Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 21591, 2024 09 16.
Article in English | MEDLINE | ID: mdl-39284917

ABSTRACT

This study introduces a novel cost-effective technique for cloning of linear DNA plasmid inserts, aiming to address the associated expenses linked with popular in vitro DNA assembly methods. Specifically, we introduce ECOLI (Efficient Cloning Of Linear Inserts), a method utilizing a PCR product-based site-directed mutagenesis. In comparison to other established in vitro DNA assembly methods, our approach is without the need for costly synthesis or specialized kits for recombination or restriction sites. ECOLI offers a fast, efficient, and economical alternative for cloning inserts up to several hundred nucleotides into plasmid constructs, thus enhancing cloning accessibility and efficiency. This method can enhance molecular biology research, as we briefly demonstrated on the Dishevelled gene from the WNT signaling pathway.


Subject(s)
Cloning, Molecular , Mutagenesis, Site-Directed , Plasmids , Plasmids/genetics , Cloning, Molecular/methods , Mutagenesis, Site-Directed/methods , Polymerase Chain Reaction/methods , DNA/genetics
2.
J Microbiol Methods ; 224: 106999, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39033856

ABSTRACT

In this study, we describe a novel method for one-step cloning and targeted duplication of P. ananatis chromosomal fragments. According to this method, the chromosomal region of interest is subcloned in vivo via λ Red recombination into the short synthetic non-replicable DNA fragment containing the excisable antibiotic-resistance marker gene and φ80 att-P site. The resulting circular non-replicating DNA molecule was immediately inserted into an alternative chromosomal locus due to φ80-integrase activity. To this end, the specially designed helper plasmid pONI, which can provide both the λ Red recombineering and φ80-integrase-mediated insertion, was constructed. In the described method, PCR amplification of the cloning fragment is unnecessary, making it convenient for manipulation of long-length DNA. Additionally, the possibility of spontaneous mutations occurring is completely precluded. This method was effectively used for the targeted chromosomal integration of additional copies of individual genes and operons up to 16 kb in size.


Subject(s)
Chromosomes, Bacterial , Cloning, Molecular , Pantoea , Plasmids , Pantoea/genetics , Cloning, Molecular/methods , Chromosomes, Bacterial/genetics , Plasmids/genetics , DNA, Bacterial/genetics , Recombination, Genetic , Integrases/genetics
3.
HardwareX ; 18: e00516, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38524156

ABSTRACT

Liquid handler systems can provide significant benefits to researchers by automating laboratory work, however, their unaffordable price provides a steep barrier to entry. Therefore, we provide the BioCloneBot, a versatile, low-cost, and open-source automated liquid handler. This system can be easily built with 3D-printed parts and readily available commercial components. The BioCloneBot is highly adaptive to user needs and facilitates various liquid handling tasks in research and diagnostics. Its user-friendly interface and programmable nature make it suitable for a wide range of applications, from small-scale experiments to larger laboratory setups. By utilizing BioCloneBot, researchers and scientists can streamline their liquid handling processes without the financial constraints posed by traditional systems. In this paper, we detail the design, construction, and validation of BioCloneBot, showcasing its precise control, accuracy, and repeatability in various liquid handling tasks. The open-source nature of the system encourages collaboration and customization, enabling researchers to contribute and adapt the technology to specific experimental requirements.

4.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396705

ABSTRACT

Various attempts to amplify an AQP11 cDNA from tissues of the spiny dogfish (Squalus acanthias) were made. Two pairs of deoxy-inosine-containing degenerate primers were designed based on conserved amino acid sequences from an AQP11 alignment. These primers yielded some faint bands from gill cDNA that were sequenced. Blast searches with the sequences showed they were not AQP11. An elasmobranch AQP11 nucleotide sequence alignment was produced to identify conserved regions to make further degenerate primers. One primer pair produced a short 148 bp fragment showing particularly strong amplification in gill and intestine. It was sequenced and represented a piece of the AQP11 gene. However, as the fragment may have resulted from contaminating genomic DNA (in total RNA used to make cDNA), 5' and 3' RACE were performed to amplify the two ends of the putative cDNA. Furthermore, 5' and 3' RACE amplifications depend on the presence of a 5' cap nucleotide and a poly A tail, respectively on the putative AQP11 mRNA. Hence, successful amplification was only possible from cDNA and not genomic DNA. Nested RACE amplifications were performed using gill and intestinal RACE cDNA, but none of the DNA fragments sequenced were AQP11. Consequently, the spiny dogfish AQP11 gene may represent a pseudogene.


Subject(s)
Squalus acanthias , Animals , Squalus acanthias/genetics , DNA, Complementary/genetics , Pseudogenes/genetics , Base Sequence , DNA/genetics
5.
Front Bioeng Biotechnol ; 11: 1167534, 2023.
Article in English | MEDLINE | ID: mdl-37635997

ABSTRACT

Molecular cloning is used in a wide variety of biological and medical research. Here, we developed a rapid and efficient DNA-assembling method for routine laboratory work. We discovered that the cleavage speed of T5 exonuclease is approximately 3 nt/min at 0°C and hence developed a T5 exonuclease-mediated low-temperature sequence- and ligation-independent cloning method (TLTC). Two homologous regions of 15 bp-25 bp compatible with the ends of the vector backbones were introduced into the inserts through PCR. Approximately 120 fmol of inserts and linear vectors was mixed at a molar ratio of approximately 3:1 and treated with 0.5 U of T5 exonuclease at 0°C for 5 min. Then, the mixture was transformed into Escherichia coli to generate recombinant plasmids. Single segment and multi-segments can be assembled efficiently using TLTC. For single segment, the overall cloning efficiency is above 95%. Moreover, extra nucleotides in the vectors can be removed during TLTC. In conclusion, an extremely simple and fast DNA cloning/assembling method was established in the present study. This method facilitates routine DNA cloning and synthesis of DNA fragments.

6.
3 Biotech ; 13(7): 224, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37292140

ABSTRACT

Positive selection vectors carry a lethal gene encoding a toxic product that is harmful to most laboratory E. coli strains. Previously, we reported a strategy for in-house production of a commercial positive selection vector, the pJET1.2/blunt cloning vector, using common laboratory E. coli strains. However, the strategy involves lengthy gel electrophoresis and extraction procedures to purify the linearized vector after digestion. Here, we streamlined the strategy to eliminate the gel-purification step. A uniquely designed short fragment called the Nawawi fragment was inserted into the coding sequence of the lethal gene of the pJET1.2 plasmid, resulting in the pJET1.2N plasmid that can be propagated in the E. coli strain DH5α. Digestion of the pJET1.2N plasmid with EcoRV released the Nawawi fragment, and the resulting blunt-ended pJET1.2/blunt cloning vector can be used directly for DNA cloning without prior purification. Cloning of a DNA fragment was not hindered by the Nawawi fragments carried over from the digestion step. After transformation, the pJET1.2N-derived pJET1.2/blunt cloning vector produced > 98% positive clones. The streamlined strategy accelerates the in-house production of the pJET1.2/blunt cloning vector and enables DNA cloning at a lower cost. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03647-3.

7.
Genes Cells ; 28(8): 553-562, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37132531

ABSTRACT

The cloning of DNA fragments to plasmid vectors is at the heart of molecular biology. Recent developments have led to various methods utilizing homologous recombination of homology arms. Among them, Seamless Ligation Cloning Extract (SLiCE) is an affordable alternative solution that uses simple Escherichia coli lysates. However, the underlying molecular mechanisms remain unclear and the reconstitution of the extract by defined factors has not yet been reported. We herein show that the key factor in SLiCE is Exonuclease III (ExoIII), a double-strand (ds) DNA-dependent 3'-5' exonuclease, encoded by XthA. SLiCE prepared from the xthAΔ strain is devoid of recombination activity, whereas purified ExoIII alone is sufficient to assemble two blunt-ended dsDNA fragments with homology arms. In contrast to SLiCE, ExoIII is unable to digest (or assemble) fragments with 3' protruding ends; however, the addition of single-strand DNA-targeting Exonuclease T overcomes this issue. Through the combination of commercially available enzymes under optimized conditions, we achieved the efficient, reproducible, and affordable cocktail, "XE cocktail," for seamless DNA cloning. By reducing the cost and time required for DNA cloning, researchers will devote more resources to advanced studies and the careful validation of their own findings.


Subject(s)
DNA , Escherichia coli , Cloning, Molecular , DNA/genetics , Escherichia coli/genetics , Homologous Recombination , DNA, Single-Stranded , Plasmids
8.
J Microbiol Methods ; 202: 106565, 2022 11.
Article in English | MEDLINE | ID: mdl-36089163

ABSTRACT

Cell lysates from a laboratory strain of Escherichia coli can be exploited for seamless DNA cloning in vitro, which is named the seamless ligation cloning extract (SLiCE) cloning method. The SLiCE method can incorporate DNA fragments into a vector to achieve conventional DNA cloning and is more cost-effective than commercially seamless DNA cloning kits. In this study, we found that the SLiCE extracts could easily be prepared with different methods, such as 3% Triton X-100 lysis buffer, 3% SDS lysis buffer, or freeze-thaw cycles. At high E. coli transformation efficiency, the SLiCE extracts prepared using different simple and ultra-low cost methods did not affect the DNA cloning efficiency. These results further revealed that the SLiCE cloning method can be efficiently used for seamless DNA cloning in vitro.


Subject(s)
DNA , Escherichia coli , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , DNA/genetics , Laboratories , Genetic Vectors , Plasmids
9.
3 Biotech ; 12(9): 216, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35965659

ABSTRACT

Key message: In-house production of a positive selection cloning vector could be simple, efficient and low cost. Abstract: DNA cloning technology requires a vector to harbour a gene of interest for multiplication of the gene in bacterial cells. Positive selection vector has become a popular type of cloning vector due to the simplicity and efficiency of the positive selection system. Due to the presence of a toxic gene, propagation of a commercial positive selection vector in common laboratory E. coli strains is infeasible. This study demonstrated a strategy for propagation and in-house production of a commercial positive selection vector, i.e., pJET1.2/blunt cloning vector, at low cost. This was done by insertion of a specially designed DNA fragment (MCS fragment), which can be easily removed later by EcoRV digestion, into the pJET1.2/blunt cloning vector to allow the propagation of the modified plasmid (termed pJET1.2M) in common E. coli strains. Removal of the MCS fragment from the pJET1.2M plasmid produces the pJET1.2/blunt cloning vector ready for gene cloning. The self-made pJET1.2/blunt cloning vector exhibited a cloning efficiency of 100%. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03289-x.

10.
Methods Mol Biol ; 2524: 409-432, 2022.
Article in English | MEDLINE | ID: mdl-35821490

ABSTRACT

Multiplex hextuple luciferase assaying allows monitoring the activity of five experimental pathways against one control at the same time. To perform multiplex hextuple luciferase assaying, six orthogonal luciferase reporter units are needed of which five are pathway-specific and one acts as a control for normalization. To ensure stoichiometric delivery of all six luciferase reporters in every transfected cell, synthetic assembly DNA cloning is used to stitch together all six luciferase reporter units into a single vector. Here, we provide a detailed three-step synthetic assembly DNA protocol to generate multiplex hextuple luciferase reporter plasmids for any five cellular signaling pathways of interest, against a control normalization pathway. A first protocol is provided on how to generate plasmids that contain novel transcription factor-binding motifs for specific transcription factors. A second protocol details on how to couple these novel transcription factor-binding motifs to one of five orthogonal luciferases to obtain specific luciferase reporters for cellular signaling pathways acting upstream of those transcription factor-binding motifs. Finally, a third protocol provides details on how to assemble orthogonal luciferase reporters for five cellular signaling pathways acting upstream of five unique transcription factor-binding motifs together with a control constitutive pathway luciferase reporter that will be used for normalization to obtain a final multiplex hextuple luciferase vector.


Subject(s)
DNA , Transcription Factors , Cloning, Molecular , DNA/genetics , Genes, Reporter , Luciferases/genetics , Plasmids/genetics , Transcription Factors/metabolism
11.
Bio Protoc ; 12(24)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36618087

ABSTRACT

Cloning systems like Gateway and Golden Gate/Braid are known because of their efficiency and accuracy. While the main drawback of Gateway is the expensive cost of the enzymes used in its two-step (LR and BP) reaction, Golden Gate requires non-reusable components due to their specific restriction sites. We present the Brick into the Gateway (BiG) protocol as a new cloning strategy, faster and more economic method that combines (i) reusable modules or bricks assembled by the GoldenBraid approach, and (ii) Gateway LR reactions [recombination of attachment sites: attL (L from left) and attR (R from right)] avoiding the BP reaction [recombination of attachment sites: attP (P from phage) and attB (B from bacteria)] usually necessary in the Gateway cloning. The starting point is to perform a PCR reaction to add type IIS restriction sites into DNA fragments generating specific fusion sites. Then, this PCR product is used to design GoldenBraid bricks, including the attL Gateway recombination sites. Using the Golden Gate method, these bricks are assembled to produce an attL1 -gene of interest- attL2 fragment, which is integrated into a compatible vector producing a Gateway entry vector. Finally, the fragment containing the target gene is recombined by LR reaction into the Gateway destination vector. This protocol was validated in: Plasmid (2022), DOI: 10.1016/j.plasmid.2022.102630 Graphical abstract.

12.
J Microbiol Methods ; 170: 105842, 2020 03.
Article in English | MEDLINE | ID: mdl-31954728

ABSTRACT

A novel technique for targeted stable multiplication of a specific long E. coli chromosome fragment was developed. The method is based on the coordinated functioning of λ and φ80 bacteriophage site-specific recombination and integration systems. In vivo cloning and targeted insertion of a chosen chromosomal region is accomplished by a simple one-step experiment. The method does not require PCR amplification of an inserted fragment, which makes it especially convenient for manipulation of long-length DNA. For this purpose, we constructed a pKDAH vector that can perform both λRed recombineering and φ80-integrase-mediated integration. Using this technique, the chromosome region is cloned via λRed recombination and immediately inserted into another chromosome locus by φ80-integrase. The method was effectively used for targeted chromosomal integration of additional copies of an individual gene (alaE), a short-length operon (kbl-tdh) and long-length DNA fragments harboring the E. coli atpIBEFHAGDC or nuoABCEFGHIJKLMN operons (7.5 and 15 kb, respectively), thus confirming the utility of the technique. Moreover, duplication of the target genes with simultaneous modification of the regulatory region was performed.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Bacteriophages/genetics , DNA, Bacterial/genetics , DNA, Viral/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Mutagenesis, Insertional/methods , Base Sequence , Chromosomes, Bacterial/genetics , Cloning, Molecular/methods , Recombination, Genetic
13.
Methods Mol Biol ; 1961: 307-328, 2019.
Article in English | MEDLINE | ID: mdl-30912054

ABSTRACT

Genome editing and knockout by virus-based delivery of CRISPR/Cas9 may provide a new option to cure inherited and acquired ocular diseases. Here we describe development and application of lentivirus-based delivery vectors enabling knockout of the Vegfa gene. We show that Streptococcus pyogenes (Sp) Cas9 and single-guide RNAs (sgRNAs) delivered by such vectors selectively can ablate the vascular endothelial growth factor A (Vegfa) gene in mouse retina following a single administration. These findings may contribute to the development of a new therapeutic path in the treatment of ocular diseases including exudative age-related macular degeneration (AMD).


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Gene Editing , Genetic Therapy , Lentivirus/genetics , Mice , Mice, Knockout , Retina/metabolism , Retina/pathology
14.
J Bacteriol ; 201(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30530516

ABSTRACT

Escherichia coli has an ability to assemble DNA fragments with homologous overlapping sequences of 15 to 40 bp at each end. Several modified protocols have already been reported to improve this simple and useful DNA cloning technology. However, the molecular mechanism by which E. coli accomplishes such cloning is still unknown. In this study, we provide evidence that the in vivo cloning of E. coli is independent of both RecA and RecET recombinases but is dependent on XthA, a 3' to 5' exonuclease. Here, in vivo cloning of E. coli by XthA is referred to as in vivoE. coli cloning (iVEC). We also show that iVEC activity is reduced by deletion of the C-terminal domain of DNA polymerase I (PolA). Collectively, these results suggest the following mechanism of iVEC. First, XthA resects the 3' ends of linear DNA fragments that are introduced into E. coli cells, resulting in exposure of the single-stranded 5' overhangs. Then, the complementary single-stranded DNA ends hybridize each other, and gaps are filled by DNA polymerase I. Elucidation of the iVEC mechanism at the molecular level would further advance the development of in vivo DNA cloning technology. Already we have successfully demonstrated multiple-fragment assembly of up to seven fragments in combination with an effortless transformation procedure using a modified host strain for iVEC.IMPORTANCE Cloning of a DNA fragment into a vector is one of the fundamental techniques in recombinant DNA technology. Recently, an in vitro recombination system for DNA cloning was shown to enable the joining of multiple DNA fragments at once. Interestingly, E. coli potentially assembles multiple linear DNA fragments that are introduced into the cell. Improved protocols for this in vivo cloning have realized a high level of usability, comparable to that by in vitro recombination reactions. However, the mechanism of in vivo cloning is highly controversial. Here, we clarified the fundamental mechanism underlying in vivo cloning and also constructed a strain that was optimized for in vivo cloning. Additionally, we streamlined the procedure of in vivo cloning by using a single microcentrifuge tube.


