Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Biomedicines ; 12(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39062162

ABSTRACT

Currently, there is a growing amount of evidence for the involvement of dopamine receptors and the functionally related trace amine-associated receptor, TAAR1, in upper intestinal function. In the present study, we analyzed their expression in the duodenum using publicly accessible transcriptomic data. We revealed the expression of DRD1, DRD2, DRD4, DRD5, and TAAR1 genes in different available datasets. The results of the gene ontology (GO) enrichment analysis for DRD2 and especially TAAR1 co-expressed genes were consistent with the previously described localization of D2 and TAAR1 in enteric neurons and secretory cells, respectively. Considering that co-expressed genes are more likely to be involved in the same biological processes, we analyzed genes that are co-expressed with TAAR1, DRD2, DRD4, and DRD5 genes in healthy mucosa and duodenal samples from patients with functional dyspepsia (FD) or diabetes-associated gastrointestinal symptoms. Both pathological conditions showed a deregulation of co-expression patterns, with a high discrepancy between DRDs and TAAR1 co-expressed gene sets in normal tissues and patients' samples and a loss of these genes' functional similarity. Meanwhile, we discovered specific changes in co-expression patterns that may suggest the involvement of TAAR1 and D5 receptors in pathologic or compensatory processes in FD or diabetes accordingly. Despite our findings suggesting the possible role of TAAR1 and dopamine receptors in functional diseases of the upper intestine, underlying mechanisms need experimental exploration and validation.

2.
J Equine Vet Sci ; 138: 105098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763367

ABSTRACT

The Polo Argentino (PA) horse is a recognized breed, developed originally by mixing crossbred and Thoroughbred (TB) horses to play polo. Early PA selection is difficult due to unreliable performance estimations. This study investigated the usefulness of genomic markers previously linked to morphological and functional traits as a tool for the early selection of PA. To this, we genotyped 520 PA and 30 TB horses using the Equine GGPArray (Illumina, n = 71,778 SNPs). Analyses included a genetic characterization of six genetic markers associated with behavioral (DRD4), muscular development (MSTN), and body size (LCORL, HMGA6, ZFAT, and LASP1) genes. Genetic differences in the DRD4, MSTN, and LCORL SNP were found between the two breeds, in the last two FST index between breeds was 0.13 and 0.6, respectively (p < 0.01). In DRD4, G allele was the more prevalent in PA (0.56 vs 0.45 in TB, p < 0.05), but no differences were observed between the genotypes associated with phenotypes. In MSTN, heterozygous genotypes were the most common in PA (48 %), with a significant decrease in AA (Hardy-Weinberg p < 0.05), suggesting a negative selection against it in polo horses. In body size, HMGA2 was monomorphic in all horses, while ZFAT and LASP1 SNP showed higher variability. Interestingly, 99 % of PA showed a TT genotype in LCORL (only 66 % in TB), demonstrating selection for smaller horses. Our results suggest that empirical selection in PA has generated an incipient genomic differentiation in discrete traits which could be used as a marker-assisted selection tool for early selection of polo horses.


Subject(s)
Sports , Animals , Horses/genetics , Polymorphism, Single Nucleotide , Genomics/methods , Genetic Markers/genetics , Male , Genotype , Physical Conditioning, Animal
3.
Genes (Basel) ; 15(2)2024 02 14.
Article in English | MEDLINE | ID: mdl-38397229

ABSTRACT

The prevalence of mental disorders and how they are diagnosed represent some of the major problems in psychiatry. Modern genetic tools offer the potential to reduce the complications concerning diagnosis. However, the vast genetic diversity in the world population requires a closer investigation of any selected populations. In the current research, four polymorphisms, namely rs6265 in BDNF, rs10835210 in BDNF, rs6313 in HTR2A, and rs1800955 in DRD4, were analyzed in a case-control study of 2393 individuals (1639 patients with mental disorders (F20-F29, F30-F48) and 754 controls) from the European part of Russia using the TaqMan SNP genotyping method. Significant associations between rs6265 BDNF and rs1800955 DRD4 and mental impairments were detected when comparing the general group of patients with mental disorders (without separation into diagnoses) to the control group. Associations of rs6265 in BDNF, rs1800955 in DRD4, and rs6313 in HTR2A with schizophrenia in patients from the schizophrenia group separately compared to the control group were also found. The obtained results can extend the concept of a genetic basis for mental disorders in the Russian population and provide a basis for the future improvement in psychiatric diagnostics.


Subject(s)
Brain-Derived Neurotrophic Factor , Schizophrenia , Humans , Brain-Derived Neurotrophic Factor/genetics , Genetic Predisposition to Disease , Case-Control Studies , Polymorphism, Single Nucleotide , Gene Frequency , Schizophrenia/epidemiology , Schizophrenia/genetics , Receptors, Dopamine D4/genetics
4.
Redox Biol ; 70: 103078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354631

ABSTRACT

Acute kidney injury (AKI) is a life-threatening health condition associated with increasing morbidity and mortality. Despite extensive research on the mechanisms underlying AKI, effective clinical tools for prediction and treatment remain scarce. Oxidative stress and mitochondrial damage play a critical role in AKI and dopamine D4 receptor (DRD4) has been confirmed to be associated with oxidative stress. In this study, we hypothesized that DRD4 could attenuate AKI through its antioxidative and antiapoptotic effects. In vivo, DRD4 was remarkably decreased in the kidneys of mice subjected to ischemia/reperfusion injury (IRI) or cisplatin treatment. Notably, DRD4 significantly attenuated nephrotoxicity by suppressing oxidative stress and enhancing mitochondrial bioenergetics through the downregulation of reactive oxygen species (ROS) generation and NADPH oxidase 4 (NOX4) expression. In vitro, DRD4 demonstrated the ability to ameliorate oxidative stress-induced apoptosis in HK-2 cells subjected to hypoxia/reoxygenation- or cisplatin treatment. Transcriptome sequencing revealed that, mechanistically, DRD4 reduced the expression of its downstream target, interferon-stimulated gene 15 (ISG15), suppressing NOX4 ISGylation, enhancing the ubiquitination of NOX4, leading to its degradation, and ultimately counteracting oxidative stress-induced AKI. Altogether, these findings underscore the significance of DRD4 in AKI and elucidate DRD4 as a potential protectant against IRI or cisplatin-induced nephrotoxicity.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Mice , Animals , Cisplatin/adverse effects , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Interferons/adverse effects , Interferons/metabolism , Receptors, Dopamine D4/metabolism , Cell Line , Oxidative Stress , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Kidney/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Apoptosis
5.
Asian J Psychiatr ; 91: 103831, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37988928

ABSTRACT

OBJECTIVE: There seems to be an association between the DRD4 48-bp VNTR polymorphisms and antipsychotic treatment response, but there is a rare reference to confirm this finding. Hence, the present study tried to investigate the association between DRD4 48-bp VNTR polymorphisms and the treatment response of antipsychotics in patients with schizophrenia in Taiwan, using a propensity score matching (PSM) method. METHODS: A total of 882 participants were enrolled in this study and completed informed consent, research questionnaires, including demographic information and the revised Chinese version Beliefs about Voices Questionnaire, and blood sampling. For descreasing of the selection bias and confounding variables, the PSM nearest neighbor matching method was used to select 765 paitents with schizophrenia (ratio of 1:8 between 85 persistent auditory hallucination and 680 controls) with matched and controlled the age and gender. RESULTS: Schizophrenia patients with DRD4 4 R homozygosity had a lower rate of good antipsychotic treatment response than the other DRD4 genotype carriers (DRD4 non-4/4). Among those 4 R homozygosity carriers, 60 cases of 503 (11.9%) retain persistent auditory hallucinations. Furthermore, this subgroup of patients is accounted for up to 70.6% of cases with poor neuroleptic treatment response. CONCLUSIONS: A poor treatment outcome for patients with the 4 R homozygosity had presented,that comparing with those DRD non-4/4 genotype carriers. DRD4 VNTR 4 R homozygosity could be a genetic biomarker to predict poor antipsychotic treatment response in schizophrenia. Patients with DRD 4/4 probably receive novel antipsychotic medications preferentially or in combination with alternative therapy, such as psychotherapy or milieu therapy.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/drug therapy , Schizophrenia/genetics , Antipsychotic Agents/therapeutic use , Receptors, Dopamine D4/genetics , Minisatellite Repeats/genetics , Genotype , Hallucinations/genetics , Hallucinations/drug therapy , Biomarkers
6.
BMC Psychiatry ; 23(1): 781, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880658

ABSTRACT

Antipsychotic drugs are the first line of treatment in schizophrenia; although antipsychotic responses indicate a wide interindividual variety in patients with schizophrenia. This study aimed to investigate the association between four polymorphisms in DRD2, DRD4 and COMT genes and their gene-gene interactions with antipsychotic treatment response in patients with schizophrenia. A total of 101 patients with schizophrenia were recruited and stratified in treatment responder and treatment resistant groups based on the published criteria of resistant to treatment using PANSS. Clinical and demographic factors were analyzed. Genomic DNA was extracted from whole blood and genotyping for the four polymorphisms were done by ARMS-PCR, PCR-RFLP and gap-PCR. Gene-gene interactions were analyzed by logistic regression. In case of DRD2 A-241G, G allele was significantly associated with resistant to treatment. Regarding DRD4 120-bp duplication, 240/240 genotype was significantly associated with resistant to treatment comparing to other genotypes in a dominant model. The genotype combination of DRD4 240/240 and COMT Val/Val was significantly associated with treatment resistant. Among DRD2 AA genotype, COMT met allele carriers which also had a 120 bp allele of DRD4 had a significantly better response to antipsychotics. Moreover, analysis of clinical and demographic factors demonstrated a significantly longer duration of hospitalization and higher chlorpromazine-equivalent daily dose in resistant to treatment patients. Discovering the polymorphisms which effect treatment response to antipsychotics will provide the possibility of genetic screening before starting an antipsychotic treatment which enhances the chance of responding to antipsychotics and decreases drugs side effects and costs.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Antipsychotic Agents/therapeutic use , Catechol O-Methyltransferase/genetics , Epistasis, Genetic , Genotype , Polymorphism, Genetic , Receptors, Dopamine D2/genetics , Receptors, Dopamine D4/genetics , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/diagnosis
7.
J Evol Biol ; 36(10): 1503-1516, 2023 10.
Article in English | MEDLINE | ID: mdl-37750610

ABSTRACT

The "paradox of the great speciators" has puzzled evolutionary biologists for over half a century. A great speciator requires excellent dispersal propensity to explain its occurrence on multiple islands, but reduced dispersal ability to explain its high number of subspecies. A rapid reduction in dispersal ability is often invoked to solve this apparent paradox, but a proximate mechanism has not been identified yet. Here, we explored the role of six genes linked to migration and animal personality differences (CREB1, CLOCK, ADCYAP1, NPAS2, DRD4, and SERT) in 20 South Pacific populations of silvereye (Zosterops lateralis) that range from highly sedentary to partially migratory, to determine if genetic variation is associated with dispersal propensity and migration. We detected genetic associations in three of the six genes: (i) in a partial migrant population, migrant individuals had longer microsatellite alleles at the CLOCK gene compared to resident individuals from the same population; (ii) CREB1 displayed longer average microsatellite allele lengths in recently colonized island populations (<200 years), compared to evolutionarily older populations. Bayesian broken stick regression models supported a reduction in CREB1 length with time since colonization; and (iii) like CREB1, DRD4 showed differences in polymorphisms between recent and old colonizations but a larger sample is needed to confirm. ADCYAP1, SERT, and NPAS2 were variable but that variation was not associated with dispersal propensity. The association of genetic variants at three genes with migration and dispersal ability in silvereyes provides the impetus for further exploration of genetic mechanisms underlying dispersal shifts, and the prospect of resolving a long-running evolutionary paradox through a genetic lens.


Subject(s)
Animal Migration , Passeriformes , Animals , Humans , Bayes Theorem , Polymorphism, Genetic , Passeriformes/genetics , Biological Evolution
8.
Cell Rep ; 42(7): 112678, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37379214

ABSTRACT

Amygdala circuitry encodes associations between conditioned stimuli and aversive unconditioned stimuli and also controls fear expression. However, whether and how non-threatening information for unpaired conditioned stimuli (CS-) is discretely processed remains unknown. The fear expression toward CS- is robust immediately after fear conditioning but then becomes negligible after memory consolidation. The synaptic plasticity of the neural pathway from the lateral to the anterior basal amygdala gates the fear expression of CS-, depending upon neuronal PAS domain protein 4 (Npas4)-mediated dopamine receptor D4 (Drd4) synthesis, which is precluded by stress exposure or corticosterone injection. Herein, we show cellular and molecular mechanisms that regulate the non-threatening (safety) memory consolidation, supporting the fear discrimination.


Subject(s)
Memory Consolidation , Memory/physiology , Conditioning, Classical/physiology , Neuronal Plasticity/physiology , Amygdala/physiology , Dopamine
9.
Dev Psychobiol ; 65(4): e22387, 2023 05.
Article in English | MEDLINE | ID: mdl-37073589

ABSTRACT

Biological and genetic factors, as well as contextual influences, contribute to the etiology of externalizing behaviors in children and adolescents. The current project used a longitudinal design to examine how individual vulnerability for externalizing behavior is influenced by the interplay among biological/genetic and environmental factors, and how this occurs across development. We investigated the influence of dopamine receptor D4 genotype (DRD4), child temperament, and household chaos on children's externalizing behaviors using a sample of twins/triplets tested at the ages of 4 and 5 years (n = 229), including a subset of these who were tested again in middle childhood (ages 7-13 years; n = 174). Multilevel linear regression modeling demonstrated that the DRD4-7repeat genotype, 4-year-old negative affectivity, and household chaos at the age of 4 years were related to 5-year-old externalizing behaviors. Stability in externalizing behaviors from the age of 5 years to middle childhood was demonstrated. A significant interaction between DRD4 and household chaos showed that children with no 7-repeat DRD4 alleles had significantly higher levels of externalizing in homes with extremely low levels of parent-reported chaos, suggesting a "goodness-of-fit" pattern of gene-environment interaction. These findings suggest that risk for childhood externalizing behaviors is likely multifaceted and differs across developmental periods.


Subject(s)
Gene-Environment Interaction , Receptors, Dopamine D4 , Adolescent , Child , Child, Preschool , Humans , Alleles , Genotype , Parents , Receptors, Dopamine/genetics , Receptors, Dopamine D4/genetics
10.
Neuroendocrinology ; 113(8): 875-884, 2023.
Article in English | MEDLINE | ID: mdl-37080173

ABSTRACT

INTRODUCTION: Because dopaminergic signaling pathways are one of the regulators of autoimmunity, we hypothesize that the -521C>T DRD4 gene polymorphism may associate with the risk of diabetes mellitus type 1 (DM1) and its comorbidities. METHODS: In this case-control study, we have examined 300 patients with DM1 in comparison to 300 healthy age-matched controls. Utilizing the amplification refractory mutation system-polymerase chain reaction method, we have analyzed the -521C>T polymorphism of dopamine D4 receptor-encoding gene. Obtained results have been evaluated according to diabetes comorbidities, inflammatory markers, CD14++CD16-, and CD14+CD16+ monocyte subsets as well as lipid profile. RESULTS: The key results of our study are as follows: (1) CC genotype and C allele are associated with a reduced risk of DM1 development (OR = 0.593, p = 0.005 and OR = 0.725, p = 0.003, respectively), whereas TT genotype and T allele are associated with a higher risk of DM1 (OR = 1.408, p = 0.04 and OR = 1.380, p = 0.003, respectively); (2) CC genotype is associated with an increased risk of dyslipidemia and retinopathy in diabetic patients (OR = 2.376, p = 0.001 and OR = 2.111, p = 0.01, respectively); (3) CC genotype and C allele carriers had the highest frequency of pro-inflammatory CD16+ monocytes (p = 2*10-4 and 0.04, respectively); (4) the DRD4 -521C>T polymorphism modifies the inflammatory status as well as lipid profile in DM1 patients. CONCLUSION: Our data imply that the dopaminergic signaling pathways may play an important role in the etiology of DM1 as well as its comorbidities and will provide a new insight into the DM1 risk management. The -521C>T DRD4 gene polymorphism could be considered a genetic marker to predict susceptibility to DM1 as well as retinopathy and dyslipidemia progress in patients with already established disease.


Subject(s)
Diabetes Mellitus, Type 1 , Dopamine , Receptors, Dopamine D4 , Humans , Case-Control Studies , Diabetes Mellitus, Type 1/genetics , Genotype , Lipids , Receptors, Dopamine/genetics , Receptors, Dopamine D4/genetics
11.
Physiol Behav ; 264: 114139, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36870383

ABSTRACT

There is a striking lack of studies on the molecular genetic basis of metacognition, i.e., the higher-order ability to monitor mental processes. Here, an initial step toward resolving this issue was undertaken by investigating functional polymorphisms from three genes of the dopaminergic or serotonergic systems (DRD4, COMT, and 5-HTTLPR) in relation to behaviorally assessed metacognition in six paradigms across three cognitive domains. We report evidence for a task-dependent higher average confidence level (metacognitive bias) in carriers of at least one S or LG-allele in the 5-HTTLPR genotype and integrate these findings within a differential susceptibility framework.


Subject(s)
Metacognition , Polymorphism, Genetic , Genotype , Individuality , Humans , Male , Female
12.
J Allergy Clin Immunol ; 152(2): 386-399, 2023 08.
Article in English | MEDLINE | ID: mdl-36841266

ABSTRACT

BACKGROUND: Allergic asthma develops from allergen exposure in early childhood and progresses into adulthood. The central mediator of progressive allergic asthma is allergen-specific, TH2-resident memory cells (TRMs). Although the crosstalk between nerves and immune cells plays an established role in acute allergic inflammation, whether nerves facilitate the establishment of TH2-TRMs in the immature lung following early life allergen exposure is unknown. OBJECTIVES: The aim of this study was to identify nerve-derived signals that act in TH2 effector cells to regulate the tissue residency in the immature lung. METHODS: Following neonatal allergen exposure, allergen-specific TH2-TRMs were tracked temporally and spatially in relationship to developing sympathetic nerves in the lung. Functional mediators of dopamine signaling in the establishment of TH2-TRMs were identified by in vitro bulk RNA-sequencing of dopamine-treated TH2 cells followed by in vivo assessment of candidate genes using adoptive transfer of TH2 cells with viral gene knockdown. RESULTS: This study found that sympathetic nerves produce dopamine and reside in proximity to TH2 effector cells during the contraction phase following neonatal allergen exposure. Dopamine signals via DRD4 on TH2 cells to elevate IL2RA and epigenetically facilitate type 2 cytokine expression. Blockade of dopamine-DRD4 signaling following neonatal allergen exposure impairs lung residence of TH2 cells and ameliorates anamnestic inflammation in adults. CONCLUSIONS: These results demonstrate that maturing sympathetic nerves enable a dopamine-enriched lung environment in early life that promotes the establishment of allergen-specific TH2-TRMs. The dopamine-DRD4 axis may provide a therapeutic target to modify allergic asthma progression from childhood to adulthood.


Subject(s)
Asthma , Dopamine , Adult , Child, Preschool , Humans , Infant, Newborn , Child , Adolescent , Young Adult , Dopamine/metabolism , Th2 Cells , Lung , Allergens , Inflammation , Th1 Cells
13.
Andrology ; 11(6): 1175-1187, 2023 09.
Article in English | MEDLINE | ID: mdl-36746766

ABSTRACT

BACKGROUND: Recently, dapoxetine has been widely accepted to treat premature ejaculation by fast-inhibiting 5-hydroxytryptamine reuptake. However, dapoxetine is not suitable for all premature ejaculation patients in clinical treatment. We need to investigate and reveal the mechanism deeply to solve this problem. OBJECTIVES: To investigate and reveal the function of dopamine D4 receptor in dapoxetine medicated premature ejaculation treatment. MATERIALS AND METHODS: A rat model was used to screen rapid ejaculators. The molecular mechanisms of histone serotonylation-mediated regulation of dopamine D4 receptor were demonstrated by chromatin immunoprecipitation, DNA pull-down, mass spectrometry analysis, and coimmunoprecipitation experiments. The biological function of dopamine D4 receptor was investigated through in vivo experiments by intrathecal injection of shDRD4 to knockdown dopamine D4 receptor. RESULTS: In this study, we found that dapoxetine increased expression of 5-hydroxytryptamine and dopamine D4 receptor. We demonstrated that dapoxetine increased levels of 5-hydroxytryptamine, which promoted histone serotonylation (H3K4me3Q5ser) and transcription factor myeloid zinc-finger 1 complex binding on the dopamine D4 receptor promoter, upregulated the expression of dopamine D4 receptor and thus delayed ejaculation. DISCUSSION: In this study, we demonstrated that dapoxetine increased the levels of 5-hydroxytryptamine, which promoted histone serotonylation and myeloid zinc-finger 1 complex binding to the dopamine D4 receptor promoter and upregulated the expression of dopamine D4 receptor, thus delaying ejaculation. CONCLUSION: It is a novel mechanism that dapoxetine take effect of premature ejaculation treatment through upregulating the dopamine D4 receptor, which indicated that upregulated dopamine D4 receptor would enhance the dapoxetine effect in premature ejaculation treatment. This may lead to the development of novel therapeutic interventions for premature ejaculation.


Subject(s)
Premature Ejaculation , Male , Humans , Rats , Animals , Premature Ejaculation/drug therapy , Histones , Receptors, Dopamine D4/genetics , Serotonin , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Treatment Outcome , Ejaculation , Benzylamines/pharmacology , Benzylamines/therapeutic use , Zinc/pharmacology , Zinc/therapeutic use
14.
Psychopharmacology (Berl) ; 240(4): 1011-1031, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36854793

ABSTRACT

RATIONALE: The dopamine D4 receptors (DRD4) play a key role in numerous brain functions and are involved in the pathogenesis of various psychiatric disorders. DRD4 ligands have been shown to moderate anxiety, reward and depression-like behaviours, and cognitive impairments. Despite a series of promising but ambiguous findings, the therapeutic advantages of DRD4 stimulation remain elusive. OBJECTIVES: The investigation focused on the behavioural effects of the recently developed DRD4 agonist, APH199, to evaluate its impact on anxiety, anhedonia, behavioural despair, establishment and retrieval of alcohol reinforcement, and amphetamine (AMPH)-induced symptoms. METHODS: Male C57BL/6 J mice and Sprague-Dawley rats were examined in five independent experiments. We assessed APH199 (0.1-5 mg/kg, i.p.) effects on a broad range of behavioural parameters in the open field (OF) test, conditioned place preference test (CPP), elevated plus maze (EPM), light-dark box (LDB), novelty suppressed feeding (NSF), forced swim test (FST), sucrose preference test (SPT), AMPH-induced hyperlocomotion test (AIH), and prepulse inhibition (PPI) of the acoustic startle response in AMPH-sensitized rats. RESULTS: APH199 caused mild and sporadic anxiolytic and antidepressant effects in EPM and FST, but no remarkable impact on behaviour in other tests in mice. However, we found a significant increase in AMPH-induced hyperactivity, suggesting an exaggeration of the psychotic-like responses in the AMPH-sensitized rats. CONCLUSIONS: Our data challenged the hypothesis of the therapeutic benefits of DRD4 agonists, pointing out a possible aggravation of psychosis. We suggest a need for further preclinical studies to ensure the safety of antipsychotics with DRD4 stimulating properties.


Subject(s)
Dopamine Agonists , Receptors, Dopamine D4 , Mice , Rats , Male , Animals , Dopamine Agonists/pharmacology , Reflex, Startle , Rats, Sprague-Dawley , Mice, Inbred C57BL , Amphetamine/pharmacology , Models, Animal , Behavior, Animal
15.
Iran J Child Neurol ; 16(4): 23-31, 2022.
Article in English | MEDLINE | ID: mdl-36478994

ABSTRACT

Objective: Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders that affect social and communication skills. These diseases are characterized by severe communication and social skills disabilities and limited and repetitive activities. The prevalence of these disorders appears to be steadily increasing. It is proposed that the genes involved in the dopamine pathway may play an essential role in the development of autism. In this study, we investigated the possible association between Ex3 VNTR polymorphism of the DRD4 gene and autism spectrum disorders in the Iranian population. Materials & Methods: In this case-control study, 97 children with autism and 103 healthy individuals from a northwestern area of Iran as the case and control groups, respectively. After genomic xtraction from peripheral blood samples by the proteinase K method, the polymerase chain reaction (PCR) technique was used to determine the polymorphism genotypes. The data were then coded and analyzed using SPSS version 22 software. Results: The study results showed that the allele frequencies differed in the two groups, some of them being statistically significant. The most common allele in both the ASD and the control group was the 700 bp allele, and its frequency was significantly different in the two groups and was more common in the ASD group (p-value=0.0018). The other allele with a statistically different frequency was the 800 bp allele which was less frequent in the ASD group (p-value=0.0017). Conclusion: These results suggest a potential association between Ex3 VNTR polymorphism of the DRD4 gene and autism spectrum disorder in the Iranian population. This necessitates further studies for the evaluation of the DRD4 gene.

16.
Transl Cancer Res ; 11(11): 3941-3950, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36523297

ABSTRACT

Background: Abnormal expression of dopamine receptors (DRs) has been described in multiple tumors, but their roles in breast cancer are inconclusive or contradictory since evidence of pro- and anti-tumoral effects have been reported. Herein, we analyzed the expression of DRs in breast cancer, especially in the subpopulation of cancer stem cells (CSCs), and evaluated the functional role of the receptors by pharmacological targeting. Methods: Expression of DRD1, DRD2, DRD3, DRD4 and DRD5 was investigated in human breast tumors and cancer cell lines using public databases. Correlation between gene expression and clinical outcome was studied by Kaplan-Mayer analyses. By flow cytometry, we assessed DRD1, DRD2, and DRD4 expression in cultures of MCF-7 (luminal) and MDA-MB-231 (triple-negative) cells. Using the previously reported SORE6 reporter system we examined the differential expression of DRD1, DRD2, and DRD4 in CSCs and tumor-bulk cells. The effect of pharmacological modulation of DRs on stemness and cell migration was studied by quantification of the reporter-positive fraction and wound healing assays, respectively. Results: DRD1, DRD2 and DRD4 transcripts were expressed in breast tumors. DRD4 was overexpressed compared to normal tissue and showed prognostic value. DRD1, DRD2 and DRD4 transcripts were also found in MCF-7 and MDA-MB-231 cells, but only DRD1 and DRD4 proteins were detected. DRD4 was underexpressed in CSCs compared to tumor-bulk cells, whereas DRD1 was found only in the CSCs fraction, suggesting that those receptors may have relevance in stemness control. Subtoxic concentrations of DRD1-targeting compounds did not induced significant changes in the CSCs pool. On the other hand, DRD4 inhibition by Haloperidol slightly increased the CSCs content but also reduced cell migration. Conclusions: Pharmacological modulation of DRD1 in MCF-7 or MDA-MB-231 cells seems to be irrelevant for stemness maintenance. DRD4 reduced expression in breast CSCs or its inhibition by Haloperidol favors CSCs-pool expansion. DRD4 inhibition can also reduce cell migration, indicating that DRD4 plays different roles in stem and non-stem breast cancer cells.

17.
Physiol Behav ; 254: 113896, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35777460

ABSTRACT

Stress and genotype elicit changes in impulse control in a range of species that are attributable to adaptations in both the central and peripheral nervous system. We examined aspects of this mechanism in the horse by assessing the effect of a dopamine receptor genotype (DRD4) and central dopaminergic tone (measured via spontaneous blink rate [SBR] and behavioral initiation rate [BIR]), on measures of impulsivity, compulsivity (3-choice serial reaction time task) and sympathetic/ parasympathetic system balance (heart rate variability [HRV]). Genotype did not have a significant effect on any of the parameters measured. SBR but not BIR correlated significantly with levels of impulsivity. There was no clear association of HRV parameters with either measures of central dopaminergic activity or impulsivity/compulsivity. Overall, some elements of the data suggest that the horse may be a useful animal model for assessing the genetic and environmental factors that lead to the physiological and behavioral phenotype of human addiction, particularly when considering the relationship between central dopaminergic tone and impulsivity.


Subject(s)
Behavior, Addictive , Impulsive Behavior , Animals , Dopamine/pharmacology , Genotype , Horses , Humans , Receptors, Dopamine , Species Specificity
18.
Eat Weight Disord ; 27(7): 2605-2616, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35508584

ABSTRACT

PURPOSE: Eating disturbances are complex heritable conditions that can be influenced by both genetic and environmental factors but are poorly studied in early development. The aim of this research was to investigate the association of genetic polymorphisms within dopaminergic pathways with early feeding problems. METHODS: We analyzed the presence of VNTR polymorphisms of DRD4 (rs1805186) and DAT1 (rs28363170) in overeating (N = 45), undereating (N = 48) and control (N = 44) young children. We also assessed presence of externalizing, internalizing and dysregulation symptoms by the Child Behavior Checklist and quality of mother-child interactions during feeding by the Italian adaptation of the Scale for the Assessment of Feeding Interaction, respectively. RESULTS: Both polymorphisms were associated with children's eating behavior, psychological symptoms and quality of interaction with their mothers, suggesting that: (a) the DRD4 4-repeat allele behaves as a protective factor, the 2-repeats and 7-repeats alleles as risk factors, for undereating behavior, the general quality of mother-child interaction and internalizing, externalizing and dysregulated symptoms; and (b) the DAT1 9-repeats allele behaves as a protective factor, the 10-repeats allele as a risk factor, for overeating behavior, the general quality of mother-child interaction, internalizing, externalizing and dysregulated symptoms. Finally, a gene x gene interaction is suggested between the DAT1 9-repeat or 10-repeat allele and the DRD4 4-repeat allele. CONCLUSIONS: Our results suggest a role for DRD4 and DAT1 in an early susceptibility to eating disturbances. LEVEL OF EVIDENCE III: Evidence obtained from well-designed case-control analytic study.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/genetics , Feeding and Eating Disorders , Receptors, Dopamine D4 , Alleles , Child, Preschool , Female , Genetic Predisposition to Disease , Genotype , Humans , Hyperphagia , Mother-Child Relations , Polymorphism, Genetic , Receptors, Dopamine D4/genetics
19.
Front Hum Neurosci ; 16: 839340, 2022.
Article in English | MEDLINE | ID: mdl-35496066

ABSTRACT

Most studies examining gene-environment effects on self-regulation focus on outcomes early childhood or adulthood. However, only a few studies investigate longitudinal effects during middle childhood and adolescence and compare two domains of early caregiving. In a longitudinal follow-up with a sample of N = 87, we studied the effects of differences in the DRD4 tandem repeat polymorphisms and two domains of early maternal caregiving quality on children's personality development using Block's California Child Q-Set (CCQ) at age six and age 12 and on problem behavior at ages six and seven. Early maternal regulation quality predicted later ego-resiliency and aggressiveness. In addition, significant gene-environment interactions revealed that children with the 7+ DRD4 tandem repeat polymorphism and poor maternal regulation quality in infancy showed lower scores in ego-resiliency and higher scores in ego-undercontrol and CCQ aggressiveness. In contrast, children who had experienced effective maternal regulation in infancy showed a comparable level in personality traits and problem behavior as the DRD4 7- group independent of the levels of maternal regulatory behavior. Similarly, longitudinal caregiving × DRD4 interactions were found for behavior problems in middle childhood, especially for oppositional-aggression, inattentive-hyperactivity, and social competence. Early caregiving effects were only found for maternal regulation quality, but not for maternal responsiveness. Effective early maternal regulation in infancy can moderate the negative effect of DRD4 7+ on children's self-regulation in middle childhood and adolescence. However, maternal responsiveness has no comparable effects. It seems relevant to consider several dimensions of early caregiving and to also measure the environment in more detail in gene-environment studies.

20.
Front Nutr ; 9: 838177, 2022.
Article in English | MEDLINE | ID: mdl-35369087

ABSTRACT

Anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) are the three most common eating disorders (EDs). Their etiopathogenesis is multifactorial where both the environmental and genetic factors contribute to the disease outcome and severity. Several polymorphisms in genes involved in the dopaminergic pathways seem to be relevant in the susceptibility to EDs, but their role has not been fully elucidated yet. In this study, we have analyzed the association between selected common polymorphisms in the DRD2 and DRD4 genes in a large cohort of Italian patients affected by AN (n = 332), BN (n = 122), and BED (n = 132) compared to healthy controls (CTRs) (n = 172). Allelic and genotypic frequencies have been also correlated with the main psychopathological and clinical comorbidities often observed in patients. Our results showed significant associations of the DRD2-rs6277 single nucleotide polymorphism (SNP) with AN and BN, of the DRD4-rs936461 SNP with BN and BED and of DRD4 120-bp tandem repeat (TR) polymorphism (SS plus LS genotypes) with BED susceptibility. Moreover, genotyping of DRD4 48-bp variable number TR (VNTR) identified the presence of ≥7R alleles as risk factors to develop each type of EDs. The study also showed that ED subjects with a history of drugs abuse were characterized by a significantly higher frequency of the DRD4 rs1800955 TT genotype and DRD4 120-bp TR short-allele. Our findings suggest that specific combinations of variants in the DRD2 and DRD4 genes are predisposing factors not only for EDs but also for some psychopathological features often coupled specifically to AN, BN, and BED. Further functional research studies are needed to better clarify the complex role of these proteins and to develop novel therapeutic compounds based on dopamine modulation.

SELECTION OF CITATIONS
SEARCH DETAIL