Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Naturwissenschaften ; 107(3): 23, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32436082

ABSTRACT

Nests of social insects are an important area for the exchange of food and information among workers. We investigated how the topology of nest chambers (as opposed to nest size or environmental factors) affects the spatial distribution of nestmates and the foraging behavior of Myrmica rubra ant colonies. Colonies were housed in artificial nests, each with same-sized chambers differing in the spatial arrangement of galleries. A highly connected central chamber favored higher occupancy rates and a more homogeneous distribution of ants across chambers. In contrast, a chain of successive chambers led to a more heterogeneous distribution of ants, with the occupancy of a chamber chiefly mediated by its distance to the entrance. Irrespective of nest topology, the entrance chamber housed the largest proportion of ants, often including the queen, which exhibited a preference for staying in densely populated chambers. Finally, we investigated how nest topology influenced nestmate recruitment. Surprisingly, a highly connected chamber in the center of the nest did not promote greater recruitment nor activation of ants. At the onset of foraging, the largest number of moving ants was reached in the topology where the most connected chamber was the nest entrance. Later in the process, we found that a chain of successive chambers was the best topology for promoting ant's mobilization. Our work demonstrates that nest topology can shape the spatial organization and the collective response of ant colonies, thereby taking part in their adaptative strategies to exploit environmental resources.


Subject(s)
Ants/physiology , Nesting Behavior/physiology , Animals , Population Growth
2.
J Exp Biol ; 222(Pt 19)2019 10 08.
Article in English | MEDLINE | ID: mdl-31527181

ABSTRACT

Animals socially interact during foraging and share information about the quality and location of food sources. The mechanisms of social information transfer during foraging have been mostly studied at the behavioral level, and its underlying neural mechanisms are largely unknown. Fruit flies have become a model for studying the neural bases of social information transfer, because they provide a large genetic toolbox to monitor and manipulate neuronal activity, and they show a rich repertoire of social behaviors. Fruit flies aggregate, they use social information for choosing a suitable mating partner and oviposition site, and they show better aversive learning when in groups. However, the effects of social interactions on associative odor-food learning have not yet been investigated. Here, we present an automated learning and memory assay for walking flies that allows the study of the effect of group size on social interactions and on the formation and expression of associative odor-food memories. We found that both inter-fly attraction and the duration of odor-food memory expression increase with group size. This study opens up opportunities to investigate how social interactions during foraging are relayed in the neural circuitry of learning and memory expression.


Subject(s)
Biological Assay/methods , Drosophila melanogaster/physiology , Feeding Behavior/physiology , Memory/physiology , Odorants , Social Behavior , Animals , Automation , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Drosophila melanogaster/drug effects , Feeding Behavior/drug effects , Memory/drug effects , Sucrose/pharmacology
3.
R Soc Open Sci ; 5(1): 170454, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29410791

ABSTRACT

Bark beetles use aggregation pheromones to promote group foraging, thus increasing the chances of an individual to find a host and, when relevant, to overwhelm the defences of healthy trees. When a male beetle finds a suitable host, it releases pheromones that attract potential mates as well as other 'spying' males, which result in aggregations on the new host. To date, most studies have been concerned with the use of aggregation pheromones by bark beetles to overcome the defences of living, well-protected trees. How insects behave when facing undefended or poorly defended hosts remains largely unknown. The spatio-temporal pattern of resource colonization by the European eight-toothed spruce bark beetle, Ips typographus, was quantified when weakly defended hosts (fallen trees) were attacked. In many of the replicates, colonization began with the insects rapidly scattering over the available surface and then randomly filling the gaps until a regular distribution was established, which resulted in a constant decrease in nearest-neighbour distances to a minimum below which attacks were not initiated. The scattered distribution of the first attacks suggested that the trees were only weakly defended. A minimal theoretical distance of 2.5 cm to the earlier settlers (corresponding to a density of 3.13 attacks dm-2) was calculated, but the attack density always remained lower, between 0.4 and 1.2 holes dm-2, according to our observations.

4.
Proc Biol Sci ; 282(1801): 20142675, 2015 Feb 22.
Article in English | MEDLINE | ID: mdl-25589604

ABSTRACT

Carnivorous Nepenthes pitcher plants capture arthropods with specialized slippery surfaces. The key trapping surface, the pitcher rim (peristome), is highly slippery when wetted by rain, nectar or condensation, but not when dry. As natural selection should favour adaptations that maximize prey intake, the evolution of temporarily inactive traps seems paradoxical. Here, we show that intermittent trap deactivation promotes 'batch captures' of ants. Prey surveys revealed that N. rafflesiana pitchers sporadically capture large numbers of ants from the same species. Continuous experimental wetting of the peristome increased the number of non-recruiting prey, but decreased the number of captured ants and shifted their trapping mode from batch to individual capture events. Ant recruitment was also lower to continuously wetted pitchers. Our experimental data fit a simple model that predicts that intermittent, wetness-based trap activation should allow safe access for 'scout' ants under dry conditions, thereby promoting recruitment and ultimately higher prey numbers. The peristome trapping mechanism may therefore represent an adaptation for capturing ants. The relatively rare batch capture events may particularly benefit larger plants with many pitchers. This explains why young plants of many Nepenthes species additionally employ wetness-independent, waxy trapping surfaces.


Subject(s)
Ants/physiology , Biological Evolution , Food Chain , Magnoliopsida/physiology , Animals , Carnivory
SELECTION OF CITATIONS
SEARCH DETAIL