Subject(s)
DNA, Bacterial/metabolism , Escherichia coli/enzymology , Exodeoxyribonucleases/metabolism , Recombination, Genetic , Cloning, Molecular , DNA Polymerase I/metabolism , DNA, Bacterial/genetics , Escherichia coli/metabolism , Nucleic Acid Hybridization , Transformation, Genetic
15.
J Phycol ; 55(1): 224-235, 2019 02.
Article in English | MEDLINE | ID: mdl-30481372

ABSTRACT

Mats of the green alga Trentepohlia, a genus widely distributed in the tropics as well as temperate regions, have always been perceived as homogeneous (i.e., formed by only one species). As such, their general nature and specific feature play a supportive role in the species delimitation. However, the presence of morphologically dissimilar thalli was observed under the light microscope and when cultivating a piece of a single mat. To address this, we performed DNA cloning of the rbcL gene on mat fragments of T. abietina, T. annulata, T. jolithus and T. umbrina sampled in Europe to reveal if they are composed of one or more species. We revealed that more Trentepohlia haplotypes may coexist in a single mat. In consideration of this, we conclude that the use of material isolated in unialgal culture will be almost mandatory for a taxonomic reassessment of this complicated genus. Another direct implication of this problem is that herbarium specimens consisting of field-collected material should not be used for direct sequencing. We further hypothesize the reasons why multiple haplotypes of Trentepohlia occur more frequently in the tuft-like mats. Possibly, fragments and/or cells of other microalgae, including other species of Trentepohlia, might be retained in such mats more easily than in the crustose trentepohlialean mats.


Subject(s)
Chlorophyta , Genetic Heterogeneity , Cloning, Molecular , DNA , Europe , Phylogeny
16.
Bio Protoc ; 8(3)2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29770347

ABSTRACT

Protein tagging is a powerful tool for performing comprehensive analyses of the biological functions of a protein of interest owing to the existence of a wide variety of tags. It becomes indispensable in some cases, such as in tracking protein dynamics in a live cell or adding a peptide epitope due to the lack of optimal antibodies. However, efficiently integrating an array of tags into the gene of interest remains a challenge. Traditional DNA recombinant technology based on type II restriction endonucleases renders protein tagging tedious and inefficient as well as the introduction of an unwanted junction sequence. In our attempt to tag Thrombospondin type 1 domain-containing 1 (THSD1) that we identified as the first intracranial aneurysm gene (Santiago-Sim et al., 2016), we developed a novel precision tagging technique by combinational use of type II and IIS restriction endonucleases (Xu et al., 2017), which generates a seamless clone with high efficiency. Here, we describe a protocol that not only provides a generalized strategy for any gene of interest but also takes its application of 11 different tags in THSD1 as a step-by-step example.

17.
Fungal Genet Biol ; 116: 51-61, 2018 07.
Article in English | MEDLINE | ID: mdl-29680684

ABSTRACT

Current challenges in the study and biotechnological exploitation of filamentous fungi are the optimization of DNA cloning and fungal genetic transformation beyond model fungi, the open exchange of ready-to-use and standardized genetic elements among the research community, and the availability of universal synthetic biology tools and rules. The GoldenBraid (GB) cloning framework is a Golden Gate-based DNA cloning system developed for plant synthetic biology through Agrobacterium tumefaciens-mediated genetic transformation (ATMT). In this study, we develop reagents for the adaptation of GB version 3.0 from plants to filamentous fungi through: (i) the expansion of the GB toolbox with the domestication of fungal-specific genetic elements; (ii) the design of fungal-specific GB structures; and (iii) the ATMT and gene disruption of the plant pathogen Penicillium digitatum as a proof of concept. Genetic elements domesticated into the GB entry vector pUPD2 include promoters, positive and negative selection markers and terminators. Interestingly, some GB elements can be directly exchanged between plants and fungi, as demonstrated with the marker hph for HygR or the fluorescent protein reporter YFP. The iterative modular assembly of elements generates an endless number of diverse transcriptional units and other higher order combinations in the pDGB3α/pDGB3Ω destination vectors. Furthermore, the original plant GB syntax was adapted here to incorporate specific GB structures for gene disruption through homologous recombination and dual selection. We therefore have successfully adapted the GB technology for the ATMT of fungi. We propose the name of FungalBraid (FB) for this new branch of the GB technology that provides open, exchangeable and collaborative resources to the fungal research community.


Subject(s)
Cloning, Molecular/methods , DNA, Fungal , Fungi/genetics , Synthetic Biology/methods , Indicators and Reagents , Penicillium/genetics , Plants/genetics
18.
Methods Mol Biol ; 1715: 47-60, 2018.
Article in English | MEDLINE | ID: mdl-29188505

ABSTRACT

Generation of lentivirus (LV)-based vectors holding multiple gene cassettes for coexpression of several therapeutic factors provides potent tools in both gene delivery studies as well as in gene therapy. Here we describe the development of such multigenic LV gene delivery vectors enabling cell-specific coexpression of antiangiogenic microRNA (miRNA) and protein factors and, if preferred, a fluorescent reporter, from RNApol(II)-driven expression cassettes orientated in a back-to-back fashion. This configuration may contribute to the development of new combination therapies for amelioration of diseases involving intraocular neovascularization including exudative age-related macular degeneration (AMD).


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Genetic Therapy/methods , Genetic Vectors , Lentivirus/genetics , Macular Degeneration/therapy , Retinal Neovascularization/therapy , Fluorescent Dyes/metabolism , Gene Transfer Techniques , Humans , Macular Degeneration/genetics , MicroRNAs/administration & dosage , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Retinal Neovascularization/genetics
19.
Biochem Biophys Rep ; 9: 310-315, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28956018

ABSTRACT

Simple and low-cost recombinant enzyme-free seamless DNA cloning methods have recently become available. In vivo Escherichia coli cloning (iVEC) can directly transform a mixture of insert and vector DNA fragments into E. coli, which are ligated by endogenous homologous recombination activity in the cells. Seamless ligation cloning extract (SLiCE) cloning uses the endogenous recombination activity of E. coli cellular extracts in vitro to ligate insert and vector DNA fragments. An evaluation of the efficiency and utility of these methods is important in deciding the adoption of a seamless cloning method as a useful tool. In this study, both seamless cloning methods incorporated inserting DNA fragments into linearized DNA vectors through short (15-39 bp) end homology regions. However, colony formation was 30-60-fold higher with SLiCE cloning in end homology regions between 15 and 29 bp than with the iVEC method using DH5α competent cells. E. coli AQ3625 strains, which harbor a sbcA gene mutation that activates the RecE homologous recombination pathway, can be used to efficiently ligate insert and vector DNA fragments with short-end homology regions in vivo. Using AQ3625 competent cells in the iVEC method improved the rate of colony formation, but the efficiency and accuracy of SLiCE cloning were still higher. In addition, the efficiency of seamless cloning methods depends on the intrinsic competency of E. coli cells. The competency of chemically competent AQ3625 cells was lower than that of competent DH5α cells, in all cases of chemically competent cell preparations using the three different methods. Moreover, SLiCE cloning permits the use of both homemade and commercially available competent cells because it can use general E. coli recA- strains such as DH5α as host cells for transformation. Therefore, between the two methods, SLiCE cloning provides both higher efficiency and better utility than the iVEC method for seamless DNA plasmid engineering.

20.
Methods Mol Biol ; 1575: 121-143, 2017.
Article in English | MEDLINE | ID: mdl-28255877

ABSTRACT

Phage display of antibody libraries is an invaluable strategy in antibody discovery. Many synthetic antibody library formats utilize monovalent antibody binding fragments (Fab), displayed on filamentous phage and expressed in Escherichia coli for selection and screening procedures, respectively. For most therapeutic applications, however, the final antibody candidate favors a bivalent immunoglobulin G (IgG) format, due to its particular effector function, half-life, and avidity.Here, we present an optimized subcloning method, termed AmplYFast, for the fast and convenient conversion of phage-displayed monovalent Fab fragments into full-length IgG or immunoglobulins of any other isotype. By using biotinylated primers, unique mammalian expression vectors, and multi-well plates, AmplYFast combines the rapid amplification, digestion, and ligation of recombinant Ig heavy and light chain sequences in an easy-to-operate high-throughput manner. Thus, AmplYFast improves quality and efficiency in DNA cloning and significantly minimizes timelines to antibody lead identification.


Subject(s)
Cloning, Molecular/methods , Immunoglobulin Fab Fragments/genetics , Immunoglobulin G/metabolism , Biotin/chemistry , DNA Probes/chemistry , DNA Probes/genetics , Genetic Vectors/genetics , Half-Life , High-Throughput Screening Assays , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Peptide Library , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL