Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202411889, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086010

ABSTRACT

The stereochemistry of shape-persistent molecular cages, particularly those resembling prisms, exerts significant influence on their application-specific functionalities. Although methods exist for fabricating inherently chiral prism-like cages, strategies for catalytic asymmetric synthesis of these structures in a diversity-oriented fashion remain unexplored. Herein, we introduce an unprecedented organocatalytic desymmetrization approach for the generation of inherently chiral prism-like cages via phosphonium-containing foldamer-catalyzed SNAr reactions. This methodology establishes a topological connection, enabling the facile assembly of a wide range of versatile stereogenic-at-cage building blocks possessing two highly modifiable groups. Furthermore, subsequent stereospecific transformations of the remaining chlorides and/or ethers afford convenient access to numerous functionally relevant chiral-at-cage molecules.

2.
Angew Chem Int Ed Engl ; : e202409125, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115054

ABSTRACT

Coordination engineering strategy for optimizing the catalytic performance of single-atom catalysts (SACs) has been rapidly developed over the last decade. However, previous reports on copper SACs for nitrate reduction reactions (NO3RR) have mostly focused on symmetric coordination configurations such as Cu-N4 and Cu-N3. In addition, the mechanism in terms of the regulation of coordination environment and catalytic properties of SACs has not been well demonstrated. Herein, we disrupted the local symmetric structure of copper atoms by introducing unsaturated heteroatomic coordination of Cu-O and Cu-N to achieve the coordination desymmetrization of Cu-N1O2 SACs. The Cu-N1O2 SACs exhibit an efficient nitrate-to-ammonia conversion with a high FE of ~96.5 % and a yield rate of 3120 µg NH3 h-1 cm-2 at -0.60 V vs RHE. As indicated by in situ Raman spectra, the catalysts facilitate the accumulation of NO3 - and the selective adsorption of *NO2, which were further confirmed by the theoretical study of surface dipole moment and orbital hybridization. Our work illustrated the correlation between the coordination desymmetrization and the catalytic performance of copper SACs for NO3RR.

3.
Angew Chem Int Ed Engl ; : e202411232, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056890

ABSTRACT

Cu-catalyzed asymmetric allylic borylation of 3,3'-disubstituted 1-vinylcyclobutan-1-ols renders axially chiral allylborane systems, with high asymmetric induction for both enantiomers, by precise selection of the cis or trans substrate. The enantioenriched alkylidenecyclobutanes served as chiral platform to prove the conceptually challenging transference of the axial-to-point chirality through two new stereocenters and one pseudoasymmetric carbon generated via diastereoconvergent allylation of aldehydes, without enantioselective erosion.

4.
Angew Chem Int Ed Engl ; : e202410628, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973580

ABSTRACT

Inherently chiral calix[4]arenes represent a unique type of chiral molecules with significant applications, yet their catalytic enantioselective synthesis remains largely underexplored. We report herein the catalytic enantioselective synthesis of inherently chiral calix[4]arenes through the sequential organocatalyzed enantioselective Povarov reaction and aromatizations. The chiral phosphoric acid catalyzed three-component Povarov reaction involving amino group-substituted calix[4]arenes, aldehydes and (di)enamides desymmetrized the prochiral calix[4]arene substrates, which was followed by various aromatization methods, resulting in a diverse array of novel quinoline-containing calix[4]arenes with good yields and high enantioselectivities (up to 75% yield, 99% ee). The large-scale enantioselective synthesis and diverse derivatizations of the chiral calix[4]arene products highlight the value of this method. Furthermore, preliminary exploration into their photophysical and chiroptical properties demonstrate the potential applications of these novel calix[4]arene molecules.

5.
Adv Sci (Weinh) ; : e2403125, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014550

ABSTRACT

Axially chiral diaryl ethers represent a distinct class of atropisomers, characterized by a unique dual C─O axes system, which have been found in a variety of natural products, pharmaceuticals, and ligands. However, the catalytic enantioselective synthesis of these atropoisomers poses significant challenges, due to the difficulty in controlling both chiral C─O axes, and their more flexible conformations. Herein, an efficient protocol for catalytic enantioselective synthesis of axially chiral diaryl ethers is presented using organocatalyzed asymmetric Povarov reaction-enabled desymmetrization, followed by aromatizations. This method yields a wide range of novel quinoline-based diaryl ether atropoisomers in good yields and high enantioselectivities. Notably, various aromatization protocols are developed, resulting in a diverse set of polysubstituted quinoline-containing diaryl ether atropisomers. Thermal racemization studies suggested excellent configurational stabilities for these novel diaryl ether atropisomers (with racemization barriers up to 38.1 kcal mol-1). Moreover, this research demonstrates for the first time that diaryl ether atropisomers lacking the bulky t-Bu group can still maintain a stable configuration, challenging the prior knowledge in the field. The fruitful derivatizations of the functional group-rich chiral products further underscore the value of this method.

6.
Beilstein J Org Chem ; 20: 1376-1395, 2024.
Article in English | MEDLINE | ID: mdl-38919603

ABSTRACT

The Cannizzaro reaction has emerged as a versatile synthetic tool for the construction of functionalized molecules. Dating back to the 19th century, this reaction, though initially used for the synthesis of an alcohol and acid functionality from aldehydes, has henceforth proven useful to generate diverse molecular entities using both intermolecular and intramolecular synthetic strategies. Immense applications in the synthesis of hydroxy acids and esters, heterocycles, fused carbocycles, natural products, and others with broad substrate scope have raised profound interest from methodological and synthetic standpoints. The ongoing development of reagents, solvents, and technologies for the Cannizzaro reaction reflects the broader trend in organic synthesis towards more sustainable and efficient practices. The focus of this review is to highlight some recent advances in synthetic strategies and applications of the Cannizzaro reaction towards the synthesis of potentially useful molecules.

7.
Nat Prod Res ; : 1-11, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712549

ABSTRACT

Herein, the manuscript presents a chemoenzymatic formal synthetic route of (+)-brazilin, a homoisoflavonoid natural product with a chroman skeleton cis-fused with a 2,3-dihydro-1H-indene unit, which is isolated from the traditional Chinese medicine, Caesalpinia sappan L. The key feature of the synthetic strategy includes an enzyme-mediated desymmetrization by employing lipase from Candida antarctica type B (CALB) and a one-pot SN2/hydrolysis reaction.

8.
Beilstein J Org Chem ; 20: 940-949, 2024.
Article in English | MEDLINE | ID: mdl-38711594

ABSTRACT

We report herein an enantioselective palladium-catalyzed Heck-Matsuda reaction for the desymmetrization of N-protected 2,5-dihydro-1H-pyrroles with aryldiazonium salts, using the chiral N,N-ligand (S)-PyraBox. This strategy has allowed straightforward access to a diversity of 4-aryl-γ-lactams via Heck arylation followed by a sequential Jones oxidation. The overall method displays a broad scope and good enantioselectivity, favoring the (R) enantiomer. The applicability of the protocol is highlighted by the efficient enantioselective syntheses of the selective phosphodiesterase-4-inhibitor rolipram and the commercial drug baclofen as hydrochloride.

9.
Angew Chem Int Ed Engl ; 63(31): e202404979, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38745374

ABSTRACT

The control of noncarbon stereogenic centers is of profound importance owing to their enormous interest in bioactive compounds and chiral catalyst or ligand design for enantioselective synthesis. Despite various elegant approaches have been achieved for construction of S-, P-, Si- and B-stereocenters over the past decades, the catalyst-controlled strategies to govern the formation of N-stereogenic compounds have garnered less attention. Here, we disclose the first organocatalytic approach for efficient access to a wide range of nitrogen-stereogenic compounds through a desymmetrization approach. Intriguingly, the pro-chiral remote diols, which are previously not well addressed with enantiocontrol, are well differentiated by potent chiral carbene-bound acyl azolium intermediates. Preliminary studies shed insights on the critical importance of the ionic hydrogen bond (IHB) formed between the dimer aggregate of diols to afford the chiral N-oxide products that feature a tetrahedral nitrogen as the sole stereogenic element with good yields and excellent enantioselectivities. Notably, the chiral N-oxide products could offer an attractive strategy for chiral ligand design and discovery of potential antibacterial agrochemicals.

10.
Angew Chem Int Ed Engl ; 63(34): e202407127, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38818628

ABSTRACT

A highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-ß-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.

11.
Angew Chem Int Ed Engl ; 63(18): e202400673, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38381534

ABSTRACT

A broadly improved second generation catalytic two-phase strategy for the enantioselective synthesis of stereogenic at phosphorus (V) compounds is described. This protocol, consisting of a bifunctional iminophosphorane (BIMP) catalyzed nucleophilic desymmetrization of prochiral, bench stable P(V) precursors and subsequent enantiospecific substitution allows for divergent access to a wide range of C-, N-, O- and S- substituted P(V) containing compounds from a handful of enantioenriched intermediates. A new ureidopeptide BIMP catalyst/thiaziolidinone leaving group combination allowed for a far wider substrate scope and increased reaction efficiency and practicality over previously established protocols. The resulting enantioenriched intermediates could then be transformed into an even greater range of distinct classes of P(V) compounds by displacement of the remaining leaving group as well as allowing for even further diversification downstream. Density functional theory (DFT) calculations were performed to pinpoint the origin of enantioselectivity for the BIMP-catalyzed desymmetrization, to rationalize how a superior catalyst/leaving group combination leads to increased generality in our second-generation catalytic system, as well as shed light onto observed stereochemical retention and inversion pathways when performing late-stage enantiospecific SN2@P reactions with Grignard reagents.

12.
Chemistry ; 30(20): e202304078, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38311856

ABSTRACT

An asymmetric double desymmetrization methodology has been developed for synthesizing densely functionalized chiral cyclopentylcyclohexane scaffolds. We have constructed four chiral centers, including an all-carbon quaternary stereocenter in a single C-C bond formation event. The methodology has high functional-group tolerance and delivers a broad range of enantioenriched products. This vinylogous Michael addition reaction of prochiral α,α-dicyanocyclohexane to 2,2-disubstituted cyclopentene-1,3-dione is catalyzed by a chiral Ag-(R)-DTBM-SEGPHOS catalyst.

13.
Angew Chem Int Ed Engl ; 63(1): e202315092, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37943545

ABSTRACT

A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.

14.
Angew Chem Int Ed Engl ; 63(4): e202314228, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38019184

ABSTRACT

Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.

15.
Angew Chem Int Ed Engl ; 63(5): e202318475, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38078602

ABSTRACT

The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.

16.
Angew Chem Int Ed Engl ; 62(52): e202311709, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37986240

ABSTRACT

Axially chiral diaryl ethers, a distinguished class of atropisomers possessing unique dual C-O axis, hold immense potential for diverse research domains. In contrast to the catalytic enantioselective synthesis of conventional single axis bearing atropisomers, the atroposelective synthesis of axially chiral ethers containing flexible C-O axis remains a significant challenge. Herein, we demonstrate the first N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. Mechanistically, the reaction proceeds via NHC-catalyzed desymmetrization strategy to afford the corresponding axially chiral diaryl ether atropisomers in good yields and high enantioselectivities under mild conditions. The derivatization of the synthesized product expands the utility of present strategy via access to a library of C-O axially chiral compounds. The temperature dependency and preliminary investigations on the racemization barrier of C-O bonds are also presented.

17.
Adv Sci (Weinh) ; 10(36): e2305768, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37907424

ABSTRACT

A method of desymmetrization of geminal difluoroalkanes using frustrated Lewis pair (FLP) mediated monoselective C-F activation where a chiral sulfide is the Lewis base component is reported. The stereoselective reaction provides generally high yields of diastereomeric sulfonium salts with dr of up to 95:5. The distribution of diastereomers is found to be thermodynamically controlled via facile sulfide exchange. The use of enantiopure chiral sulfides allows for high stereospecificity in nucleophilic substitution reactions and the formation of stereoenriched products.

18.
Angew Chem Int Ed Engl ; 62(49): e202313503, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37852934

ABSTRACT

Four-membered carbocycles are important structural motifs found in several natural products and drugs. Amongst those, cyclobutenes are attractive intermediates because the residual olefin can be manipulated selectively into various saturated and unsaturated analogs. Few methods exist to access chiral tri- and tetra-C-substituted cyclobutenes and they are generally limited in terms of diversification. Herein, a divergent synthetic strategy was developed where a single optically enriched scaffold is diversified into a variety of derivatives with different substitution patterns. To this end, the enantioselective desymmetrization of prochiral 1,2-dibromocyclobutene imides was enabled by a dual Ir/Ni-catalyzed photoredox C(sp2 )-C(sp3 ) cross-coupling with an alkyltrifluoroborate salt to install a convertible carbon fragment in good yields and >90 % enantiomeric excess. Exceptional mono-coupling selectivity is observed and the resulting chiral bromocyclobutene serves as a common scaffold that can be transformed in a divergent manner into several valuable 1,2,3,4-tetra-C-substituted cyclobutane products while maintaining optical purity.

19.
ChemMedChem ; 18(22): e202300399, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37788979

ABSTRACT

Mycobacterium tuberculosis (Mtb) causes tuberculosis as one major threat to human health, which has been deteriorated owing to the emerging multidrug resistance. Mtb contains a complex lipophilic cell wall structure that is important for bacterial persistence. Among the lipid components, sulfoglycolipids (SGLs), known to induce immune cell responses, are composed of a trehalose core attached with a conserved sulfate group and 1-4 fatty acyl chains in an asymmetric pattern. At least one of these acyl chains is polymethylated with 3-12 methyl branches. Although Mtb SGL can be isolated from bacterial culture, resulting SGL is still a homologous mixture, impeding accurate research studies. This up-to-date review covers the chemical synthesis and immunological studies of Mtb SGLs and structural analogues, with an emphasis on the development of new glycosylation methods and the asymmetric synthesis of polymethylated scaffolds. Both are critical to advance further research on biological functions of these complicated SGLs.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Glycolipids/chemistry , Tuberculosis/drug therapy , Glycosylation
20.
Molecules ; 28(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37513245

ABSTRACT

In this research, a metal-free diastereoselective formal 1,3-dipolar cycloaddition of N-2,2,2-trifluoroethylisatin ketimines and cyclopentene-1,3-diones which can efficiently lead to the desymmetrization of cyclopentene-1,3-diones is developed. With the developed protocol, a series of tetracyclic spirooxindoles containing pyrrolidine and cyclopentane subunits can be smoothly obtained with good results (up to 99% yield and 91:9 dr). Furthermore, the methodology can be extended to trifluoromethyl-substituted iminomalonate, and the corresponding formal [3+2] cycloaddition reaction affords bicyclic heterocycles containing fused pyrrolidine and cyclopentane moieties in moderate yields with >20:1 dr. The synthetic potential of the methodology is demonstrated by the scale-up experiment and by versatile transformations of the products.

SELECTION OF CITATIONS
SEARCH DETAIL