Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Heliyon ; 10(12): e32067, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952375

ABSTRACT

Objectives: This study investigated the in vivo embryotoxicity, teratogenic potential, and additional effects of orthodontic acrylic resin as well as its components, utilizing zebrafish as a model organism. The research focused on morphological, cardiac, behavioral, and cognitive evaluations that were performed on embryos and larval-stage animals subjected to chronic exposure. Materials and methods: Embryo and larval-stage zebrafish were categorized into five experimental groups, which were further subdivided into five subgroups. These subgroups included three specific doses for each tested substance, a control with the vehicle (0.1 % dimethyl sulfoxide in water), and an absolute control (water). Assessments were performed on day 5 post-fertilization, which included morphological, cardiac, behavioral, and cognitive evaluations. All experiments had a sample size of ten animals and were performed in triplicate. Survival and hatching rates were analyzed using the Kaplan-Meier test, while other measurements were assessed using one-way analysis of variance (ANOVA), followed by the Tukey post hoc test. Results: Statistically significant differences were observed between the control and treatment groups across all the tested substances for heart rate, cognitive responsiveness, and cellular apoptosis. However, survival, hatching rate, and other parameters exhibited no significant variation, except for the highest dose in the dibutyl phthalate group, which demonstrated a notable difference in survival. Conclusions: Chronic exposure to acrylic resin and its components may be associated with decreased cognitive ability and cardiac rhythm, as well as an increase in the level of cellular apoptosis in zebrafish.

2.
Sci Total Environ ; 948: 174918, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038667

ABSTRACT

Dibutyl phthalate (DBP) is an endocrine disruptor that adversely affects reproduction; however, evidence suggests it can also impact other systems, including vascular function. The mechanisms underlying DBP-induced vascular dysfunction, particularly after long-term low-level exposure of endothelial cells to this phthalate, remain largely unknown. To address this gap, we used experimentally derived data on differentially expressed genes (DEGs) obtained after 12 weeks of exposure of human vascular endothelial cells EA.hy926 to the concentrations of DBP to which humans are routinely exposed (10-9 M, 10-8 M, and 10-7 M) and various computational tools and manual data curation to build the first adverse outcome pathway (AOP) network relevant to DBP-induced vascular toxicity. DEGs were used to infer transcription factors (molecular initiating events) and molecular functions and biological processes (key events, KEs) using the Enrichr database. The AOP-helpFinder 2.0, an artificial intelligence-based web tool, was used to link genes and KEs and assign confidence scores to co-occurred terms. We constructed the AOP networks using Cytoscape and then manually arranged KEs to depict the flow of mechanistic information across different levels of network organization. An AOP network was created for each DBP concentration, revealing several distinct high-confidence subnetworks that could be involved in DBP-induced vascular toxicity: the insulin-like growth factor subnetwork for 10-7 M DBP, the CXCL8-dependent chemokine subnetwork for 10-8 M DBP, and the fatty acid subnetwork for 10-9 M DBP. We also developed an AOP network providing a mechanistic insight into the dose-dependent effects of DBP in endothelial cells leading to vascular dysfunction. In summary, we present novel putative AOP networks describing the mechanistic flow of information involved in DBP-induced vascular dysfunction in a long-term low-level exposure scenario.

3.
J Pharm Biomed Anal ; 248: 116323, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38972227

ABSTRACT

Taking advantage of the competitive binding affinity towards Ti(IV) between 4-(2-pyridylazo) resorcinol (PAR) and phthalate, a simple indicator displacement (ID)-based colorimetric assay was designed for indirect determination of a well-known phthalic acid ester, dibutyl phthalate (DBP). The indicator PAR and Ti(IV) formed a purplish-red-colored Ti(IV)-PAR complex (λmax = 540 nm) at a 1:1 ratio. In the presence of pre-hydrolyzed DBP, colorless complex formation of phthalate ion (emerging from alkaline hydrolysis of DBP) with Ti(IV) resulted in a hypsochromic shift in absorbance maximum, accompanying a color change from purplish-red to yellowish-orange (λmax = 390 nm) by the release of PAR from Ti(IV)-PAR system. Based on this mechanism, the linear response range of the system for DBP was found to lie between 0.16 and 0.37 mmol L-1 with an experimental detection limit of 11.6 µmol L-1. The recommended Ti(IV)-PAR system was successfully applied to DBP-containing pharmaceutical products (as real sample) after a simple clean-up process for removing possible water-soluble interferents. The analytical results obtained from the recommended method (by applying the standard addition approach) and the reference liquid chromatography-tandem mass spectrometric (LC-MS/MS) method were statistically compared using DBP-extract of the drug samples. Consequently, a simple and selective colorimetric ID strategy was proposed for the analysis of DBP in pharmaceuticals for the first time.


