escherichia coli and the enzyme was purified by a two-steps anion exchange chromatography. The purified lipase appeared to have a molecular weight of approximately 29.5kDa on SDS-PAGE. The values of Km and Vmax, calculated by the Michaelis-Menten equation, were 1077µM and 61.94U/mg, respectively. The kinetic characterization of the purified enzyme exhibited maximum activity at 70°C and pH 8.5. Activities at 50, 55 and 60°C for 120min were measured 58%, 47% and 41%, respectively. The enzyme was also highly stable at the pH range of 8.5-10.0 for 180min. The effect of EDTA indicated that the enzyme is not a metalloenzyme. The stability of lipase 3646 in the presence of organic solvents, detergents, metal ions and inhibitors suggested that this lipase could be exploited in certain industries such as detergent and leather. Lipase 3646 was determined structurally to be 37.5% α-helix, 12.8% ß-sheet, 22.7% ß-turn and 27% random coil.


Subject(s)
Bacillus/enzymology , Cloning, Molecular/methods , Lipase/isolation & purification , Lipase/metabolism , Temperature , Chromatography, Ion Exchange , Circular Dichroism , Detergents/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Ions , Metals/pharmacology , Models, Molecular , Organic Chemicals/pharmacology , Recombinant Proteins/isolation & purification , Solvents/pharmacology , Substrate Specificity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL