Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.238
Filter
1.
J Inorg Biochem ; 262: 112730, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39276716

ABSTRACT

Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O2 to H2O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of CcO. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine CcO (bCcO) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.

2.
Mar Life Sci Technol ; 6(3): 442-461, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39219684

ABSTRACT

Ciliates in the subclass Hypotrichia have long been difficult to classify as they are one of the most polymorphic and highly differentiated groups, leading to their systematics remaining unresolved. Phylogenetic relationships within the hypotrich family Strongylidiidae have been ambiguous due to discordance between the morphological and genetic data. In this study, a new strongylidiid genus Heterouroleptus is established, mainly based on the novel mode of origin of the ventral cirral rows: left ventral cirral row (LVR) originates from frontal-ventral-transverse cirral anlagen (FVTA) III (anterior portion), IV (middle portion), and V (rear portion); right ventral cirral row comes from the entire FVTA VI. A new species, Heterouroleptus weishanensis gen. nov., sp. nov., is investigated along with the morphometric and molecular data from a population of Strongylidium wuhanense. Eight new sequences and nuclear gene markers (single-gene and multi-gene) are provided to analyze the phylogenetic relationships of strongylidiids, with the COI gene utilized to uncover further genetic information at species level and below. The results reveal that: (1) Strongylidiidae is monophyletic and has a close relationship with Dorsomarginalia; (2) Heterouroleptus gen. nov. forms a clade that is sister to all the other strongylidiids; (3) Hemiamphisiella Foissner, 1988 and Pseudouroleptus Hemberger, 1985 should not be synonyms, and both genera should be subdivided due to their variable morphological characteristics; (4) LVR originating from three anlagen is a plesiomorphy of Strongylidiidae. The discovery of the origin of the LVR not only contributes to the establishment of the genus Heterouroleptus, but also helps to improve the diagnosis of the family Strongylidiidae. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00243-z.

3.
PeerJ ; 12: e18005, 2024.
Article in English | MEDLINE | ID: mdl-39221263

ABSTRACT

Background: Non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac (DCF), form a significant group of environmental contaminants. When the toxic effects of DCF on plants are analyzed, authors often focus on photosynthesis, while mitochondrial respiration is usually overlooked. Therefore, an in vivo investigation of plant mitochondria functioning under DCF treatment is needed. In the present work, we decided to use the green alga Chlamydomonas reinhardtii as a model organism. Methods: Synchronous cultures of Chlamydomonas reinhardtii strain CC-1690 were treated with DCF at a concentration of 135.5 mg × L-1, corresponding to the toxicological value EC50/24. To assess the effects of short-term exposure to DCF on mitochondrial activity, oxygen consumption rate, mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (mtROS) production were analyzed. To inhibit cytochrome c oxidase or alternative oxidase activity, potassium cyanide (KCN) or salicylhydroxamic acid (SHAM) were used, respectively. Moreover, the cell's structure organization was analyzed using confocal microscopy and transmission electron microscopy. Results: The results indicate that short-term exposure to DCF leads to an increase in oxygen consumption rate, accompanied by low MMP and reduced mtROS production by the cells in the treated populations as compared to control ones. These observations suggest an uncoupling of oxidative phosphorylation due to the disruption of mitochondrial membranes, which is consistent with the malformations in mitochondrial structures observed in electron micrographs, such as elongation, irregular forms, and degraded cristae, potentially indicating mitochondrial swelling or hyper-fission. The assumption about non-specific DCF action is further supported by comparing mitochondrial parameters in DCF-treated cells to the same parameters in cells treated with selective respiratory inhibitors: no similarities were found between the experimental variants. Conclusions: The results obtained in this work suggest that DCF strongly affects cells that experience mild metabolic or developmental disorders, not revealed under control conditions, while more vital cells are affected only slightly, as it was already indicated in literature. In the cells suffering from DCF treatment, the drug influence on mitochondria functioning in a non-specific way, destroying the structure of mitochondrial membranes. This primary effect probably led to the mitochondrial inner membrane permeability transition and the uncoupling of oxidative phosphorylation. It can be assumed that mitochondrial dysfunction is an important factor in DCF phytotoxicity. Because studies of the effects of NSAIDs on the functioning of plant mitochondria are relatively scarce, the present work is an important contribution to the elucidation of the mechanism of NSAID toxicity toward non-target plant organisms.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Chlamydomonas reinhardtii , Diclofenac , Membrane Potential, Mitochondrial , Mitochondria , Oxygen Consumption , Reactive Oxygen Species , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Diclofenac/toxicity , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/ultrastructure , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Membrane Potential, Mitochondrial/drug effects , Oxygen Consumption/drug effects , Reactive Oxygen Species/metabolism , Electron Transport Complex IV/metabolism , Potassium Cyanide/toxicity , Oxidoreductases/metabolism , Salicylamides , Microscopy, Electron, Transmission , Plant Proteins , Mitochondrial Proteins
4.
Mitochondrion ; 79: 101952, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39237068

ABSTRACT

Succinate dehydrogenase (SDH) plays pivotal roles in maintaining cellular metabolism, modulating regulatory control over both the tricarboxylic acid cycle and oxidative phosphorylation to facilitate energy production within mitochondria. Given that SDH malfunction may serve as a hallmark triggering pseudo-hypoxia signaling and promoting tumorigenesis, elucidating the impact of SDH assembly defects on mitochondrial functions and cellular responses is of paramount importance. In this study, we aim to clarify the role of SDHAF2, one assembly factor of SDH, in mitochondrial respiratory activities. To achieve this, we utilize the CRISPR/Cas9 system to generate SDHAF2 knockout in HeLa cells and examine mitochondrial respiratory functions. Our findings demonstrate a substantial reduction in oxygen consumption rate in SDHAF2 knockout cells, akin to cells with inhibited SDH activity. In addition, in our in-gel activity assays reveal a significant decrease not only in SDH activity but also in cytochrome c oxidase (COX) activity in SDHAF2 knockout cells. The reduced COX activity is attributed to the assembly defect and remains independent of SDH inactivation or SDH complex disassembly. Together, our results indicate a critical role of SDHAF2 in regulating respiration by facilitating the assembly of COX.

5.
J Fish Biol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39228134

ABSTRACT

Identification of fish larvae based on morphology is typically limited to higher taxonomic ranks (e.g., family or order), as larvae possess few morphological diagnostic characters for precise discrimination to species. When many samples are presented at any one time, the use of morphology to identify such specimens can be laborious and time-consuming. Using a reverse workflow for specimen sorting and identification leveraging high-throughput DNA sequencing, thousands of fish larvae can be DNA barcoded and sorted into molecular operational taxonomic units (mOTUs) in a single sequencing run with the nanopore sequencing technology (e.g., MinION). This process reduces the time and financial costs of morphology-based sorting and instead deploys experienced taxonomists for species taxonomic work where they are needed most. In this study, a total of 3022 fish larval specimens from plankton tows across four sites in Singapore were collected and sorted based on this workflow. Eye tissue from individual samples was used for DNA extraction and sequencing of cytochrome c oxidase subunit I. We generated a total of 2746 barcodes after quality filtering (90.9% barcoding success), identified 2067 DNA barcodes (75.3% identification success), and delimited 256 mOTUs (146 genera, 52 families). Our analyses identified specific challenges to species assignment, such as the potential misidentification of publicly available sequences used as reference barcodes. We highlighted how the conservative application and comparison of a local sequence database can help resolve identification conflicts. Overall, this proposed approach enables and expedites taxonomic identification of fish larvae, contributing to the enhancement of reference barcode databases and potentially better understanding of fish connectivity.

6.
J Fish Biol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109773

ABSTRACT

Sciadonus alphacrucis Melo, Gomes, Møller & Nielsen, 2022 is a rare deep-sea species, previously known from only two specimens collected off São Paulo State, southeastern Brazil, in the western South Atlantic. Herein, we report a new specimen of S. alphacrucis collected on the continental slope off Santa Catarina State, southern Brazil, thereby extending its known distribution by 420 km. Additionally, we provide the new meristic and morphometric data, the molecular identification using sequences of the cytochrome c oxidase subunit I (COI), an updated distribution map, and a discussion of troglomorphic traits.

7.
BMC Res Notes ; 17(1): 228, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152498

ABSTRACT

OBJECTIVES: Cox10 is an enzyme required for the activity of cytochrome c oxidase. Humans who lack at least one functional copy of Cox10 have a form of Leigh Syndrome, a genetic disease that is usually fatal in infancy. As more human genomes are sequenced, new alleles are being discovered; whether or not these alleles encode functional proteins remains unclear. Thus, we set out to measure the phenotypes of many human Cox10 variants by expressing them in yeast cells. RESULTS: We successfully expressed the reference sequence and 25 variants of human Cox10 in yeast. We quantitated the ability of these variants to support growth on nonfermentable media and directly measured cytochrome c oxidase activity. 11 of these Cox10 variants supported approximately half or more the cytochrome c oxidase activity compared to the reference sequence. All of the strains containing those 11 variants also grew robustly using a nonfermentable carbon source. Cells expressing the other variants showed low cytochrome c oxidase activity and failed to grow on nonfermentable media.


Subject(s)
Electron Transport Complex IV , Leigh Disease , Phenotype , Leigh Disease/genetics , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Humans , Saccharomyces cerevisiae/genetics , Genetic Variation , Membrane Proteins , Alkyl and Aryl Transferases
8.
Int J Biol Macromol ; 278(Pt 2): 134776, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153672

ABSTRACT

Water extracts (OLE), whey protein encapsulated extracts (OLE/WPNs), and silver nanoparticles (OLE/Ag-NPs) were prepared from olive leaves of Manzenllie and Picual varieties. These preparations were characterized, and their antioxidant and biological activities on Vero and HCT-116 colorectal cells were assessed. The mechanism of action of the preparations was studied through tumor necrosis factor-α (TNF-α) and cytochrome C oxidase (Cox1) gene expression. OLE/Ag-NPs showed smaller particle sizes (14.23-15.53 nm) than OLE/WPNs (229.83-310.67 nm) and demonstrated lower aggregation due to their high Ƹ-potential of -24.86 to -27.90 mV. None of the preparations affected the viability of Vero cells (IC50 = 192.19-421.01 µg/mL), but they showed cytotoxic effects on HCT-116 cells (IC50 = 50.76-196.54 µg/mL), particularly OLE/WPNs. Moreover, the preparations from the Picual variety (OLE, OLE/WPNs, and OLE/Ag-NPs) showed regulatory effects against colon cancer on treated HCT-116 cells by upregulating Cox1 expression and downregulating TNF-α expression. Consequently, OLE/WPNs and OLE/Ag-NPs could be promising for industrial applications with potential health benefits.

9.
BMC Pharmacol Toxicol ; 25(1): 54, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169392

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is associated with intracellular copper accumulation. Antioxidant 1 (ATOX1) is a copper chaperone. This study aimed to analyze the anti-cancer effects of curcumin on the ATOX1-mediated copper pathway in NSCLC. METHODS: A binding activity between curcumin and ATOX1 was measured using molecular docking. NSCLC cells, A549 and H1299, were treated with different doses of curcumin (10, 20, 40 µM) or DC-AC50 (5, 10, 20 µM) for 24 h. The cell viability and levels of ATOX1, ATP7A and COX17 proteins were observed in cells. Overexpressing ATOX1 in cells was established by pcDNA3.1-ATOX1 transfection for 24 h. The ATOX1 overexpressing cells were treated with 40 µM curcumin or 20 µM DC-AC50 for 24 h to analyze the mechanism of curcumin in NSCLC treatment. Cell viability was measured by CCK-8, and levels of proteins were measured by western blotting. The copper level in cells was labeled by copper sensor-1. Moreover, nude mice models were induced by injection of A549 cells and treated with 20 mg/kg/d DC-AC50 or 40 mg/kg/d curcumin. Tumor growth was observed by measuring tumor volume and tumor weight. The levels of ATOX1, ATP7A and COX17 in tumors were measured by immunohistochemistry and western blotting. RESULTS: Curcumin bound to ATOX1 (score = -6.1 kcal/mol) and decreased the levels of ATOX1, ATP7A and COX17 proteins in NSCLC cells. The curcumin or DC-AC50 treatment suppressed cell viability by inhibiting the ATOX1-mediated copper signaling in NSCLC cells. The ATOX1 overexpression in cells significantly weakened the effects of curcumin on suppressing copper accumulation and the ATOX1-mediated copper pathway (p < 0.05). In mice models, curcumin or DC-AC50 treatment also suppressed tumor growth by suppressing the ATOX1-mediated copper pathway in tumors. CONCLUSION: This study demonstrated that curcumin bound ATOX1 to suppress copper accumulation in NSCLC cells, providing a new mechanism of curcumin for NSCLC treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Copper Transport Proteins , Copper , Curcumin , Lung Neoplasms , Animals , Humans , Mice , A549 Cells , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Copper/metabolism , Copper Transport Proteins/metabolism , Curcumin/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Metallochaperones/metabolism , Mice, Inbred BALB C , Mice, Nude , Molecular Chaperones/metabolism , Molecular Docking Simulation , Xenograft Model Antitumor Assays
10.
Sci Rep ; 14(1): 19924, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39198577

ABSTRACT

Requiem sharks (genus Carcharhinus) have previously been reported to form large aggregations around marine infrastructures in the eastern Mediterranean Sea. While this behaviour may offer fitness advantages at the individual level, the implications of extended residency at human-altered habitats for population persistence have yet to be assessed. In this work, we investigated the phylogeographic and demographic composition of sharks near a coal-fired power and desalination station in Israel. Our aim was to infer habitat use and the mechanisms underlying the aggregation behaviour, and to highlight potential conservation impacts. We sampled, measured, and released 70 individuals between 2016 and 2022 to assess genetic variability within the cytochrome C oxidase I (COI) region and to analyse the aggregation's structure based on the sharks' size and sex distribution. In addition, we performed meristic counts on a reference specimen collected dead at another power station in Israel to supplement species identification using the abovementioned techniques. Our findings indicate size-based sex segregation of adult female dusky and male sandbar sharks (Carcharhinus obscurus and Carcharhinus plumbeus, respectively), with each species comprising two COI haplotypes. In the dusky shark, one haplotype corresponded to an Indo-Pacific lineage, and the other matched an Atlantic lineage. In the sandbar shark, we observed a haplotype previously sampled in the Mediterranean Sea, the Red Sea, the Northwest Indian Ocean, and South Africa, and another haplotype that was unique to our study site and genetically closer to the former than to sequences sampled in other ocean basins. This study provides the first indication of sympatric aggregation amongst phylogeographically distinct dusky and sandbar shark lineages, suggesting that human-altered habitats in the eastern Mediterranean Sea may influence the distribution of these species. Based on the observed segregation pattern, we conclude that the site does not function as a nursery, parturition, or mating area, and discuss other plausible explanations that warrant further research. Finally, we highlight important directions for future research and the implications of our findings for management and conservation.


Subject(s)
Ecosystem , Electron Transport Complex IV , Haplotypes , Sharks , Sharks/genetics , Sharks/classification , Mediterranean Sea , Animals , Female , Male , Electron Transport Complex IV/genetics , Humans , Israel , Genetic Variation , Phylogeny , Phylogeography
11.
Insects ; 15(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39194765

ABSTRACT

Aedes albopictus (Skuse, 1894), a mosquito originating in Asia, has been introduced to Africa since the 2000s. The mosquito is not only a nuisance but is capable of transmitting various arboviruses. The current study summarized our entomological surveys in the Democratic Republic of Sao Tome and Principe during 2000 to 2016. Adult mosquitoes were collected by sweep nets, human landing catches, and Centers for Disease Control (CDC) light traps, and the immatures were collected from water-filled habitats at 15 sentinel sites and reared to adulthood. Species identification was performed based on morphologic characteristics. Fragments of the cytochrome C oxidase subunit I (COI) and the Wolbachia surface protein (wsp) genes were amplified for mosquitoes collected in Principe. New records of four mosquito species were reported. Aedes albopictus was identified in 2015. The larvae were found distributed over the nation and were predominately in artificial water-holding containers (488/2698, 18.1%). The highest positive rate was observed in used tires in Príncipe (114/250, 45.6%). Mitochondrial DNA analysis revealed low genetic diversity among the invasive populations, but all tested specimens were superinfected by Wolbachia. The ability of Ae. albopictus to adapt to new environments and its involvement in disease transmission make the surveillance and control of this species particularly important.

12.
J Inorg Biochem ; 260: 112673, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39094247

ABSTRACT

Cytochrome c oxidase (CcO) reduces O2, pumps protons in the mitochondrial respiratory chain, and is essential for oxygen consumption in the cell. The coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2; also known as mitochondrial nuclear retrograde regulator 1 [MNRR1], Parkinson's disease 22 [PARK22] and aging-associated gene 10 protein [AAG10]) is a protein that binds to CcO from the intermembrane space and positively regulates the activity of CcO. Despite the importance of CHCHD2 in mitochondrial function, the mechanism of action of CHCHD2 and structural information regarding its binding to CcO remain unknown. Here, we utilized visible resonance Raman spectroscopy to investigate the structural changes around the hemes in CcO in the reduced and CO-bound states upon CHCHD2 binding. We found that CHCHD2 has a significant impact on the structure of CcO in the reduced state. Mapping of the heme peripheries that result in Raman spectral changes in the structure of CcO highlighted helices IX and X near the hemes as sites where CHCHD2 takes action. Part of helix IX is exposed in the intermembrane space, whereas helix X, located between both hemes, may play a key role in proton uptake to a proton-loading site in the reduced state for proton pumping. Taken together, our results suggested that CHCHD2 binds near helix IX and induces a structural change in helix X, accelerating proton uptake.


Subject(s)
DNA-Binding Proteins , Electron Transport Complex IV , Heme , Mitochondrial Proteins , Spectrum Analysis, Raman , Transcription Factors , Spectrum Analysis, Raman/methods , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Heme/chemistry , Heme/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/chemistry , Humans , Protein Binding
13.
Arch Razi Inst ; 79(1): 211-217, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39192945

ABSTRACT

Three species of Hemiscorpius were identified in Hormozgan province, for which the available antivenoms lack the efficacy required for treating patients. Consequently, an exact identification of the existing species was deemed necessary as the first step in managing treatment procedures. Considering the morphological similarities among the species, the aim of this research was the molecular study of the samples to accurately identify the species. Hemiscorpius specimens were collected from various locations in Hormozgan province between 2021 to 2023. The Cytochrome c oxidase subunit I gene was amplified and sequenced. Four sequences were obtained from Hemiscorpius specimens collected from Hormozgan province, and three sequences were sourced from the NCBI for analysis. Bayesian inference and Maximum likelihood phylogenetic trees showed similar results, positioning the base of Hemiscorpius enischnochela tree as an older species and Hemiscorpius lepturus adjacent to Hemiscorpius acanthocercus, identified as the newest species at the tree's tip. The results confirmed the validity of three species, namely H. acanthocercus, H. enischnochela, and H. lepturus. Hemiscorpius acanthocercus and H. lepturus are known for having dangerous venom for humans with reported deaths due to their stings. Considering the importance of the members of this genus from the medical point of view, a comprehensive examination of all species is imperative.


Subject(s)
Electron Transport Complex IV , Phylogeny , Scorpions , Animals , Iran , Electron Transport Complex IV/analysis , Electron Transport Complex IV/genetics , Scorpions/genetics , Scorpions/classification , Animals, Poisonous
14.
J Agric Food Chem ; 72(33): 18412-18422, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39120516

ABSTRACT

Cytochrome c oxidase (Cox) is a crucial terminal oxidase in the electron transport chain. In this study, we generated 14 Cox gene deletion or overexpression mutants in Fusarium graminearum. Fungicide sensitivity tests revealed that 11 Cox gene deletion mutants displayed resistance to pyraclostrobin, while 10 overexpression mutants showed hypersensitivity. RNA-Seq and RT-qPCR analyses demonstrated the upregulation of FgAox (alternative oxidase in F. graminearum), FgAod2, and FgAod5 (alternative oxidase deficiency in F. graminearum) in ΔFgCox4-2 and ΔFgCox17-75 mutants. In 11 Cox gene deletion mutants, FgAox expression was significantly upregulated, whereas in 10 Cox gene overexpression mutants, it was significantly downregulated. FgAox overexpression mutants exhibit resistance to pyraclostrobin, while FgAox deletion mutants show hypersensitivity to pyraclostrobin. FgAod2 and FgAod5 were identified as transcription factors for FgAox. Our findings reveal that FgCox influences pyraclostrobin sensitivity by regulating FgAox through FgAod2 and FgAod5. Understanding pyraclostrobin resistance mechanisms in F. graminearum could help develop better fungicide rotation and application strategies to manage resistance and guide the creation of new fungicides targeting different pathways.


Subject(s)
Electron Transport Complex IV , Fungal Proteins , Fungicides, Industrial , Fusarium , Strobilurins , Transcription Factors , Fusarium/genetics , Fusarium/enzymology , Strobilurins/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungicides, Industrial/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Gene Expression Regulation, Fungal , Oxidoreductases/genetics , Oxidoreductases/metabolism
15.
Mol Biol Rep ; 51(1): 875, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080149

ABSTRACT

BACKGROUD: The Northeast India, being part of two global biodiversity hotspot namely the Indo-Burma and Eastern Himalayan Hotspots supports a wide variety of rich aquatic biodiversity including fishes. The family Danionidae is a widely diverse group inhabiting the upper colder stretches of river although few are abundant in the lower stretches. The persisting similarity in the morphological appearance and body colouration within the members of this family seeks an integrated method to identify the species correctly. METHODS AND RESULTS: In the present study, the mt-DNA barcode was generated for correct identification and confirmation of the species. A total of nine mitochondrial cytochrome c oxidase subunit I gene sequences were generated for each species under the study. The pairwise distance values ranged from 0.09 to 9.11% within species and 9.06-32.71% between species. A neighbour-joining tree was constructed based on the Kimura 2 parameter model. Two major groups were observed where Danioninae formed a sister group to the Chedrinae and Rasborinae. CONCLUSION: The present study is a preliminary work to document and identify the species under the family Danionidae from Brahmaputra basin, Assam, using molecular tools and establish the phylogenetic relationship.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Phylogeny , Animals , India , Electron Transport Complex IV/genetics , DNA Barcoding, Taxonomic/methods , Fishes/genetics , Fishes/classification , DNA, Mitochondrial/genetics , Biodiversity
16.
Parasitol Res ; 123(7): 283, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042222

ABSTRACT

Mansonia uniformis (Diptera: Culicidae) is recognized as a vector of Brugia malayi and has been reported to transmit Wuchereria bancrofti, both causing lymphatic filariasis in humans. This study employed geometric morphometrics (GM) to investigate wing shape variation and analyzed genetic diversity through cytochrome c oxidase subunit 1 (COI) gene analyses in Ma. uniformis populations across Thailand. Wing GM analyses indicated significant differences in wing shape based on Mahalanobis distances among nearly all population pairs (p < 0.05), with no significant correlation between wing shape and geographic distance (r = 0.210, p > 0.05). Genetic analyses identified 63 haplotypes and 49 polymorphic sites, with the overall population exhibiting a nucleotide diversity of 0.006 (± 0.001) and a haplotype diversity of 0.912 (± 0.017). Deviations from neutrality, as indicated by Tajima's D and Fu's FS tests for the overall Ma. uniformis populations in Thailand, were statistically significant and negative, suggesting population expansion (both p < 0.05). Analysis of molecular variance revealed no significant genetic structure when all populations were categorized based on collection sites and geographic regions. However, significant differences in FST values were observed between some populations. These findings enhance our understanding of the geographical and genetic factors influencing Ma. uniformis populations, which are crucial for developing effective control strategies in Thailand.


Subject(s)
DNA, Mitochondrial , Electron Transport Complex IV , Genetic Variation , Wings, Animal , Animals , Thailand , DNA, Mitochondrial/genetics , Wings, Animal/anatomy & histology , Electron Transport Complex IV/genetics , Culicidae/genetics , Culicidae/anatomy & histology , Culicidae/classification , Insect Vectors/genetics , Insect Vectors/anatomy & histology , Haplotypes
17.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 272-278, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38952313

ABSTRACT

OBJECTIVE: To investigate the origin of Biomphalaria straminea in China, so as to provide insights into assessment of schistosomiasis mansoni transmission risk and B. straminea control. METHODS: Guanlan River, Dasha River, Shenzhen Reservoir, upper and lower reaches of Kuiyong River, and Xinzhen River in Shenzhen, China, were selected as sampling sites. Ten Biomphalaria samples were collected from each site, and genomic DNA was extracted from Biomphalaria samples. DNA samples were obtained from 15 B. straminea sampled from 5 sampling sites in Minas Gerais State, Pará State, Federal District, Pernambuco State, and Sao Paulo State in Brazil, South America. Cytochrome c oxidase I (COI) and mitochondrial 16S ribosomal RNA (16S rRNA) genes were sampled using the above DNA templates, and the amplified products were sequenced. The COI and 16S rRNA gene sequences were downloaded from GenBank, and the sampling sites were acquired. All COI and 16S rRNA gene sequences were aligned and evolutionary trees of B. straminea were created based on COI and 16S rRNA gene sequences to identify the genetic similarity and evolutionary relationship between B. straminea samples from China and South America. RESULTS: A total of 60 COI gene sequences with a length of 529 bp and 3 haplotypes were obtained from B. straminea sampled from China. There were 165 COI gene sequences of B. straminea retrieved from GenBank, and following alignment with the above 60 gene sequences, a total of 33 haplotypes were obtained. Phylogenetic analysis showed that the three haplotypes of B. straminea from China were clustered into one clade, among which the haplotype China11 and three B. straminea samples from Brazil retrieved from GenBank belonged to the same haplotype. Geographical evolution analysis showed that the B. straminea samples from three sampling sites along eastern coasts of Brazil had the same haplotype with China11, and B. straminea samples from other two sampling sites were closely, genetically related to China11. A total of 60 16S rDNA gene sequences with approximately 322 bp in length were amplified from B. straminea in China, with 2 haplotypes identified. A total of 70 16S rDNA gene sequences of B. straminea were captured from GenBank. Phylogenetic analysis showed that Biomphalaria snails collected from China were clustered into a clade, and the haplotype China64 and the haplotype 229BS from Brazil shared the same haplotype. The 49 16S rDNA gene sequences of B. straminea from 25 sampling sites in southern Brazil, which were captured from GenBank, were included in the present analysis, and the B. straminea from 3 sampling sites shared the same haplotype with China64 in China. Geographical evolution analysis based on COI and 16S rRNA gene sequences showed that B. straminea sampled from eastern coastal areas of Brazil shared the same haplotypes in two gene fragment sequences with Biomphalaria snails collected from China. CONCLUSIONS: The Biomphalaria snails in China are characterized as B. straminea, which have a low genetic diversity. The Biomphalaria snails in China have a high genetic similarity with B. straminea sampled from eastern coastal areas of Brazil, which may have originated from the eastern coastal areas of Brazil.


Subject(s)
Biomphalaria , Phylogeny , RNA, Ribosomal, 16S , Animals , China , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Biomphalaria/genetics , Biomphalaria/parasitology , Electron Transport Complex IV/genetics , Electron Transport Complex IV/analysis , Haplotypes
18.
J Vet Med Sci ; 86(9): 951-955, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39010217

ABSTRACT

The bear roundworm Baylisascaris transfuga has been identified in several host bears (Ursinae). However, limited genetic information is available on the bear roundworm in Japanese populations. This study evaluated the genetic composition of bear roundworms isolated from wild Japanese black bears indigenous to Lake Towada, Japan. First, we conducted genetic and/or molecular phylogenetic analyses based on cytochrome c oxidase subunit II and internal transcribed spacer 2 among Baylisascaris species. These analyses revealed that the identified roundworms were genetically B. transfuga. In addition, the average body size of the obtained roundworms in this study was almost the same as that previously reported for B. transfuga. This study represents an important step in genetic research on the roundworm B. transfuga in Ursinae bears not only from Japan but also from the rest of the world.


Subject(s)
Ascaridoidea , Lakes , Phylogeny , Ursidae , Animals , Ursidae/parasitology , Japan , Ascaridoidea/genetics , Ascaridoidea/classification , Ascaridoidea/isolation & purification , Ascaridida Infections/veterinary , Ascaridida Infections/parasitology , Electron Transport Complex IV/genetics
19.
Biochim Biophys Acta Bioenerg ; 1865(4): 149494, 2024 11 01.
Article in English | MEDLINE | ID: mdl-38960079

ABSTRACT

Mitochondrial bioenergetics in females and males is different. However, whether mitochondria from male and female brains display differences in enzymes of oxidative phosphorylation remains unknown. Therefore, we characterized mitochondrial complexes from the brains of male and female macaques (Macaca mulatta). Cerebral tissue from male macaques exhibits elevated content and activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) and higher activity of complex II (succinate dehydrogenase) compared to females. No significant differences between sexes were found in the content of α-ketoglutarate dehydrogenase or in the activities of cytochrome c oxidase and F1Fo ATPase. Our results underscore the need for further investigations to elucidate sex-related mitochondrial differences in humans.


Subject(s)
Brain , Mitochondria , Animals , Male , Female , Mitochondria/metabolism , Brain/metabolism , Macaca mulatta , Electron Transport Complex IV/metabolism , Sex Characteristics , Oxidative Phosphorylation , Ketoglutarate Dehydrogenase Complex/metabolism , Electron Transport Complex I/metabolism , Energy Metabolism
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167340, 2024 10.
Article in English | MEDLINE | ID: mdl-38986816

ABSTRACT

Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.


Subject(s)
Electron Transport Complex IV , Galactosemias , Galactosephosphates , Mitochondria , Galactosemias/metabolism , Galactosemias/pathology , Galactosemias/genetics , Galactosephosphates/metabolism , Humans , Animals , Rats , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Oxidative Phosphorylation/drug effects , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Galactose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL