Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Methods Mol Biol ; 2785: 115-142, 2024.
Article in English | MEDLINE | ID: mdl-38427192

ABSTRACT

MRS is a noninvasive technique to measure different metabolites in the brain. Changes in the levels of certain metabolites can be used as surrogate markers for Alzheimer's disease. They can potentially be used for diagnosis, prediction of prognosis, or even assessing response to treatment.There are different techniques for MRS acquisitions including STimulated Echo Acquisition Mode (STEAM) and Point Resolved Spectroscopy (PRESS). In terms of localization, single or multi-voxel methods can be used. Based on current data: 1. NAA, marker of neuronal integrity and viability, reduces in AD with longitudinal changes over the time as the disease progresses. There are data claiming that reduction of NAA is associated with tau accumulation, early neurodegenerative processes, and cognitive decline. Therefore, it can be used as a stage biomarker for AD to assess the severity of the disease. With advancement of disease modifying therapies, there is a potential role for NAA in the future to be used as a marker of response to treatment. 2. mI, marker of glial cell proliferation and activation, is associated with AB pathology and has early changes in the course of the disease. The NAA/mI ratio can be predictive of AD development with high specificity and can be utilized in the clinical setting to stratify cases for further evaluation with PET for potential treatments. 3. The changes in the level of other metabolites such as Chol, Glu, Gln, and GABA are controversial because of the lack of standardization of MRS techniques, current technical limitations, and possible region specific changes. 4. Ultrahigh field MRS and more advanced techniques can overcome many of these limitations and enable us to measure more metabolites with higher accuracy. 5. Standardization of MRS techniques, validation of metabolites' changes against PET using PET-guided technique, and longitudinal follow-ups to investigate the temporal changes of the metabolites in relation to other biomarkers and cognition will be crucial to confirm the utility of MRS as a potential noninvasive biomarker for AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Magnetic Resonance Spectroscopy , Brain/metabolism , Cognition , Biomarkers/metabolism
2.
Magn Reson Med ; 91(3): 942-954, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37899691

ABSTRACT

PURPOSE: To confirm that CrCEST in muscle exhibits a slow-exchanging process, and to obtain high-resolution amide, creatine (Cr), and phosphocreatine (PCr) maps of skeletal muscle using a POlynomial and Lorentzian Line-shape Fitting (PLOF) CEST at 3T. METHODS: We used dynamic changes in PCr/CrCEST of mouse hindlimb before and after euthanasia to assign the Cr and PCr CEST peaks in the Z-spectrum at 3T and to obtain the optimum saturation parameters. Segmented 3D EPI was employed to obtain multi-slice amide, PCr, and Cr CEST maps of human skeletal muscle. Subsequently, the PCrCEST maps were calibrated using the PCr concentrations determined by 31 P MRS. RESULTS: A comparison of the Z-spectra in mouse hindlimb before and after euthanasia indicated that CrCEST is a slow-exchanging process in muscle (<150.7 s-1 ). This allowed us to simultaneously extract PCr/CrCEST signals at 3T using the PLOF method. We determined optimal B1 values ranging from 0.3 to 0.6 µT for CrCEST in muscle and 0.3-1.2 µT for PCrCEST. For the study on human calf muscle, we determined an optimum saturation time of 2 s for both PCr/CrCEST (B1 = 0.6 µT). The PCr/CrCEST using 3D EPI were found to be comparable to those obtained using turbo spin echo (TSE). (3D EPI/TSE PCr: (2.6 ± 0.3) %/(2.3 ± 0.1) %; Cr: (1.3 ± 0.1) %/(1.4 ± 0.07) %). CONCLUSIONS: Our study showed that in vivo CrCEST is a slow-exchanging process. Hence, amide, Cr, and PCr CEST in the skeletal muscle can be mapped simultaneously at 3T by PLOF CEST.


Subject(s)
Creatine , Magnetic Resonance Imaging , Humans , Animals , Mice , Phosphocreatine , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Amides
3.
Transl Pediatr ; 12(5): 927-937, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37305710

ABSTRACT

Background: This study sought to analyze the clinical characteristics, biochemical metabolic indications, treatment results, and genetic spectrum of cerebral creatine deficiency syndrome (CCDS), estimate the prevalence of CCDS in Chinese children and provide a reference to guide clinical practice. Methods: We performed a retrospective cohort study of 3,568 children with developmental delay at Children's Hospital of Fudan University over a 6-year period (January 2017-December 2022). Metabolites in the blood/urine were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and genetic testing was performed by next-generation sequencing (NGS). The patients with suspected CCDS were ultimately diagnosed by magnetic resonance spectroscopy (MRS). The patients were then treated and followed up. All the reported cases of CCDS, their gene mutations, and treatment results in China were summarized. Results: Ultimately, 14 patients were diagnosed with CCDS. The age of onset was between 1-2 years. All the patients had developmental delay, 9 had epilepsy, and 8 had movement or behavioral disorders. A total of 17 genetic variants were identified, including 6 novel variants. c.403G>A, c.491dupG of the guanidinoacetate methyltransferase (GAMT) gene had a relatively high frequency. After treatment, patients with GAMT deficiency showed obvious improvements, and brain creatine (Cr) levels recovered to 50-80% of normal, 1 patient achieved normal neurodevelopment, and 3 patients became epilepsy free; however, 6 male patients with X-linked creatine transporter gene (SLC6A8) variants received Cr for 3-6 months with no effect, and 2 patients received combined therapy with few improvements. Conclusions: The prevalence of CCDS is ~0.39% in Chinese children with developmental delay. A low-protein diet, Cr and, ornithine were useful for patients with GAMT deficiency. Male patients with SLC6A8 deficiency showed only limited improvement on combined therapy.

4.
Nutrients ; 13(5)2021 04 23.
Article in English | MEDLINE | ID: mdl-33922654

ABSTRACT

Based on theoretical considerations, experimental data with cells in vitro, animal studies in vivo, as well as a single case pilot study with one colitis patient, a consolidated hypothesis can be put forward, stating that "oral supplementation with creatine monohydrate (Cr), a pleiotropic cellular energy precursor, is likely to be effective in inducing a favorable response and/or remission in patients with inflammatory bowel diseases (IBD), like ulcerative colitis and/or Crohn's disease". A current pilot clinical trial that incorporates the use of oral Cr at a dose of 2 × 7 g per day, over an initial period of 2 months in conjunction with ongoing therapies (NCT02463305) will be informative for the proposed larger, more long-term Cr supplementation study of 2 × 3-5 g of Cr per day for a time of 3-6 months. This strategy should be insightful to the potential for Cr in reducing or alleviating the symptoms of IBD. Supplementation with chemically pure Cr, a natural nutritional supplement, is well tolerated not only by healthy subjects, but also by patients with diverse neuromuscular diseases. If the outcome of such a clinical pilot study with Cr as monotherapy or in conjunction with metformin were positive, oral Cr supplementation could then be used in the future as potentially useful adjuvant therapeutic intervention for patients with IBD, preferably together with standard medication used for treating patients with chronic ulcerative colitis and/or Crohn's disease.


Subject(s)
Clinical Trials as Topic , Creatine/therapeutic use , Dietary Supplements , Inflammatory Bowel Diseases/drug therapy , Creatine/pharmacology , Endpoint Determination , Humans , Intestines/drug effects , Intestines/pathology
5.
Magn Reson Med ; 84(6): 3342-3350, 2020 12.
Article in English | MEDLINE | ID: mdl-32597519

ABSTRACT

PURPOSE: To obtain high-sensitivity CEST maps by exploiting the spatiotemporal correlation between CEST images. METHODS: A postprocessing method accomplished by multilinear singular value decomposition (MLSVD) was used to enhance the CEST SNR by exploiting the correlation between the Z-spectrum for each voxel and the low-rank property of the overall CEST data. The performance of this method was evaluated using CrCEST in ischemic mouse brain at 11.7 tesla. Then, MLSVD CEST was applied to obtain Cr, amide, and amine CEST maps of the ischemic mouse brain to demonstrate its general applications. RESULTS: Complex-valued Gaussian noise was added to CEST k-space data to mimic a low SNR situation. MLSVD CEST analysis was able to suppress the noise, recover the degraded CEST peak, and provide better CrCEST quality compared to the smoothing and singular value decomposition (SVD)-based denoising methods. High-resolution Cr, amide, and amine CEST maps of an ischemic stroke using MLSVD CEST suggest that CrCEST is also a sensitive pH mapping method, and a wide range of pH changes can be detected by combing CrCEST with amine CEST at high magnetic fields. CONCLUSION: MLSVD CEST provides a simple and efficient way to improve the SNR of CEST images.


Subject(s)
Amides , Magnetic Resonance Imaging , Animals , Mice
6.
Neuroimage Clin ; 4: 326-35, 2014.
Article in English | MEDLINE | ID: mdl-24501701

ABSTRACT

OBJECTIVE: We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis - a form of neuroplasticity - and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). METHODS: We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging ((1)H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. RESULTS: Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI < 25) (partial Eta-squared = 0.14) controlling for age, sex and psychiatric diagnosis, and the effect was significant for the right hippocampus in both GAD patients and control subjects. An inverse linear correlation was noted in all subjects between right hippocampal NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. CONCLUSION: Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted.


Subject(s)
Anxiety Disorders/diagnosis , Anxiety Disorders/metabolism , Aspartic Acid/analogs & derivatives , Hippocampus/metabolism , Overweight/diagnosis , Overweight/metabolism , Adult , Aspartic Acid/metabolism , Biomarkers/metabolism , Down-Regulation , Female , Humans , Magnetic Resonance Imaging/methods , Male , Proton Magnetic Resonance Spectroscopy/methods , Reproducibility of Results , Sensitivity and Specificity
7.
Neurosci Biobehav Rev ; 37(10 Pt 2): 2571-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23969177

ABSTRACT

Research using proton magnetic resonance spectroscopy (MRS) can potentially elucidate metabolite changes representing early degeneration in Mild Cognitive Impairment (MCI), an early stage of dementia. We integrated the published literature using meta-analysis to identify patterns of metabolite changes in MCI. 29 MRS studies (with a total of 607 MCI patients and 862 healthy controls) were classified according to brain regions. Hedges' g was used as effect size in a random effects model. N-Acetyl Aspartate (NAA) measures were consistently reduced in posterior cingulate (PC), hippocampus, and the paratrigonal white matter (PWM). Creatine (Cr) concentration was reduced in the hippocampus and PWM. Choline (Cho) concentration was reduced in the hippocampus while Cho/Cr ratio was raised in the PC. Myo-inositol (mI) concentration was raised in the PC and mI/Cr ratio was raised in the hippocampus. NAA/mI ratio was reduced in the PC. NAA may be the most reliable marker of brain dysfunction in MCI though mI, Cho, and Cr may also contribute towards this.


Subject(s)
Aspartic Acid/analogs & derivatives , Cognitive Dysfunction/metabolism , Magnetic Resonance Spectroscopy/methods , Aspartic Acid/metabolism , Choline/metabolism , Cognitive Dysfunction/pathology , Creatine/metabolism , Humans , Inositol/metabolism
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-590816

ABSTRACT

0.05). Conclusions: There exists an abnormal reduction of neural viability and function on bilateral hippocampus of patients with first-episode MDD.

SELECTION OF CITATIONS
SEARCH DETAIL