Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Pediatr Nephrol ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39278986

ABSTRACT

BACKGROUND: Next-generation sequencing has enabled non-invasive diagnosis of type IV collagen disease in clinical settings other than the typical presentation of Alport syndrome (AS). METHODS: We reviewed the clinical and histological records of children diagnosed with Alport syndrome based on next-generation sequencing. Variants on clinical exome sequencing were categorized using ACMG 2015 criteria. RESULTS: During 2015-2023, we found 43 patients (34 boys) with 39 variants in COL4A5 (n = 27), COL4A4 (n = 7), and COL4A3 (n = 5). Thirty, 8, and 5 patients had X-linked, autosomal recessive, and autosomal dominant disease, respectively. The median (IQR) age and eGFR at diagnosis were 10 (7-13) years and 100.1 (59-140) ml/min/1.73 m2, respectively. Fifteen patients were initially diagnosed with steroid-resistant nephrotic syndrome. Alport syndrome was suspected in these patients due to persistent microscopic hematuria, eGFR < 90 ml/min/1.73 m2, characteristic histology, and/or non-response to immunosuppression. Of 26 patients who underwent kidney biopsy, light microscopy revealed focal segmental glomerulosclerosis, minimal change disease, and mesangial proliferative glomerulonephritis in 9, 9, and 8 patients, respectively. Electron microscopy (n = 18) showed characteristic glomerular basement membrane changes and/or foot process effacement in 12 and 16 cases, respectively. Twenty-one patients (48.8%) had high-frequency sensorineural hearing loss, while two had lenticonus. Twelve patients progressed to chronic kidney disease stages 4-5. Median survival (IQR) with eGFR > 30 ml/min/1.73 m2 was 15.6 (13-18) years. CONCLUSIONS: The phenotype of Alport syndrome varies from asymptomatic urinary abnormalities to hematuria, proteinuria and/or low eGFR, and steroid-resistant nephrotic syndrome. Adverse outcomes are common, especially in boys with X-linked disease.

2.
Brain Pathol ; : e13291, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054254

ABSTRACT

Hereditary cystatin C amyloid angiopathy (HCCAA) is an Icelandic disease that belongs to a disease class called cerebral amyloid angiopathy, a group of heterogenous diseases presenting with aggregation of amyloid complexes and deposition predominantly in the central nervous system. HCCAA is dominantly inherited, caused by L68Q mutation in the cystatin C gene, leading to aggregation of the cystatin C protein. HCCAA is a very progressive and severe disease, with widespread cerebral and parenchymal cystatin C and collagen IV deposition within the central nervous system (CNS) but also in other organs in the body, for example, in the skin. Most L68Q carriers have clinical symptoms characterized by recurrent hemorrhages and dementia, between the age of 20-30 years. If the carriers survive the first hemorrhage, the frequency and severity of the hemorrhages tend to increase, resulting in death at average of 30 years with mean number of major hemorrhages ranging from 3.2 to 3.9 over a 5-year average life span. The pathogenesis of the disease in carriers is very similar in the CNS and in the skin based on autopsy studies, thus skin biopsies can be used to monitor the progression of the disease by quantifying the cystatin C immunoreactivity. The cystatin C deposition always colocalizes with collagen IV and fibroblasts in the skin are found to be the main cell type responsible for the deposition of both proteins. No therapy is available for this devastating disease.

3.
Biology (Basel) ; 13(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927255

ABSTRACT

Basement membranes (BMs) are thin layers of extracellular matrix that separate epithelia, endothelia, muscle cells, and nerve cells from adjacent interstitial connective tissue. BMs are ubiquitous in almost all multicellular animals, and their composition is highly conserved across the Metazoa. There is increasing interest in the mechanical functioning of BMs, including the involvement of altered BM stiffness in development and pathology, particularly cancer metastasis, which can be facilitated by BM destabilization. Such BM weakening has been assumed to occur primarily through enzymatic degradation by matrix metalloproteinases. However, emerging evidence indicates that non-enzymatic mechanisms may also contribute. In brittlestars (Echinodermata, Ophiuroidea), the tendons linking the musculature to the endoskeleton consist of extensions of muscle cell BMs. During the process of brittlestar autotomy, in which arms are detached for the purpose of self-defense, muscles break away from the endoskeleton as a consequence of the rapid destabilization and rupture of their BM-derived tendons. This contribution provides a broad overview of current knowledge of the structural organization and biomechanics of non-echinoderm BMs, compares this with the equivalent information on brittlestar tendons, and discusses the possible relationship between the weakening phenomena exhibited by BMs and brittlestar tendons, and the potential translational value of the latter as a model system of BM destabilization.

4.
J Rare Dis (Berlin) ; 3(1): 14, 2024.
Article in English | MEDLINE | ID: mdl-38745975

ABSTRACT

Alport syndrome is a genetic kidney disease that causes worsening of kidney function over time, often progressing to kidney failure. Some types of Alport syndrome cause other symptoms and signs, including hearing loss and eye abnormalities. Research now indicates that Alport syndrome (autosomal dominant inheritance) is the most common form. Alport syndrome can have X-linked or a rare form of autosomal recessive inheritance. Traditionally, a kidney biopsy was used to diagnose Alport syndrome, but genetic testing provides a more precise and less invasive means of diagnosis and reveals the underlying pattern of inheritance. At present, there are no specific curative treatments for Alport syndrome however there is a strong international effort in pursuit of future therapies. Currently, angiotensin-converting enzyme inhibitors (ACEi), or an angiotensin receptor blocker (ARB) if a patient cannot tolerate an ACEi, slow down the progression of kidney disease and can delay the onset of kidney failure by years. There are other potential treatments in research that potentially can help delay the onset of kidney issues. Early treatment of patients and identification of their at-risk relatives is a priority. People living with Alport syndrome and their doctors now benefit from an active international research community working on translating further treatments into clinical practice and providing up-to-date clinical guidelines.

5.
Vet Res ; 55(1): 49, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594770

ABSTRACT

Riemerella anatipestifer infection is characterized by meningitis with neurological symptoms in ducklings and has adversely affected the poultry industry. R. anatipestifer strains can invade the duck brain to cause meningitis and neurological symptoms, but the underlying mechanism remains unknown. In this study, we showed that obvious clinical symptoms, an increase in blood‒brain barrier (BBB) permeability, and the accumulation of inflammatory cytokines occurred after intravenous infection with the Yb2 strain but not the mutant strain Yb2ΔsspA, indicating that Yb2 infection can lead to cerebrovascular dysfunction and that the type IX secretion system (T9SS) effector SspA plays a critical role in this pathological process. In addition, we showed that Yb2 infection led to rapid degradation of occludin (a tight junction protein) and collagen IV (a basement membrane protein), which contributed to endothelial barrier disruption. The interaction between SspA and occludin was confirmed by coimmunoprecipitation. Furthermore, we found that SspA was the main enzyme mediating occludin and collagen IV degradation. These data indicate that R. anatipestifer SspA mediates occludin and collagen IV degradation, which functions in BBB disruption in R. anatipestifer-infected ducks. These findings establish the molecular mechanisms by which R. anatipestifer targets duckling endothelial cell junctions and provide new perspectives for the treatment and prevention of R. anatipestifer infection.


Subject(s)
Flavobacteriaceae Infections , Meningitis , Poultry Diseases , Riemerella , Animals , Blood-Brain Barrier/metabolism , Ducks/metabolism , Virulence , Virulence Factors/metabolism , Occludin/genetics , Occludin/metabolism , Flavobacteriaceae Infections/veterinary , Riemerella/metabolism , Meningitis/veterinary , Collagen/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Cells Dev ; 179: 203923, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38670459

ABSTRACT

Kidney podocytes and endothelial cells assemble a complex and dynamic basement membrane that is essential for kidney filtration. Whilst many components of this specialised matrix are known, the influence of fluid flow on its assembly and organisation remains poorly understood. Using the coculture of podocytes and glomerular endothelial cells in a low-shear stress, high-flow bioreactor, we investigated the effect of laminar fluid flow on the composition and assembly of cell-derived matrix. With immunofluorescence and matrix image analysis we found flow-mediated remodelling of collagen IV. Using proteomic analysis of the cell-derived matrix we identified changes in both abundance and composition of matrix proteins under flow, including the collagen-modifying enzyme, prolyl 4-hydroxylase (P4HA1). To track collagen IV assembly, we used CRISPR-Cas9 to knock in the luminescent marker HiBiT to the endogenous COL4A2 gene in podocytes. With this system, we found that collagen IV was secreted and accumulated consistently under both static and flow conditions. However knockdown of P4HA1 in podocytes led to a reduction in the secretion of collagen IV and this was more pronounced under flow. Together, this work demonstrates the effect of fluid flow on the composition, modification, and organisation of kidney cell-derived matrix and provides an in vitro system for investigating flow-induced matrix alteration in the context of kidney development and disease.


Subject(s)
Collagen Type IV , Podocytes , Collagen Type IV/metabolism , Podocytes/metabolism , Animals , Humans , Extracellular Matrix/metabolism , Kidney/metabolism , Endothelial Cells/metabolism , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Coculture Techniques , Proteomics , Mice
7.
Mol Biol Rep ; 51(1): 513, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622345

ABSTRACT

BACKGROUND: In recent years, anti-angiogenic peptides have received considerable attention as candidates for cancer treatment. Arresten is an angiogenesis inhibitor that cleaves from the α1 chain of type IV collagen and stimulates apoptosis in endothelial cells. We have recently indicated that a peptide corresponding to the amino acid 78 to 86 of arresten, so-called Ars, prevented the migration and tube formation of HUVECs and the colon carcinoma growth in mice significantly. The current study aimed to determine whether induction of apoptotic cell death in endothelial cells is one of the biochemical mechanisms of this anti-angiogenic peptide. METHODS AND RESULTS: This hypothesis was assessed using the MTT assay, cell cycle analysis, Annexin V-FITC/PI staining, BCL2, CASP8, CASP9, p53, and CDKN2A gene expression studies as well as evaluating apoptosis in tumor tissues by TUNEL assay. Results demonstrated that 40 µM of Ars significantly stimulated 46.2% of early and late apoptosis in HUVECs compared to 13.6% in the untreated cells and did not significantly alter the cell cycle distribution. Moreover, BCL2 and CASP8 were down-regulated, while CASP9 and p53 were up-regulated in endothelial cells. CDKN2A gene expression, the regulator of G1 cell cycle arrest, was not significantly altered. CONCLUSIONS: It might be suggested that Ars induced apoptosis in endothelial cells through the mitochondrial pathway and had no effect on the cell cycle. Besides, Ars induced apoptosis significantly in vivo. However, further studies are required to confirm the detailed molecular mechanism of Ars, this peptide has the potential to be optimized for clinical translations.


Subject(s)
Endothelial Cells , Tumor Suppressor Protein p53 , Mice , Animals , Endothelial Cells/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis , Peptides/pharmacology , Peptides/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , Cell Line, Tumor
9.
J Int Med Res ; 52(3): 3000605241233521, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38436252

ABSTRACT

OBJECTIVE: Extraocular muscles have complex development processes. The present study aimed to analyze the presence of myosin, dystrophin, and collagen IV in the strabismus-affected extraocular muscle. METHODS: This research was an observational case-control study. Myosin, dystrophin, and collagen IV were detected by histological and immunohistochemical analyses of extraocular muscle samples from concomitant strabismus patients and controls. A semi-quantitative grading method and statistical analysis were used. RESULTS: In the strabismus-affected extraocular muscle, morphological analysis demonstrated different-sized muscle fibers. Immature muscle fibers and an increased amount of connective tissue were also noted. Strong positive correlations were identified between myosin and collagen IV and between dystrophin and collagen IV. CONCLUSIONS: The presence of newly formed muscle fibers, increased connective tissue, and variable diameters of skeletal striated muscle fibers indicate the decreased quality of extraocular muscles in strabismus cases. Reduced levels of myosin and dystrophin and a near absence of collagen IV in strabismus-affected skeletal striated muscle fibers characterized the muscular dystrophy of strabismus. Adjuvant therapy aimed at normalizing the metabolism of these muscles may be appropriate alongside concomitant strabismus treatment.


Subject(s)
Oculomotor Muscles , Strabismus , Humans , Case-Control Studies , Collagen/metabolism , Dystrophin/metabolism , Myosins/metabolism
10.
Clin Kidney J ; 17(3): sfae037, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455522

ABSTRACT

Background: Disruptions in gene expression associated with the glomerular basement membrane (GBM) could precipitate glomerular dysfunction. Nevertheless, a comprehensive understanding of the characterization of GBM components within pediatric glomerular diseases and their potential association with glomerular function necessitates further systematic investigation. Methods: We conducted a systematic analysis focusing on the pathological transformations and molecular attributes of key constituents within the GBM, specifically Collagen IV α3α4α5, Laminin α5ß2γ1, and Integrin α3ß1, across prevalent pediatric glomerular diseases. Results: We observed upregulation of linear expression levels of COL4A3/4/5 and Laminin 5α proteins, along with a partial reduction in the linear structural expression of Podocin in idiopathic nephrotic syndrome (INS), encompassing minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), but showing a reduction in IgA nephropathy (IgAN), IgA vasculitis nephritis (IgAVN) and lupus nephritis (LN). Furthermore, our study revealed reductions in Laminin ß2γ1 and Integrin α3ß1 in both primary and secondary childhood glomerular diseases. Conclusion: In INS, notably MCD and FSGS, there is a notable increase in the linear expression levels of COL4A3/4/5 and Laminin 5α proteins. In contrast, in IgAN, IgAVN, and LN, there is a consistent reduction in the expression of these markers. Furthermore, the persistent reduction of Laminin ß2γ1 and Integrin α3ß1 in both primary and secondary childhood glomerular diseases suggests a shared characteristic of structural alterations within the GBM across these conditions.

11.
Acta Neuropathol Commun ; 12(1): 29, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360798

ABSTRACT

Neurovascular unit mural cells called 'pericytes' maintain the blood-brain barrier and local cerebral blood flow. Pathological changes in the hippocampus predispose to cognitive impairment and dementia. The role of hippocampal pericytes in dementia is largely unknown. We investigated hippocampal pericytes in 90 post-mortem brains from post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer's disease (AD), and AD-VaD (Mixed) subjects, and post-stroke non-demented survivors as well as similar age controls. We used collagen IV immunohistochemistry to determine pericyte densities and a mouse model of VaD to validate the effects of chronic cerebral hypoperfusion. Despite increased trends in hippocampal microvascular densities across all dementias, mean pericyte densities were reduced by ~25-40% in PSD, VaD and AD subjects compared to those in controls, which calculated to 14.1 ± 0.7 per mm capillary length, specifically in the cornu ammonis (CA) 1 region (P = 0.01). In mice with chronic bilateral carotid artery occlusion, hippocampal pericyte loss was ~60% relative to controls (P < 0.001). Pericyte densities were correlated with CA1 volumes (r = 0.54, P = 0.006) but not in any other sub-region. However, mice subjected to the full-time environmental enrichment (EE) paradigm showed remarkable attenuation of hippocampal CA1 pericyte loss in tandem with CA1 atrophy. Our results suggest loss of hippocampal microvascular pericytes across common dementias is explained by a vascular aetiology, whilst the EE paradigm offers significant protection.


Subject(s)
Alzheimer Disease , Brain Ischemia , Dementia, Vascular , Stroke , Humans , Mice , Animals , Alzheimer Disease/pathology , Dementia, Vascular/pathology , Pericytes/pathology , Hippocampus/pathology , Brain/pathology , Stroke/pathology , Brain Ischemia/pathology
12.
Comput Biol Med ; 170: 107896, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38217972

ABSTRACT

BACKGROUND: Abnormal expression of collagen IV subunits has been reported in cancers, but the significance is not clear. No study has reported the significance of COL4A4 in lung adenocarcinoma (LUAD). METHODS: COL4A4 expression data, single-cell sequencing data and clinical data were downloaded from public databases. A range of bioinformatics and experimental methods were adopted to analyze the association of COL4A4 expression with clinical parameters, tumor microenvironment (TME), drug resistance and immunotherapy response, and to investigate the roles and underlying mechanism of COL4A4 in LUAD. RESULTS: COL4A4 is differentially expressed in most of cancers analyzed, being associated with prognosis, tumor stemness, immune checkpoint gene expression and TME parameters. In LUAD, COL4A4 expression is down-regulated and associated with various TME parameters, response to immunotherapy and drug resistance. LUAD patients with lower COL4A4 have worse prognosis. Knockdown of COL4A4 significantly inhibited the expression of cell-cycle associated genes, and the expression and activation of signaling pathways including JAK/STAT3, p38, and ERK pathways, and induced quiescence in LUAD cells. Besides, it significantly induced the expression of a range of bioactive molecule genes that have been shown to have critical roles in TME remodeling and immune regulation. CONCLUSIONS: COL4A4 is implicated in the pathogenesis of cancers including LUAD. Its function may be multifaceted. It can modulate the activity of LUAD cells, TME remodeling and tumor stemness, thus affecting the pathological process of LUAD. COL4A4 may be a prognostic molecular marker and a potential therapeutic target.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Computational Biology , Databases, Factual , Immunotherapy , Lung Neoplasms/genetics , Tumor Microenvironment/genetics , Collagen Type IV/genetics
13.
J Pept Sci ; 30(2): e3537, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37607826

ABSTRACT

The aim of this research was to select the fragments that make up the outer layer of the collagen IV (COL4A6) protein and to assess their potential usefulness for regenerative medicine. It was expected that because protein-protein interactions take place via contact between external domains, the set of peptides forming the outer sphere of collagen IV will determine its interaction with other proteins. Cellulose-immobilized protein fragment libraries treated with polyclonal anti-collagen IV antibodies were used to select the peptides forming the outer sphere of collagen IV. In the first test, 33 peptides that strongly interacted with the polyclonal anti-collagen IV antibodies were selected from a library of non-overlapping fragments of collagen IV. The selected fragments of collagen IV (cleaved from the cellulose matrix) were tested for their cytotoxicity, their effects on cell viability and proliferation, and their impact on the formation of reactive oxygen species (ROS). The studies used RAW 264.7 mouse macrophage cells and Hs 680.Tr human fibroblasts. PrestoBlue, ToxiLight™, and ToxiLight 100% Lysis Control assays were conducted. The viability of fibroblasts cultured with the addition of increasing concentrations of the peptide mix did not show statistically significant differences from the control. Fragments 161-170, 221-230, 721-730, 1331-1340, 1521-1530, and 1661-1670 of COL4A6 were examined for cytotoxicity against BJ normal human foreskin fibroblasts. None of the collagen fragments were found to be cytotoxic. Further research is underway on the potential uses of collagen IV fragments in regenerative medicine.


Subject(s)
Peptide Fragments , Regenerative Medicine , Animals , Mice , Humans , Peptide Fragments/chemistry , Collagen/metabolism , Peptides , Antibodies , Cellulose
14.
Int J Biol Macromol ; 255: 128044, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981269

ABSTRACT

Magnesium alloy stents (MAS) have broad application prospects in the treatment of cardiovascular diseases. However, poor corrosion resistance and biocompatibility greatly limit the clinical application of MAS. In this work, the coating consisting of MgF2 layer, polydopamine layer, fucoidan and collagen IV was constructed on Mg-Zn-Y-Nd (ZE21B) alloy to improve its corrosion resistance and pro-endothelialization potential. The fucoidan and collagen IV in the coating could obviously enhance the hemocompatibility and pro-endothelialization potential respectively. Compared with bare ZE21B alloy, the fucoidan/collagen composite coating modified ZE21B alloy possessed lower corrosion current density and better corrosion resistance. Moreover, the modified ZE21B alloy exhibited relatively low hemolysis rate, fibrinogen adsorption and platelet adhesion in the blood experiments, suggesting the improved hemocompatibility. Furthermore, the modified ZE21B alloy favorably supported the adhesion and proliferation of vascular endothelial cells (ECs) and effectively regulated the phenotype of smooth muscle cells (SMCs), thus improving the pro-endothelialization potential of vascular stent materials. The fucoidan/collagen composite coating can significantly improve the corrosion resistance and pro-endothelialization potential of ZE21B alloy, showing great potential in the development of degradable MAS.


Subject(s)
Endothelial Cells , Magnesium , Coated Materials, Biocompatible/pharmacology , Alloys/pharmacology , Corrosion , Collagen , Materials Testing
15.
FEBS J ; 291(3): 477-488, 2024 02.
Article in English | MEDLINE | ID: mdl-37984833

ABSTRACT

Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.


Subject(s)
Laminin , Humans , Animals , Basement Membrane/chemistry , Microscopy, Atomic Force , Laminin/analysis
16.
J Thromb Haemost ; 22(3): 700-708, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072379

ABSTRACT

BACKGROUND: Factor (F)IX can bind to type IV collagen in the endothelial basement membrane and diffuse into extravascular spaces. Previous studies in rodents have reported a large biodistribution of FIX. OBJECTIVES: The aim of the study was to evaluate the potential hemostatic activity of extravascular FIX and its role in protecting against joint bleeds. METHODS: The capacity of 4 different FIX molecules (plasma-derived and recombinant) to bind type I and type IV collagen was studied here. FIX molecules were also administered intravenously at doses of 50 to 3000 IU/kg in FIX knockout mice. RESULTS: A specific FIX signal was detected in immunohistochemistry in the liver as well as in muscles and knee joints with recombinant FIX molecules injected at 1000 and 3000 IU/kg but not at the usual clinical doses of 50 to 100 IU/kg, while plasma-derived FIX generated a FIX signal at all doses, including 50 IU/kg. Such a signal was also detected after five 100 IU/kg daily infusions of recombinant FIX, suggesting that FIX can accumulate in the extravascular space during prophylaxis. The extravascular procoagulant activity of FIX, assessed in saphenous vein bleeding assays, was significantly higher in hemophilia B mice after these 5 days of prophylaxis compared to a single infusion of 100 IU/kg of FIX and assessment of FIX activity 7 days later. CONCLUSION: Taken together, these results show that in individuals with severe hemophilia B receiving regular prophylaxis with FIX, extravascular accumulation of FIX over time may have a significant impact on the coagulation capacity and protection toward bleeding.


Subject(s)
Hemophilia B , Hemostatics , Mice , Animals , Factor IX/metabolism , Hemophilia B/drug therapy , Hemostatics/therapeutic use , Collagen Type IV/metabolism , Tissue Distribution , Hemorrhage/prevention & control , Hemorrhage/drug therapy , Mice, Knockout
17.
Cells Dev ; 177: 203898, 2024 03.
Article in English | MEDLINE | ID: mdl-38103869

ABSTRACT

The basement membrane (BM) demarcating epithelial tissues undergoes rapid expansion to accommodate tissue growth and morphogenesis during embryonic development. To facilitate the secretion of bulky BM proteins, their mRNAs are polarized basally in the follicle epithelial cells of the Drosophila egg chamber to position their sites of production close to their deposition. In contrast, we observed the apical rather than basal polarization of all major BM mRNAs in the outer epithelial cells adjacent to the BM of mouse embryonic salivary glands using single-molecule RNA fluorescence in situ hybridization (smFISH). Moreover, electron microscopy and immunofluorescence revealed apical polarization of both the endoplasmic reticulum (ER) and Golgi apparatus, indicating that the site of BM component production was opposite to the site of deposition. At the apical side, BM mRNAs colocalized with ER, suggesting they may be co-translationally tethered. After microtubule inhibition, the BM mRNAs and ER became uniformly distributed rather than apically polarized, but they remained unchanged after inhibiting myosin II, ROCK, or F-actin, or after enzymatic disruption of the BM. Because Rab6 is generally required for Golgi-to-plasma membrane trafficking of BM components, we used lentivirus to express an mScarlet-tagged Rab6a in salivary gland epithelial cultures to visualize vesicle trafficking dynamics. We observed extensive bidirectional vesicle movements between Golgi at the apical side and the basal plasma membrane adjacent to the BM. Moreover, we showed that these vesicle movements depend on the microtubule motor kinesin-1 because very few vesicles remained motile after treatment with kinesore to compete for cargo-binding sites on kinesin-1. Overall, our work highlights the diverse strategies that different organisms use to secrete bulky matrix proteins: while Drosophila follicle epithelial cells strategically place their sites of BM protein production close to their deposition, mouse embryonic epithelial cells place their sites of production at the opposite end. Instead of spatial proximity, they use the microtubule cytoskeleton to mediate this organization as well as for the apical-to-basal transport of BM proteins.


Subject(s)
Kinesins , Microtubules , Animals , Mice , Basement Membrane/metabolism , Kinesins/genetics , Kinesins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , In Situ Hybridization, Fluorescence , Microtubules/genetics , Epithelial Cells/metabolism , Drosophila/genetics , Drosophila/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism
18.
J Biol Chem ; 299(12): 105459, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977222

ABSTRACT

The collagen IVα345 (Col-IVα345) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IVα345 scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure. How these variants cause proteinuria remains an enigma. In a companion paper, we found that the evolutionary emergence of the COL4A3, COL4A4, COL4A5, and COL4A6 genes coincided with kidney emergence in hagfish and shark and that the COL4A3 and COL4A4 were lost in amphibians. These findings opened an experimental window to gain insights into functionality of the Col-IVα345 scaffold. Here, using tissue staining, biochemical analysis and TEM, we characterized the scaffold chain arrangements and the morphology of the GBM of hagfish, shark, frog, and salamander. We found that α4 and α5 chains in shark GBM and α1 and α5 chains in amphibian GBM are spatially separated. Scaffolds are distinct from one another and from the mammalian Col-IVα345 scaffold, and the GBM morphologies are distinct. Our findings revealed that the evolutionary emergence of the Col-IVα345 scaffold enabled the genesis of a compact GBM that functions as an ultrafilter. Findings shed light on the conundrum, defined decades ago, whether the GBM or slit diaphragm is the primary filter.


Subject(s)
Collagen Type IV , Glomerular Basement Membrane , Mammals , Animals , Anura , Collagen Type IV/classification , Collagen Type IV/genetics , Collagen Type IV/metabolism , Glomerular Basement Membrane/chemistry , Glomerular Basement Membrane/metabolism , Glomerular Basement Membrane/physiology , Hagfishes , Mammals/genetics , Mammals/metabolism , Mammals/physiology , Sharks , Species Specificity , Urodela
19.
Biochem Biophys Res Commun ; 689: 149237, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37984175

ABSTRACT

Diabetic complications present a serious health problem. Functional damage to proteins due to post-translational modifications by glycoxidation reactions is a known factor contributing to pathology. Extracellular proteins are especially vulnerable to diabetic damage because robust antioxidant defenses are lacking outside the cell. We investigated glucose-induced inactivation of peroxidasin (PXDN), a heme protein catalyzing sulfilimine crosslinking of collagen IV that reinforce the basement membranes (BM). Experiments using physiological diabetic glucose levels were carried out to exclude several potential mechanisms of PXDN inactivation i.e., direct adduction of glucose, reactive carbonyl damage, steric hindrance, and osmotic stress. Further experiments established that PXDN activity was inhibited via heme degradation by reactive oxygen species. Activity of another extracellular heme protein, myeloperoxidase, was unaffected by glucose because its heme was resistant to glucose-induced oxidative degradation. Our findings point to specific mechanisms which may compromise BM structure and stability in diabetes and suggest potential modes of protection.


Subject(s)
Diabetes Mellitus , Hemeproteins , Hyperglycemia , Humans , Peroxidase/metabolism , Reactive Oxygen Species , Heme , Extracellular Matrix Proteins/metabolism , Glucose , Peroxidasin
20.
J Biol Chem ; 299(12): 105394, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890775

ABSTRACT

Collagen IV is an essential structural protein in all metazoans. It provides a scaffold for the assembly of basement membranes, a specialized form of extracellular matrix, which anchors and signals cells and provides microscale tensile strength. Defective scaffolds cause basement membrane destabilization and tissue dysfunction. Scaffolds are composed of α-chains that coassemble into triple-helical protomers of distinct chain compositions, which in turn oligomerize into supramolecular scaffolds. Chloride ions mediate the oligomerization via NC1 trimeric domains, forming an NC1 hexamer at the protomer-protomer interface. The chloride concentration-"chloride pressure"-on the outside of cells is a primordial innovation that drives the assembly and dynamic stabilization of collagen IV scaffolds. However, a Cl-independent mechanism is operative in Ctenophora, Ecdysozoa, and Rotifera, which suggests evolutionary adaptations to environmental or tissue conditions. An understanding of these exceptions, such as the example of Drosophila, could shed light on the fundamentals of how NC1 trimers direct the oligomerization of protomers into scaffolds. Here, we investigated the NC1 assembly of Drosophila. We solved the crystal structure of the NC1 hexamer, determined the chain composition of protomers, and found that Drosophila adapted an evolutionarily unique mechanism of scaffold assembly that requires divalent cations. By studying the Drosophila case we highlighted the mechanistic role of chloride pressure for maintaining functionality of the NC1 domain in humans. Moreover, we discovered that the NC1 trimers encode information for homing protomers to distant tissue locations, providing clues for the development of protein replacement therapy for collagen IV genetic diseases.


Subject(s)
Collagen Type IV , Drosophila Proteins , Drosophila , Animals , Humans , Basement Membrane/metabolism , Chlorides/metabolism , Collagen Type IV/metabolism , Drosophila/metabolism , Protein Structure, Tertiary , Protein Subunits/metabolism , Drosophila Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL