Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Hosp Infect ; 148: 189-219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609760

ABSTRACT

The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.


Subject(s)
Clostridium Infections , Fecal Microbiota Transplantation , Fecal Microbiota Transplantation/methods , Humans , Clostridium Infections/therapy , United Kingdom , Clostridioides difficile , COVID-19/therapy , Recurrence , Gastroenterology/standards , Gastroenterology/methods , SARS-CoV-2 , Societies, Medical
2.
Gut ; 73(7): 1052-1075, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38609165

ABSTRACT

The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.


Subject(s)
Clostridium Infections , Fecal Microbiota Transplantation , Gastroenterology , Fecal Microbiota Transplantation/methods , Humans , Clostridium Infections/therapy , Gastroenterology/standards , COVID-19/therapy , SARS-CoV-2 , Recurrence , Clostridioides difficile , United Kingdom , Societies, Medical
5.
Ecotoxicol Environ Saf ; 239: 113662, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35617903

ABSTRACT

Understanding the interplay between the gut microbiome and arsenolipids can help us manage the potential health risk of consuming seafood, but little is known about the bioconversion fate of arsenolipids in the gastrointestinal tract. We use an in vitro mucosal simulator of the human intestinal microbial ecosystem (M-SHIME) to mimic the digestive tract of four healthy donors during exposure to two arsenolipids (an arsenic fatty acid AsFA 362 or an arsenic hydrocarbon AsHC 332). The metabolites were analyzed by HPLC-mass spectrometry. The human gut bacteria accumulated arsenolipids in a donor-dependent way, with higher retention of AsHC 332. Colonic microbiota partly transformed both arsenolipids to their thioxo analogs, while AsFA 362 was additionally transformed into arsenic-containing fatty esters, arsenic-containing fatty alcohols, and arsenic-containing sterols. There was no significant difference in water-soluble arsenicals between arsenolipid treatments. The study shows that arsenolipids can be quickly biotransformed into several lipid-soluble arsenicals of unknown toxicity, which cannot be excluded when considering potential implications on human health.


Subject(s)
Arsenic , Arsenicals , Gastrointestinal Microbiome , Arsenic/analysis , Arsenicals/chemistry , Chromatography, High Pressure Liquid/methods , Ecosystem , Humans
6.
Gut ; 71(11): 2147-2148, 2022 11.
Article in English | MEDLINE | ID: mdl-34725198

Subject(s)
Colitis , Intestines , Humans
7.
Gut ; 70(4): 698-706, 2021 04.
Article in English | MEDLINE | ID: mdl-33431578

ABSTRACT

OBJECTIVE: Although COVID-19 is primarily a respiratory illness, there is mounting evidence suggesting that the GI tract is involved in this disease. We investigated whether the gut microbiome is linked to disease severity in patients with COVID-19, and whether perturbations in microbiome composition, if any, resolve with clearance of the SARS-CoV-2 virus. METHODS: In this two-hospital cohort study, we obtained blood, stool and patient records from 100 patients with laboratory-confirmed SARS-CoV-2 infection. Serial stool samples were collected from 27 of the 100 patients up to 30 days after clearance of SARS-CoV-2. Gut microbiome compositions were characterised by shotgun sequencing total DNA extracted from stools. Concentrations of inflammatory cytokines and blood markers were measured from plasma. RESULTS: Gut microbiome composition was significantly altered in patients with COVID-19 compared with non-COVID-19 individuals irrespective of whether patients had received medication (p<0.01). Several gut commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii, Eubacterium rectale and bifidobacteria were underrepresented in patients and remained low in samples collected up to 30 days after disease resolution. Moreover, this perturbed composition exhibited stratification with disease severity concordant with elevated concentrations of inflammatory cytokines and blood markers such as C reactive protein, lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase. CONCLUSION: Associations between gut microbiota composition, levels of cytokines and inflammatory markers in patients with COVID-19 suggest that the gut microbiome is involved in the magnitude of COVID-19 severity possibly via modulating host immune responses. Furthermore, the gut microbiota dysbiosis after disease resolution could contribute to persistent symptoms, highlighting a need to understand how gut microorganisms are involved in inflammation and COVID-19.


Subject(s)
Bacteria , COVID-19 , Dysbiosis , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract , Immunity , SARS-CoV-2 , Adult , Bacteria/genetics , Bacteria/immunology , Bacteria/isolation & purification , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Cytokines/analysis , DNA, Bacterial/isolation & purification , Dysbiosis/epidemiology , Dysbiosis/etiology , Dysbiosis/immunology , Dysbiosis/virology , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology , Hong Kong , Humans , Male , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Transferases/analysis
8.
Article in English | MEDLINE | ID: mdl-32825711

ABSTRACT

Previously it was shown that application of probiotics stopped the acquisition of vancomycin-resistant Enterococcus faecium (VRE) by patients in an early rehabilitation ward. Once the application of probiotics ended, we examined whether acquisition of VRE reoccurred. Furthermore, we examined whether probiotics altered prevalence of vancomycin-susceptible E. faecium (VSE) and Gram-negative bacteria, which produce extended spectrum beta-lactamase (ESBL). Although probiotic application ceased in April 2018, VRE-colonized patients rarely presented on that ward until 2019. Probiotic treatment also resulted in a decreased number of patients with VSE and ESBL. While decreased incidence of VRE occurred immediately, decreased VSE and ESBL numbers occurred months later. A probiotic-mediated decrease of VSE and ESBL incidence cannot be explained when assuming bacterial transmission exclusively as a linear cause and effect event. The decrease is better understood by considering bacterial transmissions to be stochastic events, which depend on various driving forces similar to an electric current. We hypothesize that VRE, VSE and ESBL uptake by patients and by staff members mutually reinforced each other, leading staff members to form a bacterial reservoir, similar to a condenser that stores electrical energy. Probiotic treatment then inhibited regeneration of that store, resulting in a breakdown of the driving force.


Subject(s)
Enterococcus faecium , Gram-Negative Bacteria , Gram-Positive Bacterial Infections , Probiotics , Anti-Bacterial Agents , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacterial Infections/prevention & control , Humans , Probiotics/pharmacology , Vancomycin , beta-Lactamases
9.
Tech Coloproctol ; 24(9): 971-975, 2020 09.
Article in English | MEDLINE | ID: mdl-32601752

ABSTRACT

BACKGROUND: The exact pathophysiology of diverticulitis is not well understood and may be multifactorial. Recent studies highlight dysbiosis as a plausible mechanism. FMT is a safe strategy to restore commensal colon microbiota and has proven to be an effective treatment for gastrointestinal dysbiosis such as Clostridium difficile infection (CDI). There have been no studies reporting the treatment of diverticulitis with FMT. Our aim was to describe the novel application of fecal microbiota transplantation (FMT) for the treatment of recurrent diverticulitis. CASE: We report a case of a 63-year-old woman who had a 13-year history of multiply recurrent and multifocal diverticulitis previously treated with numerous short courses of intravenous and oral antibiotics for acute flares, two segmental colon resections, and suppressive antibiotic therapy for recurrent disease. Secondary to multiple courses of antibiotics , the patient developed CDI. She was treated with a single round of FMT and subsequently stopped all antibiotics at the time of FMT. RESULTS: In 20 months of follow-up, the patient has had no further recurrence of diverticulitis or CDI. CONCLUSIONS: FMT could prove to be a novel therapy for refractory diverticulitis but requires further investigation.


Subject(s)
Clostridioides difficile , Clostridium Infections , Diverticulitis , Fecal Microbiota Transplantation , Feces , Female , Humans , Middle Aged , Recurrence , Treatment Outcome
10.
Gut ; 69(11): 1998-2007, 2020 11.
Article in English | MEDLINE | ID: mdl-32051205

ABSTRACT

OBJECTIVE: Fusobacteria are not common nor relatively abundant in non-colorectal cancer (CRC) populations, however, we identified multiple Fusobacterium taxa nearly absent in western and rural populations to be comparatively more prevalent and relatively abundant in southern Chinese populations. We investigated whether these represented known or novel lineages in the Fusobacterium genus, and assessed their genomes for features implicated in development of cancer. METHODS: Prevalence and relative abundances of fusobacterial species were calculated from 3157 CRC and non-CRC gut metagenomes representing 16 populations from various biogeographies. Microbial genomes were assembled and compared with existing reference genomes to assess novel fusobacterial diversity. Phylogenetic distribution of virulence genes implicated in CRC was investigated. RESULTS: Irrespective of CRC disease status, southern Chinese populations harboured increased prevalence (maximum 39% vs 7%) and relative abundances (average 0.4% vs 0.04% of gut community) of multiple recognised and novel fusobacterial taxa phylogenetically distinct from Fusobacterium nucleatum. Genomes assembled from southern Chinese gut metagenomes increased existing fusobacterial diversity by 14.3%. Homologues of the FadA adhesin linked to CRC were consistently detected in several monophyletic lineages sister to and inclusive of F. varium and F. ulcerans, but not F. mortiferum. We also detected increased prevalence and relative abundances of F. varium in CRC compared with non-CRC cohorts, which together with distribution of FadA homologues supports a possible association with gut disease. CONCLUSION: The proportion of fusobacteria in guts of southern Chinese populations are higher compared with several western and rural populations in line with the notion of environment/biogeography driving human gut microbiome composition. Several non-nucleatum taxa possess FadA homologues and were enriched in CRC cohorts; whether this imposes a risk in developing CRC and other gut diseases deserves further investigation.


Subject(s)
Asian People , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Fusobacterium/isolation & purification , Adult , Aged , China , Cohort Studies , Colorectal Neoplasms/epidemiology , Feces/microbiology , Female , Gastrointestinal Microbiome , Humans , Male , Middle Aged , Phylogeny
11.
Gut Microbes ; 11(3): 497-510, 2020 05 03.
Article in English | MEDLINE | ID: mdl-31928118

ABSTRACT

The tapeworm Hymenolepis diminuta fails to establish in mice. Given the potential for helminth-bacteria interaction in the gut and the influence that commensal bacteria exert on host immunity, we tested if worm expulsion was related to alterations in the gut microbiota. Specific pathogen-free (SPF) mice, treated with broad-spectrum antibiotics, or germ-free wild-type mice were infected with H. diminuta, gut bacterial composition assessed by 16S rRNA gene sequencing, and worm counts, blood eosinophilia, goblet cells, splenic IL-4, -5 and -10, and colonic cytokines/chemokines mRNA were assessed. Effects of a PBS-soluble extract of adult H. diminuta on bacterial growth in vitro was tested. H. diminuta-infected mice displayed increased α and ß diversity in colonic mucosa-associated and fecal bacterial communities, characterized by increased Lachnospiraceae and clostridium cluster XIVa. In vitro analysis revealed that the worm extract promoted the growth of anaerobic bacteria on M2GSC agar. H. diminuta-infection was accompanied by increased Th2 immune responses, and colon from infected mice had increased levels of IL-10, IL-25, Muc2, trefoil factor 3, and ß2-defensin mRNA. SPF-mice treated with antibiotics, or germ-free mice, expelled H. diminuta with kinetics similar to control SPF mice. In both settings, measurements of Th2-immune responses were not significantly different across the groups. Thus, while infection with H. diminuta results in subtle but distinct changes to the colonic microbiota, we have no evidence to support an essential role for gut bacteria in the expulsion of the worm from the mouse host.


Subject(s)
Colon/microbiology , Gastrointestinal Microbiome , Hymenolepiasis/immunology , Hymenolepiasis/microbiology , Hymenolepiasis/parasitology , Animals , Anti-Bacterial Agents/pharmacology , Biodiversity , Cytokines/immunology , DNA, Bacterial/genetics , Feces/microbiology , Host-Parasite Interactions , Hymenolepis diminuta , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Specific Pathogen-Free Organisms
12.
Gut ; 69(8): 1452-1459, 2020 08.
Article in English | MEDLINE | ID: mdl-31964751

ABSTRACT

OBJECTIVE: Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. DESIGN: A parallel metabonomic (molecular phenotyping based on proton nuclear magnetic resonance spectroscopy) and gut bacterial (16S ribosomal RNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared with women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. RESULTS: Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. The urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (p=0.001) and was also elevated in urine of neonates born from these mothers (p=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. CONCLUSION: Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further.


Subject(s)
Amino Acids/blood , Birth Weight , Gastric Bypass , Gastroplasty , Glutamine/analogs & derivatives , Pregnancy , 3-Hydroxybutyric Acid/blood , Adult , Body Mass Index , Clostridiales/isolation & purification , Creatinine/urine , Cresols/urine , Enterococcus/isolation & purification , Escherichia/isolation & purification , Feces/microbiology , Female , Fetal Development , Gastrointestinal Microbiome , Glutamine/blood , Glutamine/urine , Hemiterpenes/urine , Humans , Indican/urine , Infant, Newborn/urine , Insulin Resistance , Isobutyrates/blood , Isoleucine/blood , Keto Acids/urine , Leucine/blood , Metabolomics , Micrococcaceae/isolation & purification , Phenotype , Phenylacetates/urine , Pregnancy/blood , Pregnancy/urine , Streptococcus/isolation & purification , Sulfuric Acid Esters/urine , Young Adult
13.
Gut ; 69(6): 1076-1084, 2020 06.
Article in English | MEDLINE | ID: mdl-31601615

ABSTRACT

OBJECTIVE: The ethiopathogenesis of irritable bowel syndrome (IBS) is unknown. While a link to the gut microbiome is postulated, the heterogeneity of the healthy gut makes it difficult to draw definitive conclusions. We aimed to describe the faecal and mucosa-associated microbiome (MAM) and health correlates on a community cohort of healthy and IBS individuals with no colonoscopic findings. DESIGN: The PopCol study recruited a random sample of 3556 adults; 745 underwent colonoscopy. IBS was defined by Rome IV criteria and organic disease excluded. 16S rRNA gene sequencing was conducted on sigmoid biopsy samples from 376 representative individuals (63 IBS cases) and faecal samples from 185 individuals (32 IBS cases). RESULTS: While sigmoid MAM was dominated by Lachnospiraceae, faeces presented a higher relative abundance of Ruminococcaceae. Microbial richness in MAM was linearly correlated to that in faeces from the same individual (R²=0.255, p<3E-11) as was diversity (R²=0.06, p=0.0022). MAM diversity decreased with increasing body mass index (BMI; Pearson's r=-0.1, p=0.08) and poorer self-rated health (r=-0.15, p=0.007), but no other health correlates. Faecal microbiome diversity was correlated to stool consistency (r=-0.16, p=0.043). Several taxonomic groups were correlated to age, BMI, depression and self-reported health, including Coprococcus catus associated with lower levels of depression (r=-0.003, p=0.00017). The degree of heterogeneity observed between IBS patients is higher than that observed between healthy individuals. CONCLUSIONS: No distinct microbial signature was observed in IBS. Individuals presenting with low self-rated health or high BMI have lower gut microbiome richness.


Subject(s)
Gastrointestinal Microbiome/physiology , Irritable Bowel Syndrome/microbiology , Case-Control Studies , Colonoscopy , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Intestinal Mucosa/microbiology , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Sweden
14.
Gut ; 69(7): 1248-1257, 2020 07.
Article in English | MEDLINE | ID: mdl-31776231

ABSTRACT

OBJECTIVE: There is a need for early detection of colorectal cancer (CRC) at precancerous-stage adenoma. Here, we identified novel faecal bacterial markers for diagnosing adenoma. DESIGN: This study included 1012 subjects (274 CRC, 353 adenoma and 385 controls) from two independent Asian groups. Candidate markers were identified by metagenomics and validated by targeted quantitative PCR. RESULTS: Metagenomic analysis identified 'm3' from a Lachnoclostridium sp., Fusobacterium nucleatum (Fn) and Clostridium hathewayi (Ch) to be significantly enriched in adenoma. Faecal m3 and Fn were significantly increased from normal to adenoma to CRC (p<0.0001, linear trend by one-way ANOVA) in group I (n=698), which was further confirmed in group II (n=313; p<0.0001). Faecal m3 may perform better than Fn in distinguishing adenoma from controls (areas under the receiver operating characteristic curve (AUROCs) m3=0.675 vs Fn=0.620, p=0.09), while Fn performed better in diagnosing CRC (AUROCs Fn=0.862 vs m3=0.741, p<0.0001). At 78.5% specificity, m3 and Fn showed sensitivities of 48.3% and 33.8% for adenoma, and 62.1% and 77.8% for CRC, respectively. In a subgroup tested with faecal immunochemical test (FIT; n=642), m3 performed better than FIT in detecting adenoma (sensitivities for non-advanced and advanced adenomas of 44.2% and 50.8% by m3 (specificity=79.6%) vs 0% and 16.1% by FIT (specificity=98.5%)). Combining with FIT improved sensitivity of m3 for advanced adenoma to 56.8%. The combination of m3 with Fn, Ch, Bacteroides clarus and FIT performed best for diagnosing CRC (specificity=81.2% and sensitivity=93.8%). CONCLUSION: This study identifies a novel bacterial marker m3 for the non-invasive diagnosis of colorectal adenoma.


Subject(s)
Adenoma/diagnosis , Clostridiales/metabolism , Colorectal Neoplasms/diagnosis , Feces/microbiology , Biomarkers, Tumor/analysis , Case-Control Studies , Feces/chemistry , Female , Humans , Male , Metagenomics , Middle Aged , Polymerase Chain Reaction , Sensitivity and Specificity
15.
Nutrients ; 11(7)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31247980

ABSTRACT

Cocoa has beneficial health effects partly due to its high flavanol content. This study was aimed at assessing the absorption and metabolism of polyphenols in two soluble cocoa products: a conventional (CC) and a flavanol-rich product (CC-PP). A crossover, randomized, blind study was performed in 13 healthy men and women. On two different days, after an overnight fast, volunteers consumed one serving of CC (15 g) or CC-PP (25 g) in 200 mL of semi-skimmed milk containing 19.80 mg and 68.25 mg of flavanols, respectively. Blood and urine samples were taken, before and after CC and CC-PP consumption, and analyzed by high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QToF-MS). Up to 10 and 30 metabolites were identified in plasma and urine, respectively. Phase II derivatives of epicatechin were identified with kinetics compatible with small intestine absorption, although the most abundant groups of metabolites were phase II derivatives of phenyl-γ-valerolactone and phenylvaleric acid, formed at colonic level. 5-(4'-Hydroxyphenyl)-γ-valerolactone-sulfate could be a sensitive biomarker of cocoa flavanol intake. CC and CC-PP flavanols showed a dose-dependent absorption with a recovery of 35%. In conclusion, cocoa flavanols are moderately bioavailable and extensively metabolized, mainly by the colonic microbiota.


Subject(s)
Bacteria/metabolism , Beverages/analysis , Chocolate/analysis , Colon/microbiology , Flavonols/pharmacokinetics , Gastrointestinal Microbiome , Administration, Oral , Adult , Biological Availability , Cross-Over Studies , Female , Flavonols/administration & dosage , Flavonols/blood , Flavonols/urine , Humans , Intestinal Absorption , Male , Metabolic Detoxication, Phase II , Single-Blind Method , Spain , Young Adult
16.
BMJ Open Gastroenterol ; 6(1): e000247, 2019.
Article in English | MEDLINE | ID: mdl-30899534

ABSTRACT

OBJECTIVE: Obesity is a risk factor for colorectal cancer (CRC), accounting for more than 14% of CRC incidence. Microbial dysbiosis and chronic inflammation are common characteristics in both obesity and CRC. Human and murine studies, together, demonstrate the significant impact of the microbiome in governing energy metabolism and CRC development; yet, little is understood about the contribution of the microbiome to development of obesity-associated CRC as compared to individuals who are not obese. DESIGN: In this study, we conducted a meta-analysis using five publicly available stool and tissue-based 16S rRNA and whole genome sequencing (WGS) data sets of CRC microbiome studies. High-resolution analysis was employed for 16S rRNA data, which allowed us to achieve species-level information to compare with WGS. RESULTS: Characterisation of the confounders between studies, 16S rRNA variable region and sequencing method did not reveal any significant effect on alpha diversity in CRC prediction. Both 16S rRNA and WGS were equally variable in their ability to predict CRC. Results from diversity analysis confirmed lower diversity in obese individuals without CRC; however, no universal differences were found in diversity between obese and non-obese individuals with CRC. When examining taxonomic differences, the probability of being classified as CRC did not change significantly in obese individuals for all taxa tested. However, random forest classification was able to distinguish CRC and non-CRC stool when body mass index was added to the model. CONCLUSION: Overall, microbial dysbiosis was not a significant factor in explaining the higher risk of colon cancer among individuals with obesity.

17.
18.
Gut ; 67(8): 1454-1463, 2018 08.
Article in English | MEDLINE | ID: mdl-28988196

ABSTRACT

BACKGROUND AND AIMS: Microbiota alterations are linked with colorectal cancer (CRC) and notably higher abundance of putative oral bacteria on colonic tumours. However, it is not known if colonic mucosa-associated taxa are indeed orally derived, if such cases are a distinct subset of patients or if the oral microbiome is generally suitable for screening for CRC. METHODS: We profiled the microbiota in oral swabs, colonic mucosae and stool from individuals with CRC (99 subjects), colorectal polyps (32) or controls (103). RESULTS: Several oral taxa were differentially abundant in CRC compared with controls, for example, Streptococcus and Prevotellas pp. A classification model of oral swab microbiota distinguished individuals with CRC or polyps from controls (sensitivity: 53% (CRC)/67% (polyps); specificity: 96%). Combining the data from faecal microbiota and oral swab microbiota increased the sensitivity of this model to 76% (CRC)/88% (polyps). We detected similar bacterial networks in colonic microbiota and oral microbiota datasets comprising putative oral biofilm forming bacteria. While these taxa were more abundant in CRC, core networks between pathogenic, CRC-associated oral bacteria such as Peptostreptococcus, Parvimonas and Fusobacterium were also detected in healthy controls. High abundance of Lachnospiraceae was negatively associated with the colonisation of colonic tissue with oral-like bacterial networks suggesting a protective role for certain microbiota types against CRC, possibly by conferring colonisation resistance to CRC-associated oral taxa and possibly mediated through habitual diet. CONCLUSION: The heterogeneity of CRC may relate to microbiota types that either predispose or provide resistance to the disease, and profiling the oral microbiome may offer an alternative screen for detecting CRC.


Subject(s)
Colonic Polyps/microbiology , Colorectal Neoplasms/microbiology , Microbiota , Mouth/microbiology , Adult , Aged , Case-Control Studies , Colonic Polyps/pathology , Colorectal Neoplasms/pathology , Feces/microbiology , Female , Humans , Male , Middle Aged , Sensitivity and Specificity
19.
Nutrients ; 9(8)2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28796169

ABSTRACT

The symbiotic co-habitation of bacteria in the host colon is mutually beneficial to both partners. While the host provides the place and food for the bacteria to colonize and live, the bacteria in turn help the host in energy and nutritional homeostasis, development and maturation of the mucosal immune system, and protection against inflammation and carcinogenesis. In this review, we highlight the molecular mediators of the effective communication between the bacteria and the host, focusing on selective metabolites from the bacteria that serve as messengers to the host by acting through selective receptors in the host colon. These bacterial metabolites include the short-chain fatty acids acetate, propionate, and butyrate, the tryptophan degradation products indole-3-aldehyde, indole-3-acetic, acid and indole-3-propionic acid, and derivatives of endogenous bile acids. The targets for these bacterial products in the host include the cell-surface G-protein-coupled receptors GPR41, GPR43, and GPR109A and the nuclear receptors aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and farnesoid X receptor (FXR). The chemical communication between these bacterial metabolite messengers and the host targets collectively has the ability to impact metabolism, gene expression, and epigenetics in colonic epithelial cells as well as in mucosal immune cells. The end result, for the most part, is the maintenance of optimal colonic health.


Subject(s)
Bacteria/metabolism , Colon/microbiology , Colon/physiology , Receptors, Cell Surface/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Humans
20.
Biochim Biophys Acta Rev Cancer ; 1868(1): 246-257, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28512002

ABSTRACT

Mitochondria are the sites of pyruvate oxidation, citric acid cycle, oxidative phosphorylation, ketogenesis, and fatty acid oxidation. Attenuation of mitochondrial function is one of the most significant changes that occurs in tumor cells, directly linked to oncogenesis, angiogenesis, Warburg effect, and epigenetics. In particular, three mitochondrial enzymes are inactivated in cancer: pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl CoA synthase-2 (HMGCS2). These enzymes are subject to regulation via acetylation/deacetylation. SIRT3, the predominant mitochondrial deacetylase, directly targets these enzymes for deacetylation and maintains their optimal catalytic activity. SIRT3 is a tumor suppressor, and deacetylation of these enzymes contributes to its biological function. PDH catalyzes the oxidative decarboxylation of pyruvate into acetyl CoA, SDH oxidizes succinate into fumarate, and HMGCS2 controls the synthesis of the ketone body ß-hydroxybutyrate. As the activities of these enzymes are decreased in cancer, tumor cells accumulate lactate and succinate but produce less amounts of ß-hydroxybutyrate. Apart from their role in cellular energetics, these metabolites function as signaling molecules via specific cell-surface G-protein-coupled receptors. Lactate signals via GPR81, succinate via GPR91, and ß-hydroxybutyrate via GPR109A. In addition, lactate activates hypoxia-inducible factor HIF1α and succinate promotes DNA methylation. GPR81 and GPR91 are tumor promoters, and increased production of lactate and succinate as their agonists drives tumorigenesis by enhancing signaling via these two receptors. In contrast, GPR109A is a tumor suppressor, and decreased synthesis of ß-hydroxybutyrate as its agonist suppresses signaling via this receptor, thus attenuating the tumor-suppressing function of GPR109A. In parallel with the opposing changes in lactate/succinate and ß-hydroxybutyrate levels, tumor cells upregulate GPR81 and GPR91 but downregulate GPR109A. As such, these three metabolite receptors play a critical role in cancer and represent a new class of drug targets with selective antagonists of GPR81 and GPR91 for cancer treatment and agonists of GPR109A for cancer prevention.


Subject(s)
Cell Membrane/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , DNA Methylation/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL