Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35563180

ABSTRACT

Skin exposure is considered a potentially significant but little-studied pathway for PolyChlorinated Biphenyls uptake in terrestrial reptiles. In this study, a native Italian lizard, Podarcis siculus, was exposed to PCBs-contaminated soil for 120 days. Tissues distribution of PCBs, thyroid hormone levels, and thyroid histo-physiopathology were examined. The accumulation of PCBs in skin, plasma, liver, kidney, and brain were highest at 120 days. The alteration of triiodothyronine (T3) and thyroxine (T4) levels after different concentrations and times to exposure of PCBs was accompanied by the changes in the hormones involved in the hypothalamus-pituitary-thyroid (HPT) axis, namely Thyrotropin Releasing Hormone (TRH) and Thyroid Stimulating Hormone (TSH). Moreover, hepatic levels of deiodinase II (5'ORDII) and content of T3 were positively correlated to exposure to PCBs. These results indicated that in lizards, PCBs exposure through the skin has the potential to disrupt the thyroid endocrine system. Overall, the observed results indicate that PCBs could be associated with changes in thyroid homeostasis in these reptiles, through direct interactions with the metabolism of T4 and T3 through the HPT axis or indirect interactions with peripheral deiodination.


Subject(s)
Lizards , Polychlorinated Biphenyls , Animals , Male , Polychlorinated Biphenyls/toxicity , Soil , Thyroid Gland/metabolism , Thyrotropin/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism
2.
Chemosphere ; 195: 576-584, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29277037

ABSTRACT

Hexachlorobenzene (HCB) is a dioxin-like environmental pollutant, widely distributed in the environment. New research links exposure to high levels of persistent organic environmental toxicants to cardiovascular disease, however little is known about the effect of HCB on vascular function and on blood pressure. The purpose of the present study was to evaluate biochemical and cardiovascular changes resulting from subchronic HCB exposure. Adult female Sprague-Dawley rats were treated with vehicle or HCB (5 or 500 mg/kg b.w) for 45 days. Systolic blood pressure (BP), recorded by tail cuff plethysmography, was significantly increased at 35, 40 and 45 days of 500 mg/kg HCB-treatment. HCB (500 mg/kg) increased arterial thickness, while both 5 and 500 mg/kg HCB decreased proliferating cell nuclear antigen (PCNA) protein levels and cellular nuclei in abdominal aortas indicating a hypertrophic process. Also, aortas from both groups of HCB-treated rats presented higher sensitivity to noradrenalin (NA) and a significant decrease in maximum contractile response. Arteries from 500 mg/kg HCB-treated rats showed a significant increase in the levels of transforming growth factor-ß1 (TGF-ß1) mRNA and angiotensin II type1 receptor (AT1), and a significant decrease in estrogen receptor alpha (ERα), endothelial nitric oxidide synthase (eNOS) protein expression and deiodinase II (DII) mRNA levels. In conclusion, we have demonstrated for the first time that subchronic HCB administration significantly increases BP and alters associated cardiovascular parameters in rats. In addition, HCB alters the expression of key vascular tissue molecules involved in BP regulation, such as TGF-ß1, AT1, ERα, eNOS and DII.


Subject(s)
Hexachlorobenzene/toxicity , Hypertension/chemically induced , Animals , Arteries/chemistry , Environmental Pollutants/toxicity , Estrogen Receptor alpha/metabolism , Female , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL