ABSTRACT
The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, T c , similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. T c is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, T c decreases with the NP diameter D by at most 10% at D = 2 nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of T c is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining T c . Extrapolating the inverse of the magnetization as function of temperature near T c gives a lower T c than the maximum of the susceptibility.
ABSTRACT
Ba0.92Ca0.08Ti0.95Zr0.05O3 (BCZT8-5) ceramic materials have been scarcely studied as lead-free piezo/ferroelectrics despite their enhanced Curie temperature (>100 °C) with respect to most studied BCZT compositions. In this work, homogeneous dense BCZT8-5 ceramics with grain size in the range of 20 µm, and optimum ferroelectric, dielectric, and electromechanical performance, were prepared by the mixed oxides route using moderate synthesis (1250 °C-2 h) and sintering (1400 °C-2 h) conditions. Thickness-poled thin disks and monomodal shear plate resonators were used for the determination of piezoelectric coefficients, coupling factors, elastic, and dielectric permittivity coefficients, including all losses, by iterative analysis of impedance curves at resonance. Furthermore, the thermal evolution of the piezoelectric characteristics at resonance was determined to assess the enhanced working range of the ceramics (≈100 °C). Ferroelectric hysteresis loops and strains vs. electric-field butterfly loops were also measured and showed soft behavior with Ec = 2 kV/cm, Pr = 12 µC/cm2 after a maximum applied field of 3 kV was used. The ceramics showed a high endurance of P-E cycles to electrical fatigue up to 107 cycles. Moreover, dielectric properties as a function of temperature were also accomplished and showed nearly normal ferroelectric behavior, characteristic of samples with low crystallographic disorder. Overall, these ceramics showed high sensitivity and higher stability than other currently studied BCZT compositions.
ABSTRACT
The effect of microwave radiation on the hydrothermal synthesis of the double perovskite Sr2FeMoO6 has been studied based on a comparison of the particle size and structural characteristics of products from both methods. A temperature, pressure, and pH condition screening was performed, and the most representative results of these are herein presented and discussed. Radiation of microwaves in the hydrothermal synthesis method led to a decrease in crystallite size, which is an effect from the reaction temperature. The particle size ranged from 378 to 318 nm when pH was 4.5 and pressure was kept under 40 bars. According to X-ray diffraction (XRD) results coupled with the size-strain plot method, the product obtained by both synthesis methods (with and without microwave radiation) have similar crystal purity. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) techniques showed that the morphology and the distribution of metal ions are uniform. The Curie temperature obtained by thermogravimetric analysis indicates that, in the presence of microwaves, the value was higher with respect to traditional synthesis from 335 K to 342.5 K. Consequently, microwave radiation enhances the diffusion and nucleation process of ionic precursors during the synthesis, which promotes a uniform heating in the reaction mixture leading to a reduction in the particle size, but keeping good crystallinity of the double perovskite. Precursor phases and the final purity of the Sr2FeMoO6 powder can be controlled via hydrothermal microwave heating on the first stages of the Sol-Gel method.
ABSTRACT
The effect of the substitution of Y3+ by Nd3+ on the structural and magnetic properties of neodymium-doped yttrium iron garnet, NdxY3-xFe5O12 with x in the range of 0â»2.5, is presented. Oxide powders of Fe2O3, Nd2O3, and Y2O3 were mixed in a stoichiometric ratio and milled for 5 h using high-energy ball milling, before being uniaxially pressed at 900 MPa and annealed at 1373 K for 2 h to obtain NdxY3-xFe5O12 (0 ≤ x ≤ 2.5). It was found that the mechanical milling of oxides followed by annealing promotes the complete structural formation of the garnet structure. Additionally, the X-ray diffraction patterns confirm the complete introduction of Nd3+ into the garnet structure with a neodymium doping concentration (x) of 0â»2.0, which causes a consistent increment in the lattice parameters with the Nd3+ content. When x is higher than 2.0, the yttrium orthoferrite is the predominant phase. Besides, the magnetic results reveal an increase in the Curie temperature (583 K) as the amount of Nd3+ increases, while there was enhanced saturation magnetization as well as modified remanence and coercivity with respect to non-doped YIG.