Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Tissue Eng Part B Rev ; 30(4): 477-489, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38183633

ABSTRACT

The repair and regeneration of critical-sized bone defects remain an urgent challenge. Bone tissue engineering represents an exciting solution for regeneration of large bone defects. Recently, the importance of innervation in tissue-engineered bone regeneration has been increasingly recognized. The cross talk between nerve and bone provides important clues for bone repair and regeneration. Furthermore, the promotion of angiogenesis by innervation can accelerate new bone formation. However, the mechanisms involved in the promotion of vascular and bone regeneration by the nervous system have not yet been established. In addition, simultaneous neurogenesis and vascularization in bone tissue engineering have not been fully investigated. This article represents the first review on the effects of innervation in enhancing angiogenesis and osteogenesis in bone and dental tissue engineering. Cutting-edge research on the effects of innervation through biomaterials on bone and dental tissue repairs is reviewed. The effects of various nerve-related factors and cells on bone regeneration are discussed. Finally, novel clinical applications of innervation for bone, dental, and craniofacial tissue regeneration are also examined.


Subject(s)
Bone and Bones , Neovascularization, Physiologic , Osteogenesis , Tissue Engineering , Tissue Engineering/methods , Humans , Animals , Bone and Bones/blood supply , Bone and Bones/innervation , Bone Regeneration/drug effects , Tooth/innervation , Angiogenesis
2.
Pharmaceutics ; 15(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37765220

ABSTRACT

Cyclodextrins are present in a variety of oral hygiene compositions. The present work describes the role of cyclodextrins in several toothpastes and mouthwashes that are already available in the market, as well as their prospective use in other applications as investigated in studies in the literature. Moreover, cyclodextrins are under study for the development of materials used in various techniques of dental repair, such as fillings, cements and binders therein. Their role in each of the innovative materials is presented. Finally, the prospect of the use of cyclodextrin-based delivery systems for the oral cavity is introduced, with a focus on new cyclodextrin molecules with dual action as bone-targeting agents and osteogenic drugs, and on new cross-linked cyclodextrin particles with a high drug loading and sustained drug delivery profile for the treatment of diseases that require prolonged action, such as periodontitis. In conclusion, cyclodextrins are herein demonstrated to act as versatile and multi-action ingredients with a broad range of applications in dentistry.

3.
Stem Cells ; 33(8): 2586-95, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25865138

ABSTRACT

Characterizing stem cell intrinsic functions is an ongoing challenge for cell therapies. Here, we report that two independent A4 and H8 stem cell lines isolated from mouse molar pulp display the overall functions of bioaminergic cells. Both clones produce neurotrophins and synthesize, catabolize, store, and transport serotonin (5-hydroxytryptamine [5-HT]) and dopamine (DA). They express 5-HT1D,2B,7 and D1,3 autoreceptors, which render pulpal stem cells competent to respond to circulating 5-HT and DA. We show that injury-activated platelets are the source of systemic 5-HT and DA necessary for dental repair since natural dentin reparation is impaired in two rat models with monoamine storage-deficient blood platelets. Moreover, selective inhibition of either D1, D3, 5-HT2B, or 5-HT7 receptor within the pulp of wild-type rat molars after lesion alters the reparative process. Altogether our data argue that 5-HT and DA coreleased by pulp injury-activated platelets are critical for stem cell-mediated dental repair through 5-HT and DA receptor signalings.


Subject(s)
Blood Platelets/metabolism , Dental Pulp/metabolism , Dopamine/metabolism , Serotonin/metabolism , Stem Cells/metabolism , Animals , Blood Platelets/cytology , Cell Line , Mice , Rats , Receptors, Calcitriol/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Serotonin/metabolism , Stem Cells/cytology
4.
Biotechnol Adv ; 32(4): 744-60, 2014.
Article in English | MEDLINE | ID: mdl-24211471

ABSTRACT

The self-assembly of apatite and proteins is a critical process to induce the formation of the bones and teeth in vertebrates. Although hierarchical structures and biomineralization mechanisms of the mineralized tissues have been intensively studied, most researches focus on the self-assembly biomimetic route using one single-molecular template, while the natural bone is an outcome of a multi-molecular template co-assembly process. Inspired by such a mechanism in nature, a novel strategy based on multi-molecular template co-assembly for fabricating bone-like hybrid materials was firstly proposed by the authors. In this review article we have summarized the new trends from single-molecular template to bi-/multi-molecular template systems in biomimetic fabrication of apatite hybrid materials. So far, many novel apatite hybrid materials with controlled morphologies and hierarchical structures have been successfully achieved using bi-/multi-molecular template strategy, and are found to have multiple common features in comparison with natural mineralized tissues. The carboxyl, carbonyl and amino groups of the template molecules are identified to initiate the nucleation of calcium phosphate during the assembling process. For bi-/multi-molecular templates, the incorporation of multiple promotion sites for calcium and phosphate ions precisely enables to regulate the apatite nucleation from the early stage. The roles of acidic molecules and the synergetic effects of protein templates have been significantly recognized in recent studies. In addition, a specific attention is paid to self-assembling of apatite nanoparticles into ordered structures on tissue regenerative scaffolds due to their promising clinical applications ranging from implant grafts, coatings to drug and gene delivery.


Subject(s)
Biomimetics , Biotechnology/methods , Calcium Phosphates/chemistry , Fibroins/chemistry , Tissue Engineering/instrumentation , Animals , Biotechnology/trends , Bone Substitutes/chemistry , Bone and Bones/drug effects , Collagen/chemistry , Drug Delivery Systems , Gene Transfer Techniques , Humans , Ions/chemistry , Molecular Dynamics Simulation , Nanostructures , Nanotechnology/methods , Nanotechnology/trends , Peptides/chemistry , Tissue Engineering/methods , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL