Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Best Pract Res Clin Haematol ; 37(1): 101541, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38490766

ABSTRACT

Allogeneic hematopoietic stem cell (HSC) transplantation is a curative therapy for many severe blood diseases. As many patients have no suitable family donor, large unrelated donor registries and donor centers have been established in many countries, along with an international system for the provision of unrelated donor HSC products. As an essential part of this system, DKMS operates donor centers in 7 countries with a total of 12.2 million donors and over 114,000 donations so far, and a multinational donor registry. In 2022, DKMS donors contributed 57.5% of all cross-border donations worldwide. In this review, we describe the international system for the provision of unrelated donor HSC products as well as tasks and responsibilities of donor registries and donor centers. We also discuss relevant aspects of DKMS donor centers, namely donor file composition, matching and donation probabilities and actual donations, and the unique multinational approach of the DKMS Registry.


Subject(s)
Hematopoietic Stem Cell Transplantation , Unrelated Donors , Humans , Tissue Donors , Registries , Hematopoietic Stem Cells
2.
Int J Immunogenet ; 47(2): 139-148, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32034894

ABSTRACT

DKMS is a leading stem cell donor registry with more than 9 million donors. Donor registry activities share many touch points with topics from immunogenetics or population genetics. In this two-part review article, we deal with these aspects of donor registry work by using the example of DKMS. In the second part of the review, we focus on donor typing of non-HLA genes, the impact of donor age, gender and CMV serostatus on donation probabilities, the identification of novel HLA, KIR and MIC alleles by high-throughput donor typing, the activities of the Collaborative Biobank and pharmacogenetics in the donor registry context.


Subject(s)
HLA Antigens/genetics , Registries , Stem Cells/immunology , Tissue Donors , Alleles , Blood Grouping and Crossmatching , Genotype , Hematopoietic Stem Cell Transplantation , Histocompatibility Testing , Immunogenetics
3.
Int J Immunogenet ; 47(1): 13-23, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31903698

ABSTRACT

Currently, stem cell donor registries include more than 35 million potential donors worldwide to provide HLA-matched stem cell products for patients in need of an unrelated donor transplant. DKMS is a leading stem cell donor registry with more than 9 million donors from Germany, Poland, the United States, the United Kingdom, India and Chile. DKMS donors have donated hematopoietic stem cells more than 80,000 times. Many aspects of donor registry work are closely related to topics from immunogenetics or population genetics. In this two-part review article, we describe, analyse and discuss these areas of donor registry work by using the example of DKMS. Part 1 of the review gives a general overview on DKMS and includes typical donor registry activities with special focus on the HLA system: high-throughput HLA typing of potential stem cell donors, HLA haplotype frequencies and resulting matching probabilities, and donor file optimization with regard to HLA diversity.


Subject(s)
Hematopoietic Stem Cell Transplantation , Histocompatibility Testing/methods , Registries , Unrelated Donors , Chile , Genetics, Population , Germany , HLA Antigens/genetics , HLA Antigens/immunology , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Immunogenetics , India , Poland , United Kingdom , United States
4.
BMC Genomics ; 18(1): 161, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28196473

ABSTRACT

BACKGROUND: At the DKMS Life Science Lab, Next Generation Sequencing (NGS) has been used for ultra-high-volume high-resolution genotyping of HLA loci for the last three and a half years. Here, we report on our experiences in genotyping the HLA, CCR5, ABO, RHD and KIR genes using a direct amplicon sequencing approach on Illumina MiSeq and HiSeq 2500 instruments. RESULTS: Between January 2013 and June 2016, 2,714,110 samples largely from German, Polish and UK-based potential stem cell donors have been processed. 98.9% of all alleles for the targeted HLA loci (HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1) were typed at high resolution or better. Initially a simple three-step workflow based on nanofluidic chips in conjunction with 4-primer amplicon tagging was used. Over time, we found that this setup results in PCR artefacts such as primer dimers and PCR-mediated recombination, which may necessitate repeat typing. Split workflows for low- and high-DNA-concentration samples helped alleviate these problems and reduced average per-locus repeat rates from 3.1 to 1.3%. Further optimisations of the workflow included the use of phosphorothioate oligos to reduce primer degradation and primer dimer formation, and employing statistical models to predict read yield from initial template DNA concentration to avoid intermediate quantification of PCR products. Finally, despite the populations typed at DKMS Life Science Lab being relatively homogenous genetically, an analysis of 1.4 million donors processed between January 2015 and May 2016 led to the discovery of 1,919 distinct novel HLA alleles. CONCLUSIONS: Amplicon-based NGS HLA genotyping workflows have become the workhorse in high-volume tissue typing of registry donors. The optimisation of workflow practices over multiple years has led to insights and solutions that improve the efficiency and robustness of short amplicon based genotyping workflows.


Subject(s)
Alleles , Genotype , HLA Antigens/genetics , High-Throughput Nucleotide Sequencing , Computational Biology/methods , Genotyping Techniques , Humans , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL