Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 391
Filter
1.
Discov Nano ; 19(1): 117, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009869

ABSTRACT

Plant diseases cause colossal crop loss worldwide and are the major yield constraining component in agriculture. Nanotechnology, which has the possible to revolutionize numerous fields of science, innovation, drug, and agriculture. Nanotechnology can be utilized for combating the plant infectious diseases and nano-materials can be utilized as transporter of dynamic elements of pesticides, host defense etc. to the pathogens. The analysis of diseases, finding of pathogens may turn out to be substantially more precise and fast with the utilization of nanosensors. As worldwide demand for food production raises against an evolving atmosphere, nanotechnology could reasonably alleviate numerous challenges in disease managing by diminishing chemical inputs and advancing quick recognition of pathogens. The major goal of this review is to increase growth and productivity using supplements with nanoparticles. (i.e., metals, metal oxides, and carbon) to treat crop diseases and make agricultural practices more productive and sustainable. Prominently, this improved crop may not only be straight connected to the diminished occurrence of pathogenic microorganisms, yet in might possibly add nutritional benefits of the nanoparticles themselves, particularly for the micronutrients important for generating host resistance.

2.
Heliyon ; 10(12): e32434, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975170

ABSTRACT

Our knowledge of fluorine's unique and complex properties has significantly increased over the past 20 years. Consequently, more sophisticated and innovative techniques have emerged to incorporate this feature into the design of potential drug candidates. In recent years, researchers have become interested in synthesizing fluoro-sulphonamide compounds to discover new chemical entities with distinct and unexpected physical, chemical, and biological characteristics. The fluorinated sulphonamide molecules have shown significant biomedical importance. Their potential is not limited to biomedical applications but also includes crop protection. The discovery of novel fluorine and Sulfur compounds has highlighted their importance in the chemical sector, particularly in the agrochemical and medicinal fields. Recently, several fluorinated sulphonamide derivatives have been developed and frequently used by agriculturalists to produce food for the growing global population. These molecules have also exhibited their potential in health by inhibiting various human diseases. In today's world, it is crucial to have a steady supply of innovative pharmaceutical and agrochemical molecules that are highly effective, less harmful to the environment, and affordable. This review summarizes the available information on the activity of Fluorine and Sulphonamide compounds, which have proven active in pharmaceuticals and agrochemicals with excellent environmental and human health approaches. Moreover, it focuses on the current literature on the chemical structures, the application of fluorinated sulphonamide compounds against various pathological conditions, and their effectiveness in crop protection.

3.
Pest Manag Sci ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39036897

ABSTRACT

BACKGROUND: Genetic improvement of crop varieties requires significant investment. Therefore, varieties must be developed to suit a broad range of breeding targets, such as yield and suitability to rainfall zones, farm management practices and quality traits. In the case of breeding for disease resistance, breeders need to consider the value of genetic improvement relative to other disease management strategies and the dynamics of pathogen genetic and phenotypic diversity. This study uses a benefit-cost analysis framework to assess the economic value of fungicide management and crop genetic improvement in disease resistance for Australian chickpea varieties. RESULTS: When assessing the likelihood of growers switching to new crop varieties with improved genetic resistance to disease, the simulation results reveal that adopting these varieties yielded higher net benefit values compared to implementing current fungicide strategies across all rainfall zones. On average, the increase in net benefit varied between 2.6% and 3.5%. Conversely, when we examined the scenario involving modifying the current fungicide strategy, we observed that, on average, switching from the current fungicide management strategy to one which involved additional fungicides was beneficial in about 73% of the cases. CONCLUSION: Our analysis reveals the importance of factors such as commodity prices, production costs, disease-related variables and risk aversion in determining the economic benefits of adopting new crop protection strategies. Furthermore, the research reveals the need for accessible information and reliable data sources when evaluating the benefits of new agricultural technologies. This would assist growers in making informed and sustainable disease management decisions. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Pest Manag Sci ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032014

ABSTRACT

BACKGROUND: Utilizing fungicides to protect crops from diseases is an effective method, and novel eco-friendly plant-derived fungicides with high efficiency and low toxicity are urgent requirements for sustainable crop protection. RESULT: Two series of rosin-based fungicides (totally 35) were designed and synthesized. In vitro fungicidal activity revealed that Compound 6a (Co. 6a) effectively inhibited the growth of Valsa mali [median effective concentration (EC50) = 0.627 µg mL-1], and in vivo fungicidal activity suggested a significant protective efficacy of Co. 6a in protecting both apple branches (35.12% to 75.20%) and apples (75.86% to 90.82%). Quantum chemical calculations (via density functional theory) results indicated that the primary active site of Co. 6a lies in its amide structure. Mycelial morphology and physiology were investigated to elucidate the mode-of-action of Co. 6a, and suggested that Co. 6a produced significant cell membrane damage, accelerated electrolyte leakage, decreased succinate dehydrogenase (SDH) protein activity, and impaired physiological and biochemical functions, culminating in mycelial mortality. Molecular docking analysis revealed a robust binding energy (ΔE = -7.29 kcal mol-1) between Co. 6a and SDH. Subsequently, biosafety evaluations confirmed the environmentally-friendly nature of Co. 6a via the zebrafish model, yet toxicological results indicated that Co. 6a at median lethal concentration [LC50(96)] damaged the gills, liver and intestines of zebrafish. CONCLUSION: The above research offers a theoretical foundation for exploiting eco-friendly rosin-based fungicidal candidates in sustainable crop protection. © 2024 Society of Chemical Industry.

5.
Indian J Microbiol ; 64(2): 318-327, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011019

ABSTRACT

In the current scenario of growing world population, limited cultivable land resources, plant diseases, and pandemics are some of the major factors responsible for declining global food security. Along with meeting the food demand, the maintenance of food quality is also required to ensure healthy consumption and marketing. In agricultural fields, pest infestations and bacterial diseases are common causes of crop damage, leading to massive yield losses. Conventionally, antibiotics and several pesticides have been used to manage and control these plant pathogens. However, the overuse of antibiotics and pesticides has led to the emergence of resistant strains of pathogenic bacteria. The bacteriophages are the natural predators of bacteria and are host-specific in their action. Therefore, the use of bacteriophages for the biocontrol of pathogenic bacteria is serving as a sustainable and green solution in crop protection and production. In this review, we have discussed the important plant pathogens and their impact on plant health and yield loss. Further, we have abridged the role of bacteriophages in the protection of crops from bacterial disease by discussing various greenhouse and field trials. Finally, we have discussed the impact of bacteriophages on the plant microbiome, phage resistance, and legal challenges in the registration and commercial production of bacteriophage-based biopesticides. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01204-x.

6.
Heliyon ; 10(11): e31550, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828310

ABSTRACT

Agro-environmental sustainability is based upon the adoption of efficient resources in agro-practices that have a nominal impact on the ecosystem. Insect pests are responsible for causing severe impacts on crop productivity. Wide ranges of agro-chemicals have been employed over the last 50 years to overcome crop yield losses due to insect pests. But better knowledge about the hazards due to chemical pesticides and other pest resistance and resurgence issues necessitates an alternative for pest control. The applications of biological pesticides offer a best alternate that is safe, cost-effective, easy to adoption and successful against various insect pests and pathogens. Like other organisms, insects can get a wide range of diseases from various microbes, such as bacteria, fungi, viruses, protozoa, and nematodes. In order to create agricultural pest management practices that are environmentally beneficial, bacterial entomopathogens are being thoroughly studied. Utilization of bacterial biopesticides has been adopted for the protection of agricultural products. The different types of toxin complexes released by various microorganisms and their mechanisms of action are recapitulated. The present review described the diversity and biocontrol prospective of certain bacteria and summarised the potential of bacterial biopesticides for the management of agricultural pests, insects, and other phytopathogenic microorganisms in agricultural practices.

7.
Chempluschem ; : e202400127, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924361

ABSTRACT

A microwave-assisted synthesis of 7-amino-1,2,4-triazolo[1,5-a][1,3,5]triazine-2-propanamides was developed using a three-component, catalyst-free reaction of cyanamide and trimethyl orthoformate with 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides (3). The reaction tolerated structurally diverse substrates and proceeded chemo- and regio-selectively, affording the target compounds in high purity in 5-10 minutes. The convenient chromatography-free isolation and purification of the products add practicality to this method. The structural features of the prepared compounds were investigated using dynamic NMR spectroscopy, X-ray crystallography and computational chemistry calculations. X-ray crystallography performed on a representative compound, 3-(7-amino-1,2,4-triazolo[1,5-a][1,3,5]triazin-2-yl)-N-(4-benzyl)propenamide (4l), showed the overall molecular conformation to adopt the shape of the letter C. Notable localisation of π-electron density is found within the 1,2,4-triazolo[1,5-a][1,3,5]triazine system; a relatively short C-NH2 bond is consistent with restricted rotation about this bond. This study also presents a detailed analysis of the molecular interactions in 4l using DFT and QTAIM methods with a focus on the hydrogen-bonding and π-stacking interactions that influence the molecular packing of 4l. The findings reveal the significant roles of N-H···O, N-H···N and C-H···N interactions, along with electrostatically enhanced π···π contacts. A broad screening for insecticidal, fungicidal and herbicidal properties identified several compounds with potent herbicidal activity against Matricaria inodora.

8.
Pest Manag Sci ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804722

ABSTRACT

An overview is given on the significance of the oxime moiety in crop protection chemistry. This review focuses on the two most important aspects of agrochemical oximes, which are the occurrence and role of oxime groups in compounds with herbicidal, fungicidal and insecticidal activity, as well as the application of oxime derivatives as intermediates in the synthesis of crop protection agents not bearing any oxime function. Especially noteworthy is the fact, that in the synthesis of agrochemicals, oximes can be cyclized to isooxazoline, isoxazole, oxadiazole, oxazine, pyrrole, isothiazole and imidazole rings. © 2024 Society of Chemical Industry.

9.
J Environ Manage ; 360: 121178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796869

ABSTRACT

Despite the widespread usage to safeguard crops and manage pests, pesticides have detrimental effects on the environment and human health. The necessity to find sustainable agricultural techniques and meet the growing demand for food production has spurred the quest for pesticide substitutes other than traditional ones. The unique qualities of nanotechnology, including its high surface area-to-volume ratio, controlled release, and better stability, have made it a promising choice for pest management. Over the past ten years, there has been a noticeable growth in the usage of nanomaterials for pest management; however, concerns about their possible effects on the environment and human health have also surfaced. The purpose of this review paper is to give a broad overview of the worldwide trends and environmental effects of using nanomaterials in place of pesticides. The various types of nanomaterials, their characteristics, and their possible application in crop protection are covered. The limits of the current regulatory frameworks for nanomaterials in agriculture are further highlighted in this review. Additionally, it describes how standard testing procedures must be followed to assess the effects of nanomaterials on the environment and human health before their commercialization. In order to establish sustainable and secure nanotechnology-based pest control techniques, the review concludes by highlighting the significance of taking into account the possible hazards and benefits of nanomaterials for pest management and the necessity of an integrated approach. It also emphasizes the importance of more investigation into the behavior and environmental fate of nanomaterials to guarantee their safe and efficient application in agriculture.


Subject(s)
Agriculture , Nanostructures , Pesticides , Pest Control/methods , Nanotechnology , Humans , Crop Protection
10.
Front Chem ; 12: 1362878, 2024.
Article in English | MEDLINE | ID: mdl-38708030

ABSTRACT

Rhamnolipids (RLs) are highly valuable molecules in the cosmetic, pharmaceutic, and agricultural sectors with outstanding biosurfactant properties. In agriculture, due to their potential to artificially stimulate the natural immune system of crops (also known as elicitation), they could represent a critical substitute to conventional pesticides. However, their current synthesis methods are complex and not aligned with green chemistry principles, posing a challenge for their industrial applications. In addition, their bioproduction is cumbersome with reproducibility issues and expensive downstream processing. This work offers a more straightforward and green access to RLs, crucial to decipher their mechanisms of action and design novel potent and eco-friendly elicitors. To achieve this, we propose an efficient seven-step synthetic pathway toward (R)-3-hydroxyfatty acid chains present in RLs, starting from cellulose-derived levoglucosenone, with Michael addition, Baeyer-Villiger oxidation, Bernet-Vasella reaction, and cross-metathesis homologation as key steps. This method allowed the production of (R)-3-hydroxyfatty acid chains and derivatives with an overall yield ranging from 24% to 36%.

11.
J Fungi (Basel) ; 10(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786680

ABSTRACT

Taphrina deformans is the causal agent of leaf curl, a serious peach disease which causes significant losses in peach production worldwide. Nowadays, in order to control plant diseases, it is necessary to adopt novel and low-cost alternatives to conventional chemical fungicides. These promising strategies are targeted at eliciting host defense mechanisms via priming the host through the consecutive application of plant immunity inducers prior to pathogen challenge. In this study, we investigated whether chitosan or yeast cell wall extracts could provide enhanced tolerance against leaf curl in two-season field trials. Furthermore, we addressed the possible molecular mechanisms involved beyond the priming of immune responses by monitoring the induction of key defense-related genes. The efficacy of spraying treatments against peach leaf curl with both inducers was significantly higher compared to the untreated control, showing efficacy in reducing disease severity of up to 62.6% and 73.9% for chitosan and yeast cell wall extracts, respectively. The application of chitosan in combination with copper hydroxide was more efficient in reducing disease incidence and severity, showing efficacy values in the range of 79.5-93.18%. Peach plantlets were also spray-treated with immunity inducers three times prior to leaf inoculation with T. deformans blastospores in their yeast phase. The relative expression levels of nine key defense and priming genes, including those encoding members of pathogenesis-related (PR) proteins and hub genes associated with hormone biosynthesis, were monitored by RT-qPCR across three days after inoculation (dai). The results indicate that pre-treatments with these plant immunity inducers activated the induction of genes involved in salicylic acid (SA) and jasmonate (JA) defense signaling pathways that may offer systemic resistance, coupled with the upregulation of genes conferring direct antimicrobial effects. Our experiments suggest that these two plant immunity inducers could constitute useful components towards the effective control of T. deformans in peach crops.

12.
ACS Nano ; 18(20): 13084-13097, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727520

ABSTRACT

In the current work, the foliar application of selenium nanomaterials (Se0 NMs) suppressed sheath blight in rice (Oryza sativa). The beneficial effects were nanoscale specific and concentration dependent. Specifically, foliar amendment of 5 mg/L Se0 NMs decreased the disease severity by 68.8% in Rhizoctonia solani-infected rice; this level of control was 1.57- and 2.20-fold greater than that of the Se ions with equivalent Se mass and a commercially available pesticide (Thifluzamide). Mechanistically, (1) the controlled release ability of Se0 NMs enabled a wider safe concentration range and greater bioavailability to Se0 NMs, and (2) transcriptomic and metabolomic analyses demonstrated that Se0 NMs simultaneously promoted the salicylic acid- and jasmonic-acid-dependent acquired disease resistance pathways, antioxidative system, and flavonoid biosynthesis. Additionally, Se0 NMs improved rice yield by 31.1%, increased the nutritional quality by 6.4-7.2%, enhanced organic Se content by 44.8%, and decreased arsenic and cadmium contents by 38.7 and 42.1%, respectively, in grains as compared with infected controls. Human simulated gastrointestinal tract model results showed that the application of Se0 NMs enhanced the bioaccessibility of Se in grains by 22.0% and decreased the bioaccessibility of As and Cd in grains by 20.3 and 13.4%, respectively. These findings demonstrate that Se0 NMs can serve as an effective and sustainable strategy to increase food quality and security.


Subject(s)
Nanostructures , Oryza , Plant Diseases , Rhizoctonia , Selenium , Oryza/microbiology , Oryza/metabolism , Oryza/drug effects , Selenium/pharmacology , Selenium/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Humans , Rhizoctonia/drug effects , Nanostructures/chemistry , Nutritive Value , Disease Resistance/drug effects
13.
Environ Sci Technol ; 58(21): 9051-9060, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742946

ABSTRACT

Research on plant-nanomaterial interactions has greatly advanced over the past decade. One particularly fascinating discovery encompasses the immunomodulatory effects in plants. Due to the low doses needed and the comparatively low toxicity of many nanomaterials, nanoenabled immunomodulation is environmentally and economically promising for agriculture. It may reduce environmental costs associated with excessive use of chemical pesticides and fertilizers, which can lead to soil and water pollution. Furthermore, nanoenabled strategies can enhance plant resilience against various biotic and abiotic stresses, contributing to the sustainability of agricultural ecosystems and the reduction of crop losses due to environmental factors. While nanoparticle immunomodulatory effects are relatively well-known in animals, they are still to be understood in plants. Here, we provide our perspective on the general components of the plant's immune system, including the signaling pathways, networks, and molecules of relevance for plant nanomodulation. We discuss the recent scientific progress in nanoenabled immunomodulation and nanopriming and lay out key avenues to use plant immunomodulation for agriculture. Reactive oxygen species (ROS), the mitogen-activated protein kinase (MAPK) cascade, and the calcium-dependent protein kinase (CDPK or CPK) pathway are of particular interest due to their interconnected function and significance in the response to biotic and abiotic stress. Additionally, we underscore that understanding the plant hormone salicylic acid is vital for nanoenabled applications to induce systemic acquired resistance. It is suggested that a multidisciplinary approach, incorporating environmental impact assessments and focusing on scalability, can expedite the realization of enhanced crop yields through nanotechnology while fostering a healthier environment.


Subject(s)
Agriculture , Nanostructures , Plant Immunity
14.
J Fungi (Basel) ; 10(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38667921

ABSTRACT

Charcoal rot disease (CRD), caused by the phytopathogenic fungus Macrophomina phaseolina, is a significant threat to cotton production in Israel and worldwide. The pathogen secretes toxins and degrading enzymes that disrupt the water and nutrient uptake, leading to death at the late stages of growth. While many control strategies were tested over the years to reduce CRD impact, reaching that goal remains a significant challenge. The current study aimed to establish, improve, and deepen our understanding of a new approach combining biological agents and chemical pesticides. Such intervention relies on reducing fungicides while providing stability and a head start to eco-friendly bio-protective Trichoderma species. The research design included sprouts in a growth room and commercial field plants receiving the same treatments. Under a controlled environment, comparing the bio-based coating treatments with their corresponding chemical coating partners resulted in similar outcomes in most measures. At 52 days, these practices gained up to 38% and 45% higher root and shoot weight and up to 78% decreased pathogen root infection (tracked by Real-Time PCR), compared to non-infected control plants. Yet, in the shoot weight assessment (day 29 post-sowing), the treatment with only biological seed coating outperformed (p < 0.05) all other biological-based treatments and all Azoxystrobin-based irrigation treatments. In contrast, adverse effects are observed in the chemical seed coating group, particularly in above ground plant parts, which are attributable to the addition of Azoxystrobin irrigation. In the field, the biological treatments had the same impact as the chemical intervention, increasing the cotton plants' yield (up to 17%), improving the health (up to 27%) and reducing M. phaseolina DNA in the roots (up to 37%). When considering all treatments within each approach, a significant benefit to plant health was observed with the bio-chemo integrated management compared to using only chemical interventions. Specific integrated treatments have shown potential in reducing CRD symptoms, such as applying bio-coating and sprinkling Azoxystrobin during sowing. Aerial remote sensing based on high-resolution visible-channel (RGB), green-red vegetation index (GRVI), and thermal imaging supported the above findings and proved its value for studying CRD control management. This research validates the combined biological and chemical intervention potential to shield cotton crops from CRD.

15.
Plants (Basel) ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38592756

ABSTRACT

The use of remotely piloted aircraft (RPA) to spray pesticides currently occurs, but knowledge about this technology is lacking due to the different locations, targets, and products applied. The objective of this study was to evaluate the control of Urochloa decumbens with glyphosate applied using an RPA (10 L ha-1) equipped with different spray nozzles (XR 11001 and AirMix 11001). For the purpose of comparison, ground application was also performed (100 L ha-1). The deposition was evaluated by means of the quantification of a tracer by spectrophotometry, the droplet spectrum was evaluated with water-sensitive paper, and the control efficiency was evaluated based on visual measurements with percentage scores. Statistical process control was used to analyse the quality of the deposition in the area. The results showed that the application via RPA presented a greater amount of tracer on the leaves than the ground application, suggesting that the former is a good option for application, even providing a lower coverage and number of droplets per area. Both application methods were effective at controlling Urochloa decumbens. The nozzles showed potential for use in applications, with control efficiency higher than 84% from 21 days after application. The percentage of droplets smaller than 100 µm in the applications was less than 5%. No nonrandom behaviour was observed during deposition, indicating a high-quality process.

16.
Plant Biotechnol J ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593377

ABSTRACT

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.

17.
J Pept Sci ; : e3600, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623834

ABSTRACT

Agricultural crops are targeted by various pathogens (fungi, bacteria, and viruses) and pests (herbivorous arthropods). Antimicrobial and insecticidal peptides are increasingly recognized as eco-friendly tools for crop protection due to their low propensity for resistance development and the fact that they are fully biodegradable. However, historical challenges have hindered their development, including poor stability, limited availability, reproducibility issues, high production costs, and unwanted toxicity. Toxicity is a primary concern because crop-protective peptides interact with various organisms of environmental and economic significance. This review focuses on the potential of genetically encoded peptide libraries like the use of two-hybrid-based methods for antimicrobial peptides identification and insecticidal spider venom peptides as two main approaches for targeting plant pathogens and pests. We discuss some key findings and challenges regarding the practical application of each strategy. We conclude that genetically encoded peptide library- and spider venom-derived crop protective peptides offer a sustainable and environmentally responsible approach for addressing modern crop protection needs in the agricultural sector.

18.
Phytopathology ; 114(5): 885-909, 2024 May.
Article in English | MEDLINE | ID: mdl-38478738

ABSTRACT

Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Agriculture , Anti-Bacterial Agents , Plant Diseases , Anti-Bacterial Agents/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Citrus/microbiology , Drug Resistance, Bacterial , Streptomycin/pharmacology
19.
Int J Biol Macromol ; 265(Pt 1): 130811, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490399

ABSTRACT

Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.


Subject(s)
Anti-Infective Agents , Citrus sinensis , Citrus , Citrus sinensis/metabolism , Carrier Proteins/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Citrus/metabolism
20.
Sci Total Environ ; 922: 171382, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432369

ABSTRACT

The present review addresses the significance of lowering pesticide residue levels in food items because of their harmful impacts on human health, wildlife populations, and the environment. It draws attention to the possible health risks-acute and chronic poisoning, cancer, unfavorable effects on reproduction, and harm to the brain or immunological systems-that come with pesticide exposure. Numerous traditional and cutting-edge methods, such as washing, blanching, peeling, thermal treatments, alkaline electrolyzed water washing, cold plasma, ultrasonic cleaning, ozone treatment, and enzymatic treatment, have been proposed to reduce pesticide residues in food products. It highlights the necessity of a paradigm change in crop protection and agri-food production on a global scale. It offers opportunities to guarantee food safety through the mitigation of pesticide residues in food. The review concludes that the first step in reducing worries about the negative effects of pesticides is to implement regulatory measures to regulate their use. In order to lower the exposure to dietary pesticides, the present review also emphasizes the significance of precision agricultural practices and integrated pest management techniques. The advanced approaches covered in this review present viable options along with traditional methods and possess the potential to lower pesticide residues in food items without sacrificing quality. It can be concluded from the present review that a paradigm shift towards sustainable agriculture and food production is essential to minimize pesticide residues in food, safeguarding human health, wildlife populations, and the environment. Furthermore, there is a need to refine the conventional methods of pesticide removal from food items along with the development of modern techniques.


Subject(s)
Pesticide Residues , Pesticides , Humans , Pesticide Residues/analysis , Food Contamination/prevention & control , Food Contamination/analysis , Pesticides/analysis , Food Safety , Pest Control
SELECTION OF CITATIONS
SEARCH DETAIL