Subject(s)
Colorimetry , Dibutyl Phthalate , Limit of Detection , Resorcinols , Titanium , Colorimetry/methods , Resorcinols/chemistry , Resorcinols/analysis , Titanium/chemistry , Dibutyl Phthalate/analysis , Dibutyl Phthalate/chemistry , Tandem Mass Spectrometry/methods , Hydrolysis , Chromatography, High Pressure Liquid/methods
4.
Chem Biol Interact ; 399: 111120, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944327

ABSTRACT

Dibutyl phthalate (DBP) is widely used in many consumer and personal care products. Here, we report vascular endothelial response to DBP in three different exposure scenarios: after short-term exposure (24 h) of human endothelial cells (ECs) EA.hy926 to 10-6, 10-5, and 10-4 M DBP, long-term exposure (12 weeks) of EA.hy926 cells to 10-9, 10-8, and 10-7 M DBP, and exposure of rats (28 and 90 days) to 100, 500, and 5000 mg DBP/kg food. We examined different vascular functions such as migration of ECs, adhesion of ECs to the extracellular matrix, tube formation, the morphology of rat aorta, as well as several signaling pathways involved in controlling endothelial function. Short-term in vitro exposure to DBP increased migration of ECs through G protein-coupled estrogen receptor, extracellular signal-regulated kinase 1/2, and nitric oxide (NO) signaling and decreased adhesion to gelatin. Long-term in vitro exposure to DBP transiently increased EC migration and had a bidirectional effect on EC adhesion to gelatin and tube formation. These effects were accompanied by a sustained increase in NO production and endothelial NO synthase (eNOS) and Akt activity. In vivo, exposure to DBP for 90 days decreased the aortic wall-to-lumen ratio and increased eNOS and Akt phosphorylation in ECs of rat aorta. This comparative investigation has shown that exposure to DBP may affect vascular function by altering EC migration, adhesion to gelatin, and tube formation after short- and long-term in vitro exposure and by decreasing the aortic wall-to-lumen ratio in vivo. The eNOS-NO and Akt signaling could be important in mediating the effects of DBP in long-term exposure scenarios.

5.
Heliyon ; 10(11): e31880, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845962

ABSTRACT

The impact of emerging pollutants such as ibuprofen and dibutyl phthalate on aquatic species is a growing concern and the need for proper assessment and evaluation of these toxicants is imperative. The objective of this study was to examine the toxicogenomic impacts of ibuprofen and dibutyl phthalate on Clarias gariepinus, a widely distributed African catfish species. Results showed that exposure to the test compounds caused significant changes in gene expression, including upregulation of growth hormone, interleukin, melatonin receptors, 17ß-Hydroxysteroid Dehydrogenase, heat shock protein, doublesex, and mab-3 related transcription factor. On the other hand, expression of forkhead Box Protein L2 and cytochrome P450 was downregulated, revealing a potential to induce female to male sex reversal. The binding affinities and hydrophobic interactions of the test compounds with the reference genes were also studied, showing that ibuprofen had the lowest binding energy and the highest affinity for the docked genes. Both compounds revealed a mutual molecular interaction with amino acids residues within the catalytic cavity of the docked genes. These results provide new insights into the toxic effects of ibuprofen and dibutyl phthalate on Clarias gariepinus, contributing to a better understanding of the environmental impact of these pollutants.

6.
Aquat Toxicol ; 272: 106980, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838504

ABSTRACT

Dibutyl phthalate (DBP) is a widely-used plasticizer that is dispersed in various environments, causing significant pollution and health risks. The toxic mechanism of DBP has been discussed in recent years, while the susceptibility of mitochondrial DNA (mtDNA) to DBP exposure and the resulting damage remain unclear. In this study, maternal zebrafish were exposed to environmentally relevant concentration of DBP for 0, 2, 4, and 6 weeks. Results showed that DBP exposure impaired health status, leading to the reduced body length and weight, condition factor, hepatosomatic index, and gonadosomatic index. Furthermore, DBP exposure induced oxidative stress and ATP deficiency in the gill and liver in a time-dependent manner. The oxidized mtDNA (ox-mtDNA) levels in the D-loop and ND1 regions were assessed in different tissues, showing distinct response patterns. The high energy-consuming tissues such as heart, brain, gill, and liver exhibited elevated susceptibility to mitochondrial damage, with a rapid increase in ox-mtDNA levels in the short term. Conversely, in muscle, ovary, eggs, and offspring, ox-mtDNA gradually accumulated over the exposure period. Notably, the ox-mtDNA levels in the D-loop region of blood showed a prompt response to DBP exposure, making it convenient for evaluation. Additionally, decreased hatching rates, increased mortality, lipoperoxidation, and depressed swimming performance were observed in offspring following maternal DBP exposure, suggesting the inherited impairments of maternal mtDNA. These findings highlight the potential for ox-mtDNA to serve as a convenient biomarker for environmental contamination, aiding in ecological risk assessment and forewarning systems in aquatic environment.


Subject(s)
DNA, Mitochondrial , Dibutyl Phthalate , Oxidative Stress , Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Dibutyl Phthalate/toxicity , Female , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/genetics , Oxidative Stress/drug effects , Gills/drug effects , Gills/metabolism , Maternal Exposure , DNA Damage , Liver/drug effects
7.
Environ Res ; 257: 119403, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38871274

ABSTRACT

Commonly utilized as a plasticizer in the food and chemical sectors, Dibutyl phthalate (DBP) poses threats to the environment and human well-being as it seeps or moves into the surroundings. Nevertheless, research on the harmfulness of DBP to aquatic organisms is limited, and its impact on stem cells and tissue regeneration remains unidentified. Planarians, recognized for their robust regenerative capabilities and sensitivity to aquatic pollutants, are emerging animal models in toxicology. This study investigated the comprehensive toxicity effects of environmentally relevant levels of DBP on planarians. It revealed potential toxicity mechanisms through the use of immunofluorescence, chromatin dispersion assay, Western blot, quantitative real-time fluorescence quantitative PCR (qRT-PCR), chromatin behavioral and histological analyses, immunofluorescence, and terminal dUTP nickel-end labeling (TUNEL). Findings illustrated that DBP caused morphological and motor abnormalities, tissue damage, regenerative inhibition, and developmental neurotoxicity. Further research revealed increased apoptosis and suppressed stem cell proliferation and differentiation, disrupting a balance of cell proliferation and death, ultimately leading to morphological defects and functional abnormalities. This was attributed to oxidative stress and DNA damage caused by excessive release of reactive oxygen species (ROS). This exploration furnishes fresh perspectives on evaluating the toxicity peril posed by DBP in aquatic organisms.


Subject(s)
Dibutyl Phthalate , Planarians , Regeneration , Water Pollutants, Chemical , Animals , Dibutyl Phthalate/toxicity , Planarians/drug effects , Planarians/physiology , Water Pollutants, Chemical/toxicity , Regeneration/drug effects , Ecotoxicology , Oxidative Stress/drug effects , Plasticizers/toxicity , Apoptosis/drug effects
8.
Environ Technol ; : 1-15, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820597

ABSTRACT

Plasticisers, such as dibutyl phthalate (DBP), are contaminants of emerging concern (CEC) that are toxic to living things and the environment. Unlike hydrophilic pollutants, DBP shows the characteristics of hydrophilic and hydrophobic nature which makes its degradation or removal difficult using conventional treatment technologies. The current study explored the potential of photocatalysis followed by electrocatalytic oxidation (PC + EC) using vanadium pentoxide (V2O5) and carbon-coated titanium (C/Ti) anode for the removal of 75 mg L-1 DBP from water. The structural stability and changes in the functional groups after treatment of the catalyst were determined using powder XRD and FTIR studies that found the catalyst structure to be stable. Optimization studies showed that UV-A (315-400 nm) irradiation source, 112 mA cm-2 current density, 50 mg L-1 catalyst dosage, 360 min PC, 210 min EC at pH 3 and 20 mM sodium sulphate managed to degrade 99.5% of DBP with 97% COD and 87.7% TOC removal. Compared to electrocatalytic oxidation (EC), PC + EC showed 40% higher TOC removal. Reusability studies found the reduction of 45% for COD removal after four treatment cycles with V2O5, while the anode material showed no considerable decrease in its degradation efficiency. High-resolution mass spectrometry (HRMS) studies established that complete degradation was preceded by the oxidation of DBP to phthalic anhydride and phthalic acid responsible for the increase in TOC during the initial treatment period. Overall, this study lays out insights for the application of photo-electrocatlytic oxidation for the removal of ubiquitous poorly soluble water pollutants such as phthalates.

9.
Aquat Toxicol ; 272: 106962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797068

ABSTRACT

Diisobutyl phthalate (DiBP), is widely chemical replacement for Dibutyl phthalate (DBP). Although DBP and DiBP have been detected in surface water worldwide, few studies to date have systematically assessed the risks of DBP and its alternatives to aquatic organisms. The present study compared DBP and DiBP for their individual and joint toxicity as well as thyroid hormone levels in zebrafish embryo. Transcripts of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were investigated in developing zebrafish larvae by application of real time polymerase chain reaction. The median half-lethal concentrations of DBP and DiBP to zebrafish at 96 h were 0.545 mg L-1 and 1.149 mg L-1, respectively. The joint toxic effect of DBP-DiBP (0.25-0.53 mg L-1) with the same ratio showed a synergistic effect. Thyroid hormones levels increased with exposure to 10 µg L-1 of DBP or 50 µg L-1 of DiBP, and exposure to both compounds significantly increased thyroid gland-specific transcription of thyroglobulin gene (tg), hyronine deiodinase (dio2), and transthyretin (ttr), indicating an adverse effect associated with the HPT axis. Molecular docking results indicated that DBP (-7.10 kcal/M and -7.53 kcal/M) and DiBP (-6.63 kcal/M and -7.42 kcal/M) had the same docking energy with thyroid hormone receptors. Our data facilities an understand of potential harmful effects of DBP and its alternative (DiBP).


Subject(s)
Dibutyl Phthalate , Embryo, Nonmammalian , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/genetics , Dibutyl Phthalate/toxicity , Dibutyl Phthalate/analogs & derivatives , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Phthalic Acids/toxicity , Thyroid Hormones/metabolism , Larva/drug effects , Larva/growth & development , Larva/genetics , Thyroid Gland/drug effects , Gene Expression Regulation, Developmental/drug effects
10.
Food Chem ; 452: 139430, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38713984

ABSTRACT

As emerging contaminants, microplastics threaten food and environmental safety. Dibutyl phthalate (DBP, released from microplastics) and benzo[a]pyrene (BaP, adsorbed on microplastics) coexisted in food and the environment, harming human health, requesting a sensitive and simultaneous testing method to monitor. To address current sensitivity, simultaneousness, and on-site portability challenges during dual targets in complex matrixes, CuCo2S4/Fe3O4 nanoflower was designed to develop a smartphone-assisted photoelectrochemical point-of-care test (PEC POCT). The carrier transfer mechanism in CuCo2S4/Fe3O4 was proven via density functional theory calculation. Under optimal conditions, the PEC POCT showed low detection limits of 0.126, and 0.132 pg/mL, wide linearity of 0.001-500, and 0.0005-50 ng/mL for DBP and BaP, respectively. The smartphone-assisted PEC POCT demonstrated satisfied recoveries (80.00%-119.63%) in real samples. Coherent results were recorded by comparing the PEC POCT to GC-MS (DBP) and HPLC (BaP). This novel method provides a practical platform for simultaneous POCT for food safety and environment monitoring.


Subject(s)
Electrochemical Techniques , Food Contamination , Microplastics , Smartphone , Food Contamination/analysis , Microplastics/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Copper/analysis , Copper/chemistry , Benzo(a)pyrene/analysis , Dibutyl Phthalate/analysis
11.
Chemosphere ; 357: 142108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657698

ABSTRACT

Numerous studies reported the concentration of agonists of aryl hydrocarbon receptor (AhR) in indoor dust by target chemical analysis or the biological effects of activating the AhR by indoor extracts, but the major AhR agonists identification in indoor dust were rarely researched. In the present study, the indoor dust samples were collected for 7-ethoxyresorufin O-deethylase (EROD) assay and both non-targeted and targeted chemical analysis for AhR agonists by gas chromatography quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry analysis. Coupled with non-targeted analysis and toxicity Forecaster (ToxCast)/Tox21 database, 104 ToxCast chemicals were screened to be able to induce EROD response. The combination of targeted chemical analyses and biological effects evaluation indicated that PAHs, dibutyl phthalate (DBP) and Cypermethrin might be the important AhR-agonists in different indoor dust and mainly contributed in 1.84%-97.56 % (median: 26.62%) of total observed biological effects through comparing toxic equivalency quotient derived from chemical analysis with biological equivalences derived from bioassay. DBP and cypermethrin seldom reported in the analysis of AhR agonists should raise great concern. In addition, the present results in experiment of synthetic solution of 4 selected AhR-agonists pointed out that some unidentified AhR agonists existed in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Gas Chromatography-Mass Spectrometry , Receptors, Aryl Hydrocarbon , Dust/analysis , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Environmental Monitoring/methods , Pyrethrins/analysis , Pyrethrins/toxicity , Cytochrome P-450 CYP1A1/metabolism , Humans , Air Pollutants/analysis , Air Pollutants/toxicity , Databases, Factual
12.
Environ Pollut ; 349: 123917, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583794

ABSTRACT

Phthalate esters (PAEs) are plasticizers widely used in the industry and easily released into the environment, posing a serious threat to human health. Molecularly imprinted polymers (MIPs) are important as selective adsorbents for the removal of PAEs. In this study, three kinds of mussel-inspired MIPs for the removal of PAEs were first prepared with gallic acid (GA), hexanediamine (HD), tannic acid (TA), and dopamine (DA) under mild conditions. The adsorption results showed that the MIP with low cost derived from GA and HD (GAHD-MIP) obtained the highest adsorption capacity among these materials. Furthermore, 97.43% of equilibrium capacity could be reached within the first 5 min of adsorption. Especially, the dummy template of diallyl phthalate (DAP) with low toxicity was observed to be more suitable to prepare MIPs than dibutyl phthalate (DBP), although DBP was the target of adsorption. The adsorption process was in accordance with the pseudo-second-order kinetics model. In the isotherm analysis, the adsorption behavior agreed with the Freundlich model. Additionally, the material maintained high adsorption performance after 7 cycles of regeneration tests. The GAHD-MIP adsorbents in this study, with low cost, rapid adsorption equilibrium, green raw materials, and low toxicity dummy template, provide a valuable reference for the design and development of new MIPs.


Subject(s)
Dibutyl Phthalate , Gallic Acid , Molecularly Imprinted Polymers , Water Pollutants, Chemical , Adsorption , Dibutyl Phthalate/chemistry , Water Pollutants, Chemical/chemistry , Gallic Acid/chemistry , Molecularly Imprinted Polymers/chemistry , Phthalic Acids/chemistry , Kinetics , Water Purification/methods
13.
Food Chem Toxicol ; 188: 114663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631435

ABSTRACT

The effect of endothelial cells' exposure to dibutyl phthalate (DBP) on monocyte adhesion is largely unknown. We evaluated monocyte adhesion to DBP-exposed endothelial cells by combining three approaches: short-term exposure (24 h) of EA.hy926 cells to 10-6, 10-5, and 10-4 M DBP, long-term exposure (12 weeks) of EA.hy926 cells to 10-9, 10-8, and 10-7 M DBP, and exposure of rats (28 and 90 days) to 100, 500, and 5000 mg DBP/kg food. Monocyte adhesion to human EA.hy926 and rat aortic endothelial cells, expression of selected cellular adhesion molecules and chemokines, and the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) were analyzed. We observed increased monocyte adhesion to DBP-exposed EA.hy926 cells in vitro and to rat aortic endothelium ex vivo. ERK1/2 inhibitor prevented monocyte adhesion to DBP-exposed EA.hy926 cells in short-term exposure experiments. Increased ERK1/2 phosphorylation in rat aortic endothelium and transient decrease in ERK1/2 activation following long-term exposure of EA.hy926 cells to DBP were also observed. In summary, exposure of endothelial cells to DBP promotes monocyte adhesion, thus suggesting a possible role for this phthalate in the development of atherosclerosis. ERK1/2 signaling could be the mediator of monocyte adhesion to DBP-exposed endothelial cells, but only after short-term high-level exposure.


Subject(s)
Cell Adhesion , Dibutyl Phthalate , Endothelial Cells , Monocytes , Dibutyl Phthalate/toxicity , Animals , Monocytes/drug effects , Monocytes/metabolism , Cell Adhesion/drug effects , Humans , Rats , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Male , Aorta/drug effects , Aorta/cytology , Cell Line , Phosphorylation/drug effects
14.
Environ Sci Technol ; 58(18): 7731-7742, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38662601

ABSTRACT

Plastics contaminations are found globally and fit the exposure profile of the planetary boundary threat. The plasticizer of dibutyl phthalate (DBP) leaching has occurred and poses a great threat to human health and the ecosystem for decades, and its toxic mechanism needs further comprehensive elucidation. In this study, environmentally relevant levels of DBP were used for exposure, and the developmental process, oxidative stress, mitochondrial ultrastructure and function, mitochondrial DNA (mtDNA) instability and release, and mtDNA-cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway with inflammatory responses were measured in zebrafish at early life stage. Results showed that DBP exposure caused developmental impairments of heart rate, hatching rate, body length, and mortality in zebrafish embryo. Additionally, the elevated oxidative stress damaged mitochondrial ultrastructure and function and induced oxidative damage to the mtDNA with mutations and instability of replication, transcription, and DNA methylation. The stressed mtDNA leaked into the cytosol and activated the cGAS-STING signaling pathway and inflammation, which were ameliorated by co-treatment with DBP and mitochondrial reactive oxygen species (ROS) scavenger, inhibitors of cGAS or STING. Furthermore, the larval results suggest that DBP-induced mitochondrial toxicity of energy disorder and inflammation were involved in the developmental defects of impaired swimming capability. These results enhance the interpretation of mtDNA stress-mediated health risk to environmental contaminants and contribute to the scrutiny of mitochondrial toxicants.


Subject(s)
DNA, Mitochondrial , Dibutyl Phthalate , Zebrafish , Animals , DNA, Mitochondrial/drug effects , Dibutyl Phthalate/toxicity , Oxidative Stress/drug effects
15.
Biosensors (Basel) ; 14(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38534228

ABSTRACT

Development of an efficient technique for accurate and sensitive dibutyl phthalate (DBP) determination is crucial for food safety and environment protection. An ultrasensitive molecularly imprinted polymers (MIP) voltammetric sensor was herein engineered for the specific determination of DBP using poly-l-lysine/poly(3,4-ethylenedioxythiophene)/porous graphene nanocomposite (PLL/PEDOT-PG) and poly(o-phenylenediamine)-imprinted film as a label-free and sensing platform. Fabrication of PEDOT-PG nanocomposites was achieved through a simple liquid-liquid interfacial polymerization. Subsequently, poly-l-lysine (PLL) functionalization was employed to enhance the dispersibility and stability of the prepared PEDOT-PG, as well as promote its adhesion on the sensor surface. In the presence of DBP, the imprinted poly(o-phenylenediamine) film was formed on the surface of PLL/PEDOT-PG. Investigation of the physical properties and electrochemical behavior of the MIP/PLL/PEDOT-PG indicates that the incorporation of PG into PEDOT, with PLL uniformly wrapping its surface, significantly enhanced conductivity, carrier mobility, stability, and provided a larger surface area for specific recognition sites. Under optimal experimental conditions, the electrochemical response exhibited a linear relationship with a logarithm of DBP concentration within the range of 1 fM to 5 µM, with the detection limit as low as 0.88 fM. The method demonstrated exceptional stability and repeatability and has been successfully applied to quantify DBP in plastic packaging materials.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Graphite , Molecular Imprinting , Nanocomposites , Phenylenediamines , Polymers , Dibutyl Phthalate , Molecularly Imprinted Polymers , Electrochemical Techniques/methods , Graphite/chemistry , Polylysine , Porosity , Nanocomposites/chemistry , Molecular Imprinting/methods , Limit of Detection , Electrodes
16.
Aquat Toxicol ; 269: 106881, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430782

ABSTRACT

Dibutyl phthalate (DBP) is a commonly used plasticizer that is frequently detected in water samples due to its widespread use. Titanium dioxide nanoparticles (n-TiO2) have been found to enhance the harmful effects of organic contaminants by increasing their bioavailability in aquatic environments. However, the combined toxic effects of DBP and n-TiO2 on aquatic organisms remain unclear. This study aimed to investigate the neurotoxicity of DBP and n-TiO2 synergistic exposure during the early life stage of zebrafish. The results of the study revealed that co-exposure of DBP and n-TiO2 led to an increase in deformities and a significant reduction in the active duration of zebrafish larvae. Furthermore, the co-exposure of DBP and n-TiO2 resulted in elevated levels of oxidative stress and altered gene expression related to neurodevelopment and apoptosis. Notably, n-TiO2 exacerbated the oxidative damage and apoptosis induced by DBP alone exposure. Additionally, co-exposure of the 1.0 mg/L DBP and n-TiO2 significantly affected the expression of genes associated with neurodevelopment. Moreover, disturbances in amino acid metabolism and interference with lipid metabolism were observed as a result of DBP and n-TiO2 co-exposure. In general, n-TiO2 aggravated the neurotoxicity of DBP in the early life stage of zebrafish by increasing oxidative stress, apoptosis, and disrupting amino acid synthesis and lipid metabolism. Therefore, it is essential to consider the potential risks caused by DBP and nanomaterials co-existence in the aquatic environment.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Dibutyl Phthalate/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress , Titanium/toxicity , Amino Acids/metabolism
17.
Ecotoxicol Environ Saf ; 274: 116124, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38503108

ABSTRACT

OBJECTIVE: The primary objective of this study was to investigate the toxicological impact of Dibutyl phthalate (DBP) on the process of liver fibrosis transitioning into cirrhosis and the subsequent development of portal hypertension (PHT) through the mechanism of epithelial-mesenchymal transition (EMT) mediated by the ROS/TGF-ß/Snail-1 signaling pathway. METHOD: Carbon tetrachloride (CCl4) (1 mg/kg) was introduced in adult rats by oral feeding in CCl4 and CCl4+DBP groups twice a week for 8 weeks, and twice for another 8 week in CCl4 group. DBP was introduced by oral feeding in the CCl4+DBP group twice over the following 8 weeks. We subsequently analyzed hemodynamics measurements and liver cirrhosis degree, hepatic inflammation and liver function in the different groups. EMT related genes expression in rats in the groups of Control, DBP, CCl4 and CCl4+DBP were measured by immunohistochemistry (IHC). Enzyme-linked immunosorbent Assay (ELISA), qRT-PCR, western blot were used to detect the EMT related proteins and mRNA gene expression levels in rats and primary hepatocytes (PHCs). Reactive oxygen species (ROS) were examined with a ROS detection kit. RESULTS: The results showed that the CCl4+DBP group had higher portal pressure (PP) and lower mean arterial pressure (MAP) than the other groups. Elevated collagen deposition, profibrotic factor, inflammation, EMT levels were detected in DBP and CCl4+DBP groups. ROS, TGF-ß1 and Snail-1 were highly expressed after DBP exposure in vitro. TGF-ß1 had the potential to regulate Snail-1, and both of them were subject to regulation by ROS. CONCLUSION: DBP could influence the progression of EMT through its toxicological effect by ROS/TGF-ß1/Snail-1 signalling pathway, causing cirrhosis and PHT in final. The findings of this research might contribute to a novel comprehension of the underlying toxicological mechanisms and animal model involved in the progression of cirrhosis and PHT, and potentially offered a promising therapeutic target for the treatment of the disease.


Subject(s)
Dibutyl Phthalate , Epithelial-Mesenchymal Transition , Hypertension, Portal , Transforming Growth Factor beta1 , Animals , Rats , Dibutyl Phthalate/toxicity , Fibrosis , Hypertension, Portal/chemically induced , Inflammation , Liver Cirrhosis/chemically induced , Reactive Oxygen Species , Signal Transduction , Snail Family Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism
18.
Environ Pollut ; 348: 123846, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548160

ABSTRACT

Dibutyl phthalate (DBP) contamination has raised global concern for decades, while its health risk with toxic mechanisms requires further elaboration. This study used zebrafish ZF4 cells to investigate the toxicity of ferroptosis with underlying mechanisms in response to DBP exposure. Results showed that DBP induced ferroptosis, characterized by accumulation of ferrous iron, lipid peroxidation, and decrease of glutathione peroxidase 4 levels in a time-dependent manner, subsequently reduced cell viability. Transcriptome analysis revealed that voltage-dependent anion-selective channel (VDAC) in mitochondrial outer membrane was upregulated in ferroptosis signaling pathways. Protecting mitochondria with a VDAC2 inhibitor or siRNAs attenuated the accumulation of mitochondrial superoxide and lipid peroxides, the opening of mitochondrial permeability transition pore (mPTP), and the overload of iron levels, suggesting VDAC2 oligomerization mediated the influx of iron into mitochondria that is predominant and responsible for mitochondria-dependent ferroptosis under DBP exposure. Furthermore, the pivotal role of activating transcription factor 4 (ATF4) was identified in the transcriptional regulation of vdac2 by ChIP assay. And the intervention of atf4b inhibited DBP-induced VDAC2 upregulation and oligomerization. Taken together, this study reveals that ATF4-VDAC2 signaling pathway is involved in the DBP-induced ferroptosis in zebrafish ZF4 cells, contributing to the in-depth understanding of biotoxicity and the ecological risk assessment of phthalates.


Subject(s)
Ferroptosis , Zebrafish , Animals , Dibutyl Phthalate/toxicity , Dibutyl Phthalate/metabolism , Mitochondria/metabolism , Iron/metabolism
19.
Sci Total Environ ; 926: 171852, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38518818

ABSTRACT

A comprehensive understanding of the molecular mechanisms underlying microbial catabolism of dibutyl phthalate (DBP) is still lacking. Here, we newly isolated a bacterial strain identified as Pseudomonas aeruginosa PS1 with high efficiency of DBP degradation. The degradation ratios of DBP at 100-1000 mg/L by this strain reached 80-99 % within 72 h without a lag phase. A rare DBP-degradation pathway containing two monobutyl phthalate-catabolism steps was proposed based on intermediates identified by HPLC-TOF-MS/MS. In combination with genomic and transcriptomic analyses, we identified 66 key genes involved in DBP biodegradation and revealed the genetic basis for a new complete catabolic pathway from DBP to Succinyl-CoA or Acetyl-CoA in the genus Pseudomonas for the first time. Notably, we found that a series of homologous genes in Pht and Pca clusters were simultaneously activated under DBP exposure and some key intermediate degradation related gene clusters including Pht, Pca, Xyl, Ben, and Cat exhibited a favorable coexisting pattern, which contributed the high-efficient DBP degradation ability and strong adaptability to this strain. Overall, these results broaden the knowledge of the catabolic diversity of DBP in microorganisms and enhance our understanding of the molecular mechanism underlying DBP biodegradation.


Subject(s)
Dibutyl Phthalate , Pseudomonas aeruginosa , Dibutyl Phthalate/analysis , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Multiomics , Tandem Mass Spectrometry , Biodegradation, Environmental
20.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38464211

ABSTRACT

Introduction: Dibutyl phthalate (DBP), a phthalate congener, is widely utilized in consumer products and medication coatings. Women of reproductive age have a significant burden of DBP exposure through consumer products, occupational exposure, and medication. Prenatal DBP exposure is associated with adverse pregnancy/fetal outcomes and cardiovascular diseases in the offspring. However, the role of fetal sex and the general mechanisms underlying DBP exposure-associated adverse pregnancy outcomes are unclear. We hypothesize that prenatal DBP exposure at an environmentally relevant low dosage adversely affects fetal-placental development and function during pregnancy in a fetal sex-specific manner. Methods: Adult female CD-1 mice (8-10wks) were orally treated with vehicle (control) or with environmentally relevant low DBP dosages at 0.1 µg/kg/day (refer as DBP0.1) daily from 30 days before pregnancy through gestational day (GD) 18.5. Dam body mass composition was measured non-invasively using the echo-magnetic resonance imaging system. Lipid disposition in fetal labyrinth and maternal decidual area of placentas was examined using Oil Red O staining. Results: DBP0.1 exposure did not significantly affect the body weight and adiposity of non-pregnant adult female mice nor the maternal weight gain pattern and adiposity during pregnancy in adult female mice. DBP0.1 exposure does not affect fetal weight but significantly increased the placental weight at GD18.5 (indicative of decreased placental efficiency) in a fetal sex-specific manner. We further observed that DBP0.1 significantly decreased lipid disposition in fetal labyrinth of female, but not male placentas, while it did not affect lipid disposition in maternal decidual. Conclusions: Prenatal exposure to environmentally relevant low-dosage DBP adversely impacts the fetal-placental efficiency and lipid disposition in a fetal sex-specific manner.

SELECTION OF CITATIONS
SEARCH DETAIL