Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 926
Filter
1.
Bioresour Technol ; : 131581, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39384047

ABSTRACT

Quorum sensing (QS) could regulate the behavior of microbial communities and help them resist adverse low-temperature environments. A newly isolated heterotrophic nitrification-aerobic denitrification (HN-AD) bacterium, strain YB1107, exhibited strong tolerance to harsh cold environments, removing 93.5 % of ammonia within 36 h and achieving a maximum specific growth rate of 0.28 h-1 at 10 °C. Strain YB1107 secreted large amounts of N-butanoyl-L-homoserine or N-octanoyl-L-homoserine lactones in response to cold stimuli. The add-back experiments indicated that these two signaling molecules jointly manipulated microbial physiological behavior by improving ammonia oxidation and biofilm formation, while inhibiting aerobic denitrification. The transcriptome analysis revealed that QS systems enhanced the cold resistance of HN-AD bacteria by promoting nitrogen assimilation and reducing dissimilation through regulating related genes. This study provided new molecular insights into how QS mediated HN-AD at low temperatures and laid the foundation for the potential applications of psychrophilic HN-AD bacteria in wastewater treatment.

2.
BMC Plant Biol ; 24(1): 878, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358741

ABSTRACT

BACKGROUND: Phytophthora palmivora is a devastating oomycete pathogen in durian, one of the most economically important crops in Southeast Asia. The use of fungicides in Phytophthora management may not be a long-term solution because of emerging chemical resistance issues. It is crucial to develop Phytophthora-resistant durian cultivars, and information regarding the underlying resistance mechanisms is valuable for smart breeding programs. RESULTS: In this study, we conducted RNA sequencing (RNA-seq) to investigate early gene expression responses (at 8, 24, and 48 h) after the P. palmivora infection in three durian cultivars, which included one resistant cultivar (Puangmanee; PM) and two susceptible cultivars (Monthong; MT and Kradumthong; KD). We performed co-expression and differential gene expression analyses to capture gene expression patterns and identify the differentially expressed genes. The results showed that genes encoding heat shock proteins (HSPs) were upregulated in all infected durians. The expression levels of genes encoding HSPs, such as ERdj3B, were high only in infected PM. A higher level of P. palmivora resistance in PM appeared to be associated with higher expression levels of various genes encoding defense and chitin response proteins, such as lysM domain receptor-like kinases. MT had a lower resistance level than PM, although it possessed more upregulated genes during P. palmivora infection. Many photosynthetic and defense genes were upregulated in the infected MT, although their expression levels were lower than those in the infected PM. KD, the least resistant cultivar, showed downregulation of genes involved in cell wall organization or biogenesis during P. palmivora infection. CONCLUSIONS: Our results showed that the three durian cultivars exhibited significantly different gene expression patterns in response to P. palmivora infection. The upregulation of genes encoding HSPs was common in all studied durians. The high expression of genes encoding chitin response proteins likely contributed to P. palmivora resistance in durians. Durian susceptibility was associated with low basal expression of defense genes and downregulation of several cell wall-related genes. These findings enhance our understanding of durian resistance to Phytophthora infection and could be useful for the development of elite durian cultivars.


Subject(s)
Disease Resistance , Phytophthora , Plant Diseases , Transcriptome , Phytophthora/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Persea/genetics , Persea/microbiology
3.
Front Vet Sci ; 11: 1464291, 2024.
Article in English | MEDLINE | ID: mdl-39234176

ABSTRACT

To investigate the different mechanisms of Penaeus monodon in response to acute and chronic hypotonic stress, RNA sequencing technology was employed to profile the gene expression patterns in the gill, hepatopancreas, and hemocyte at 0, 6, 48, and 72 h post acute hypotonic stress treatment (with salinity immediately decreased from 20 psu to 4 psu) and at 0, 2, 10, 15 days during chronic hypotonic stress treatment (with salinity gradually decreased from 20 psu to 4 psu). The control group (SC) was maintained at a constant salinity of 20 psu. Differentially expressed genes (DEGs) were identified, followed by further validation using real-time quantitative reverse transcription PCR (RT-qPCR). A total of 34,217 genes were expressed through sequencing. Compared with the control group, 8,503 DEGs were identified in the acute hypotonic stress group, comprising 3,266 up-regulated and 5,237 down-regulated genes. In the chronic hypotonic stress group, 8,900 DEGs were detected, including 3,019 up-regulated and 5,881 down-regulated genes. Gene Ontology (GO) functional annotation analysis indicated that DEGs were primarily enriched in biological processes such as cellular and metabolic processes, cellular components like membrane and other cellular components, and molecular functions including structural binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that DEGs were predominantly concentrated in five major pathways: metabolism, genetic information processing, environmental information processing, cellular processes, and biological systems. These pathways encompassed antigen processing and presentation, the NOD-like receptor signaling pathway, the Toll-like receptor signaling and cell apoptosis. The RT-qPCR validation of 11 DEGs (hsp70, hsp90, nlrp3, mincle, nlrp12, tlr4, myd88, imd, casp7, casp9 and toll) demonstrated that the trends observed in the quantitative results were consistent with those from the transcriptome analysis, thereby validating the reliability of transcriptome sequencing data. This study identified that hypotonic stress triggers physiological responses in P. monodon to both acute and chronic hypotonic conditions, offering valuable insights into the expression patterns of functional genes in the gills, hepatopancreas, and hemocytes of P. monodon under such stress. These findings provide foundational data and a theoretical basis for further research into the regulatory mechanism of P. monodon in response to hypotonic stress.

4.
Am J Transplant ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39349170

ABSTRACT

Pancreas transplantation improves glycemic control and mortality in patients with diabetes but requires aggressive immunosuppression to control the alloimmune and autoimmune response. Recent developments in "omics' methods have provided gene transcript-based biomarkers for organ transplant rejection. The tissue Common Response Module (tCRM) score is developed to identify the severity of rejection in kidney, heart, liver, and lung transplants. Still, it has not yet been validated in pancreas transplants (PT). We evaluated the tCRM score's relevance in PT and additional markers of acute cellular rejection (ACR) for PT. An analysis on 51 pancreas biopsies with ACR identified 37 genes and 56 genes significantly upregulated in the case of grade 3 and grade 2 ACR respectively (P<0.05). Significant differences were seen with higher grades of rejection among several transcripts. Of the 22 genes differentially expressed in Grade 3 ACR, 18 were also differentially expressed in Grade 2 ACR. The rejection signal was attributable to activated leukocytes' infiltration. Significantly higher tCRM scores were found in grade 3 ACR (p = 0.007) and grade 2 ACR (p = 0.004), compared to normal samples. The tCRM score was able to distinguish treatment-resistant cases from those successfully treated for rejection.

5.
J Exp Bot ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319672

ABSTRACT

India's mango productivity is hindered by many factors but more importantly due to limited understanding of the genomic complexities behind regular bearing habit. This study is the first to quantify carbohydrate fractions, protein content, and macro and micronutrient storage pools, their transportation, and contributions to regular 'Totapuri' and alternate bearer 'Bombay Green' mango varieties during the 'off' year. Deep RNA sequencing was used to assess gene expression dynamics between buds and flowers of these varieties. Differential pathway analysis showed the greatest number of differentially expressed genes in metabolic processes (1377), followed by oxido-reductase (879), hormone (80), oxidative stress (77), starvation (39), alternate bearing (8), flowering (3), meristem (3), and cellular component (2) pathways. In silico analysis showed that among 15 genes, twelve genes up-regulated in Totapuri and three in Bombay Green, confirmed by qRT-PCR. Additionally, 202 SNPs were identified in 32 alternate bearing-related genes. The study confirmed the reproductive bud's strong ability to import sugars, protein, and starch in the regular bearer variety, enhancing flowering and fruiting during off years. The mineral nutrients and biochemical constituent of the bud and leaf tissue in contrasting genotypes, showed the potential role for regular bearing in mango.

6.
Brief Bioinform ; 25(6)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39322626

ABSTRACT

RNA sequencing is the gold-standard method to quantify transcriptomic changes between two conditions. The overwhelming majority of data analysis methods available are focused on polyadenylated RNA transcribed from single-copy genes and overlook transcripts from repeated sequences such as transposable elements (TEs). These self-autonomous genetic elements are increasingly studied, and specialized tools designed to handle multimapping sequencing reads are available. Transfer RNAs are transcribed by RNA polymerase III and are essential for protein translation. There is a need for integrated software that is able to analyze multiple types of RNA. Here, we present 3t-seq, a Snakemake pipeline for integrated differential expression analysis of transcripts from single-copy genes, TEs, and tRNA. 3t-seq produces an accessible report and easy-to-use results for downstream analysis starting from raw sequencing data and performing quality control, genome mapping, gene expression quantification, and statistical testing. It implements three methods to quantify TEs expression and one for tRNA genes. It provides an easy-to-configure method to manage software dependencies that lets the user focus on results. 3t-seq is released under MIT license and is available at https://github.com/boulardlab/3t-seq.


Subject(s)
DNA Transposable Elements , RNA, Transfer , RNA-Seq , Software , RNA, Transfer/genetics , RNA-Seq/methods , Gene Expression Profiling/methods , Humans , Computational Biology/methods , Sequence Analysis, RNA/methods
7.
Sci Rep ; 14(1): 22216, 2024 09 27.
Article in English | MEDLINE | ID: mdl-39333243

ABSTRACT

The drastic change in global climate has led to in-depth studies of the geneticresources of native cattle adapted to challenging environments. Native cattle breeds may harbor unique genetic mechanisms that have enabled them adapt to their given environmental conditions. Adipose tissues are key factors in the regulation of metabolism and energy balance and are crucial for the molecular switches needed to adapt to rapid environmental and nutritional changes. The transcriptome landscape of four adipose tissues was used in this study to investigate the differential gene expression profiles in three local breeds, Yakutian cattle (Sakha Republic), Northern Finncattle (Finland), Mirandesa cattle (Portugal) and commercial Holstein cattle. A total of 26 animals (12 cows, 14 bulls) yielded 81 samples of perirenal adipose tissue (n = 26), metacarpal adipose tissue (n = 26), tailhead adipose tissue (n = 26) and prescapular adipose tissue (n = 3). More than 17,000 genes were expressed in our dataset. Principal component analysis of the normalized expression profiles revealed a differential expression profile of the metacarpal adipose tissue. We found that the genes upregulated in the metacarpal adipose tissue of Yakutian cattle, such as NR4A3, TEKT3, and FGGY, were associated with energy metabolism and response to cold temperatures. In Mirandesa cattle, the upregulated genes in perirenal adipose tissue were related to immune response and inflammation (AVPR2, CCN1, and IL6), while in Northern Finncattle, the upregulated genes appeared to be involved in various physiological processes, including energy metabolism (IGFBP2). According to the sex-based comparisons, the most interesting result was the upregulation of the TPRG1 gene in three tissues of Yakutian cattle females, suggesting that adaptation is related to feed efficiency. The highest number of differentially expressed genes was found between Yakutian cattle and Holstein, several of which were associated with immunity in Yakutian cattle, indicating potential differences in disease resistance and immunity between the two breeds. This study highlights the vast difference in gene expression profiles in adipose tissues among breeds from different climatic environments, most likely highlighting selective pressure and the potential significance of the uniquely important regulatory functions of metacarpal adipose tissue.


Subject(s)
Adipose Tissue , Transcriptome , Animals , Cattle/genetics , Adipose Tissue/metabolism , Female , Male , Gene Expression Profiling , Breeding , Gene Expression Regulation
8.
Bioinform Biol Insights ; 18: 11779322241271550, 2024.
Article in English | MEDLINE | ID: mdl-39315117

ABSTRACT

Gene ontology phrases are a widely used set of hierarchical terms that describe the biological properties of genes. These terms are then used to annotate individual genes, making it possible to determine the likely physiological properties of groups of genes such as a list of differentially expressed genes. Consequently, their ability to predict changes in biological features and functions based on alterations in gene expression has made gene ontology terms popular in the wide range of bioinformatic fields, such as differential gene expression and evolutionary biology. However, while they make the analysis easier, it is seldom easy to convey the results in a readily understandable manner. A number of applications have been developed to visualize gene ontology (GO) term enrichment; however, these solutions tend to focus on the display of aggregated results from a single analysis, making them unsuitable for the analysis of a series of experiments such as a time course or response to different drug treatments. As multiple pair wise comparisons are becoming a common feature of RNA profiling experiments, the absence of a mechanism to easily compare them is a significant problem. Consequently, to overcome this obstacle, we have developed GOTermViewer, an application that displays GO term enrichment data as determined by GOstats such that changes in physiological response across a number of individual analyses across a time course or range of drug treatments can be visualized.

9.
Mol Immunol ; 175: 74-88, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307031

ABSTRACT

Freshwater snails of the genus Bulinus are critical hosts for Schistosoma haematobium, the causative agent of urogenital schistosomiasis. Among the 37 recognized Bulinus species, B. truncatus is a key vector. Using RNA sequencing (RNAseq), we investigated the genome-wide transcriptional responses of B. truncatus to S. haematobium infection. Our findings suggest that snails employ a complex defense strategy against the parasites by up-regulating genes involved in immune response, stress reaction, structural integrity, metabolism, and detoxification. In response, schistosome parasites appear to manipulate the snail's defense system, as evidenced by the suppression of immune-related genes such as ficolin, peptidoglycan recognition protein, and C-type lectin domain-containing protein genes. The down-regulation of biomphalysin 9, compared to its function in Biomphalaria glabrata, indicates divergent immune strategies among snail hosts. Additionally, we compared transcriptome profiles between embryos and juveniles, providing insights into developmental processes. This study offers valuable genomic data for Bulinus snails, illuminating the molecular interactions between bulinids and schistosomes, and advancing our understanding of their developmental biology.

10.
Front Plant Sci ; 15: 1442784, 2024.
Article in English | MEDLINE | ID: mdl-39220003

ABSTRACT

Asparagus (Asparagus officinalis L.) is an important vegetable crop in southern Ontario, Canada, where winter air and soil temperatures below 0°C are common. Consequently, cultivars growing in this area must possess winterhardiness and freezing tolerance for survival. Asparagus acquires freezing tolerance in the fall through cold acclimation and loses freezing tolerance in the spring through deacclimation. To understand the molecular bases of these processes, transcriptomic analysis (RNA-Seq) was conducted on two cultivars, one adapted, 'Guelph Millennium' (GM), and one unadapted, 'UC157' (UC), to the winter conditions of southern Ontario. RNA extracted from bud and rhizome tissues, sampled on three dates during early spring and late fall, was subjected to sequencing. In the fall, the numbers of differentially expressed (DE) genes at the second and third harvests increased, relative to the first harvest, in dormant buds and rhizomes as freezing tolerance of cultivars increased, and the majority of DE genes were downregulated. In spring, freezing tolerance decreased as plants deacclimated and most genes DE at second and third harvests were upregulated in both cultivars. GM had lower LT50 (lethal temperature at which 50% of plants die) values and hence higher freezing tolerance than UC on specific sampling dates during both spring and fall, and expression patterns of specific genes were correlated with LT50 differences. Functional analysis revealed that these genes were involved in carbohydrate metabolic process, plant hormone signal transduction (auxin and gibberellin), proline metabolism, biosynthesis of secondary metabolites, circadian rhythm, and late embryogenesis abundant proteins and could be associated with cold acclimation and deacclimation processes. These findings will help researchers understand the molecular mechanisms of freezing tolerance in asparagus, leading to breeding and genetic strategies to improve the trait.

11.
J Neuroinflammation ; 21(1): 211, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198925

ABSTRACT

BACKGROUND: Trauma can result in systemic inflammation that leads to organ dysfunction, but the impact on the brain, particularly following extracranial insults, has been largely overlooked. METHODS: Building upon our prior findings, we aimed to understand the impact of systemic inflammation on neuroinflammatory gene transcripts in eight brain regions in rats exposed to (1) blast overpressure exposure [BOP], (2) cutaneous thermal injury [BU], (3) complex extremity injury, 3 hours (h) of tourniquet-induced ischemia, and hind limb amputation [CEI+tI+HLA], (4) BOP+BU or (5) BOP+CEI and delayed HLA [BOP+CEI+dHLA] at 6, 24, and 168 h post-injury (hpi). RESULTS: Globally, the number and magnitude of differentially expressed genes (DEGs) correlated with injury severity, systemic inflammation markers, and end-organ damage, driven by several chemokines/cytokines (Csf3, Cxcr2, Il16, and Tgfb2), neurosteroids/prostaglandins (Cyp19a1, Ptger2, and Ptger3), and markers of neurodegeneration (Gfap, Grin2b, and Homer1). Regional neuroinflammatory activity was least impacted following BOP. Non-blast trauma (in the BU and CEI+tI+HLA groups) contributed to an earlier, robust and diverse neuroinflammatory response across brain regions (up to 2-50-fold greater than that in the BOP group), while combined trauma (in the BOP+CEI+dHLA group) significantly advanced neuroinflammation in all regions except for the cerebellum. In contrast, BOP+BU resulted in differential activity of several critical neuroinflammatory-neurodegenerative markers compared to BU. t-SNE plots of DEGs demonstrated that the onset, extent, and duration of the inflammatory response are brain region dependent. Regardless of injury type, the thalamus and hypothalamus, which are critical for maintaining homeostasis, had the most DEGs. Our results indicate that neuroinflammation in all groups progressively increased or remained at peak levels over the study duration, while markers of end-organ dysfunction decreased or otherwise resolved. CONCLUSIONS: Collectively, these findings emphasize the brain's sensitivity to mediators of systemic inflammation and provide an example of immune-brain crosstalk. Follow-on molecular and behavioral investigations are warranted to understand the short- to long-term pathophysiological consequences on the brain, particularly the mechanism of blood-brain barrier breakdown, immune cell penetration-activation, and microglial activation.


Subject(s)
Brain , Inflammation , Neuroinflammatory Diseases , Animals , Rats , Brain/metabolism , Brain/pathology , Male , Inflammation/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Rats, Sprague-Dawley , Gene Expression , Gene Expression Regulation
12.
Life (Basel) ; 14(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39202786

ABSTRACT

Domesticated animals are artificially selected to exhibit desirable traits, however not all traits of domesticated animals are the result of deliberate selection. Loss of olfactory capacity in the domesticated pig (Sus scrofa domesticus) is one example. We used whole transcriptome analysis (RNA-Seq) to compare patterns of gene expression in the olfactory mucosa of the pig and two subspecies of wild boar (Sus scrofa), and investigate candidate genes that could be responsible for the loss of olfactory capacity. We identified hundreds of genes with reductions in transcript abundance in pig relative to wild boar as well as differences between the two subspecies of wild boar. These differences were detected mainly in genes involved in the formation and motility of villi, cilia and microtubules, functions associated with olfaction. In addition, differences were found in the abundances of transcripts of genes related to immune defenses, with the highest levels in continental wild boar subspecies. Overall, the loss of olfactory capacity in pigs appears to have been accompanied by reductions in the expression of candidate genes for olfaction. These changes could have resulted from unintentional selection for reduced olfactory capacity, relaxed selection for maintaining olfactory capacity, pleiotropic effects of genes under selection, or other non-selective processes. Our findings could be a cornerstone for future researches on wild boars, pigs, feral populations, and their evolutionary trajectories, aimed to provide tools to better calibrate species management as well as guidelines for breeders.

13.
Physiol Mol Biol Plants ; 30(8): 1239-1252, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39184557

ABSTRACT

Content of bioactive constituents is one of the most important characteristics in Rheum palmatum complex. Increasing ingredient content through genetic breeding is an effective strategy to solve the contradiction between large market demand and resource depletion, but currently hampered by limited understanding of metabolite biosynthesis in rhubarb. In this study, deep transcriptome sequencing was performed to compare roots, stems, and leaves of two Rheum species (PL and ZK) that show different levels of anthraquinone contents. Approximately 0.52 billion clean reads were assembled into 58,782 unigenes, of which around 80% (46,550) were found to be functionally annotated in public databases. Expression patterns of differential unigenes between PL and ZK were thoroughly investigated in different tissues. This led to the identification of various differentially expressed genes (DEGs) involved in shikimate, MEP, MVA, and polyketide pathways, as well as those involved in catechin and gallic acid biosynthesis. Some structural enzyme genes were shown to be significantly up-regulated in roots of ZK with high anthraquinone content, implying potential central roles in anthraquinone synthesis. Taken together, our study provides insights for future functional studies to unravel the mechanisms underlying metabolite biosynthesis in rhubarb. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01492-z.

14.
Neoplasia ; 57: 101036, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173508

ABSTRACT

Assessing the molecular profiles of bladder cancer (BC) from patients with locally advanced or metastatic disease provides valuable insights, such as identification of invasive markers, to guide personalized treatment. Currently, most molecular profiling of BC is based on highly invasive biopsy or transurethral tumor resection. Liquid biopsy takes advantage of less-invasive procedures to longitudinally profile disease. Circulating tumor cells (CTCs) isolated from blood are one of the key analytes of liquid biopsy. In this study, we developed a protein and mRNA co-analysis workflow for BC CTCs utilizing the graphene oxide (GO) microfluidic chip. The GO chip was conjugated with antibodies against both EpCAM and EGFR to isolate CTCs from 1 mL of blood drawn from BC patients. Following CTC capture, protein and mRNA were analyzed using immunofluorescent staining and ion-torrent-based whole transcriptome sequencing, respectively. Elevated CTC counts were significantly associated with patient disease status at the time of blood draw. We found a count greater than 2.5 CTCs per mL was associated with shorter overall survival. The invasive markers EGFR, HER2, CD31, and ADAM15 were detected in CTC subpopulations. Whole transcriptome sequencing showed distinct RNA expression profiles from patients with or without tumor burden at the time of blood draw. In patients with advanced metastatic disease, we found significant upregulation of metastasis-related and chemotherapy-resistant genes. This methodology demonstrates the capability of GO chip-based assays to identify tumor-related RNA signatures, highlighting the prognostic potential of CTCs in metastatic BC patients.

15.
Sci Rep ; 14(1): 20056, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209875

ABSTRACT

Although Akkermansia muciniphila (Am) plays a beneficial role as a probiotic in the treatment of metabolic syndrome, the mechanisms remain elusive. We tested the hypothesis that Am extracellular vesicles (AmEVs) protect against hypertension through modulation of gene expression in the kidneys of spontaneously hypertensive rats (SHRs). Extracellular vesicles purified from anaerobically cultured Am (1.0 × 108 or 1.0 × 109 particles/kg) or vehicles were injected into the tail veins of Wistar-Kyoto rats (WKYs) and SHRs weekly for 4 weeks. Renal cortical tissues isolated from both rat strains were analyzed by trichrome stain and RT-qPCR. AmEVs protect against the development of hypertension in SHRs without a serious adverse reaction. AmEVs increased the expression of vasocontracting Agt and At1ar as well as vasodilating At2r, Mas1 and Nos2 in the kidneys of both strains. These results indicate that AmEVs have a protective effect against hypertension without a serious adverse reaction. Therefore, it is foreseen that AmEVs may be utilized as a novel therapeutic for the treatment of hypertension.


Subject(s)
Akkermansia , Extracellular Vesicles , Hypertension , Kidney , Rats, Inbred SHR , Rats, Inbred WKY , Animals , Extracellular Vesicles/metabolism , Rats , Kidney/metabolism , Hypertension/metabolism , Hypertension/genetics , Male , Administration, Intravenous , Verrucomicrobia/genetics , Gene Expression Regulation , Probiotics/administration & dosage
16.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201309

ABSTRACT

In the face of rising global demand and unsustainable production methods, cultivated crustacean meat (CCM) is proposed as an alternative means to produce delicious lobster, shrimp, and crab products. Cultivated meat requires starting stem cells that may vary in terms of potency and the propensity to proliferate or differentiate into myogenic (muscle-related) tissues. Recognizing that regenerating limbs are a non-lethal source of tissue and may harbor relevant stem cells, we selected those of the crayfish Cherax quadricarinatus as our model. To investigate stem cell activity, we conducted RNA-Seq analysis across six stages of claw regeneration (four pre-molt and two post-molt stages), along with histology and real-time quantitative PCR (qPCR). Our results showed that while genes related to energy production, muscle hypertrophy, and exoskeletal cuticle synthesis dominated the post-molt stages, growth factor receptors (FGFR, EGFR, TGFR, and BMPR) and those related to stem cell proliferation and potency (Cyclins, CDKs, Wnts, C-Myc, Klf4, Sox2, PCNA, and p53) were upregulated before the molt. Pre-molt upregulation in several genes occurred in two growth peaks; Stages 2 and 4. We therefore propose that pre-molt limb regeneration tissues, particularly those in the larger Stage 4, present a prolific and non-lethal source of stem cells for CCM development.


Subject(s)
Astacoidea , Regeneration , Stem Cells , Animals , Astacoidea/genetics , Regeneration/genetics , Stem Cells/metabolism , Stem Cells/cytology , Gene Expression Profiling , Transcriptome , Hoof and Claw/metabolism
17.
Genomics ; 116(5): 110912, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117249

ABSTRACT

Sperm undergo a series of changes in the epididymis region before acquiring the ability to move and fertilize, and the identification of genes expressed in a region-specific manner in the epididymis provides a valuable insight into functional differences between regions. We collected epididymal tissue from three yaks and cultured epithelial cells from the caput, corpus and cauda regions of the yak epididymis using the tissue block method. RNA sequencing analysis (RNA-seq) technology was used to detect gene expression in yak epididymal caput, corpus and cauda epithelial cells. The results showed that the DEGs were highest in the caput vs. corpus comparison, and lowest in the corpus vs. cauda comparison. Six DEGs were verified by real-time fluorescence quantitative PCR (qRT-PCR), consistent with transcriptome sequencing results. The significantly enriched DNA replication pathway in the caput vs. corpus was coordinated with cell proliferation, while upregulated DEGs such as POLD1 and MCM4 were found in the DNA replication pathway. The AMPK signaling pathway was found significantly enriched in the caput vs cauda, suggesting its involvement in sperm maturation and capacitation. The TGF beta signaling pathway was screened in the corpus vs cauda and is crucial for mammalian reproductive regulation. Upregulated DEGs (TGFB3, INHBA, INHBB) are involved in the TGF beta signaling pathway. This study provides a reference for culturing yak epididymal epithelial cells in vitro, and elucidates the transcriptional profiles of epithelial cells in different segments of the epididymis, revealing the regulatory and functional differences between different segments, providing basic data for exploring the molecular mechanism of yak sperm maturation and improving the reproductive capacity of high-altitude mammals.


Subject(s)
Epididymis , Epithelial Cells , Animals , Epididymis/metabolism , Epididymis/cytology , Cattle/metabolism , Male , Epithelial Cells/metabolism , Epithelial Cells/cytology , Transcriptome , Signal Transduction , Cells, Cultured , Sperm Maturation/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics
18.
Front Cell Infect Microbiol ; 14: 1439714, 2024.
Article in English | MEDLINE | ID: mdl-39119291

ABSTRACT

Introduction: Chagas disease, caused by the Trypanosoma cruzi parasite infection, is a potentially life-threatening neglected tropical disease with a worldwide distribution. During the chronic phase of the disease, there exists a fragile balance between the host immune response and parasite replication that keeps patients in a clinically-silent asymptomatic stage for years or even decades. However, in 40% of patients, the disease progresses to clinical manifestations mainly affecting and compromising the cardiac system. Treatment is recommended in the chronic phase, although there are no early markers of its effectiveness. The aim of this study is to identify differential expression changes in genes involved in the immune response in antigen-restimulated PBMC from chronic patients with Chagas disease due to benznidazole treatment. Methods: Thus, high-throughput real-time qPCR analysis has been performed to simultaneously determine global changes in the expression of 106 genes involved in the immune response in asymptomatic (IND) and early cardiac manifestations (CCC I) Chagas disease patients pre- and post-treatment with benznidazole. Results and discussion: The results revealed that 7 out of the 106 analyzed genes were differentially expressed (4 up- and 3 downregulated) after treatment in IND patients and 15 out of 106 (3 up- and 12 downregulated) after treatment of early cardiac Chagas disease patients. Particularly in CCC I patients, regulation of the expression level of some of these genes towards a level similar to that of healthy subjects suggests a beneficial effect of treatment and supports recommendation of benznidazole administration to early cardiac Chagas disease patients. The data obtained also demonstrated that both in asymptomatic patients and in early cardiac chronic patients, after treatment with benznidazole there is a negative regulation of the proinflammatory and cytotoxic responses triggered as a consequence of T. cruzi infection and the persistence of the parasite. This downregulation of the immune response likely prevents marked tissue damage and healing in early cardiac patients, suggesting its positive effect in controlling the pathology.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanosoma cruzi , Humans , Nitroimidazoles/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/immunology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Adult , Male , Female , Middle Aged , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/pharmacology , Leukocytes, Mononuclear/immunology , Chronic Disease , Gene Expression Profiling , Healthy Volunteers , Real-Time Polymerase Chain Reaction
19.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125683

ABSTRACT

Age-dependent cerebral small vessel disease (CSVD) is a common disease with a high social burden characterized by heterogeneity of forms and frequent comorbidity with Alzheimer's disease (AD). Previously, we identified two MRI types of CSVD with specific clinical presentation and, probably, different mechanisms. The present study included 34 patients with CSVD and white matter hyperintensity (WMH) of stage Fazekas (F) 3 (mean age 61.7 ± 8.9) and 11 volunteers (mean age 57.3 ± 9.7). Total RNA was isolated from peripheral blood leukocytes. The expression of 58 protein-coding genes associated with CSVD and/or AD and 4 reference genes were assessed as part of the original panel for the NanoString nCounter analyzer. Testing results were validated by real-time PCR. There was a significant decrease in the expression levels of the ACOX1, CD33, CD2AP, TNFR1, and VEGFC genes in MRI type 2 relative to the control group as well as a decrease in the expression level of the CD33 gene in MRI type 2 compared to MRI type 1. Processes associated with inflammatory pathways with decreased expression of the identified genes are important in the development of MRI type 2 of CSVD. Given the direct connection of the established genes with AD, the importance of this form of CSVD in comorbidity with AD has been assumed.


Subject(s)
Cerebral Small Vessel Diseases , Magnetic Resonance Imaging , Humans , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Female , Male , Middle Aged , Aged , Inflammation/genetics , Inflammation/pathology , Gene Expression Regulation , Alzheimer Disease/genetics , Alzheimer Disease/pathology
20.
Tuberculosis (Edinb) ; 148: 102538, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954895

ABSTRACT

Tuberculosis (TB) is a serious public health issue in India. Numerous molecular mechanisms and immunological responses play significant roles in the pathogenesis of tuberculosis. This study aimed to identify host immune-related biomarkers that are significantly differentially expressed in active TB and that play a vital role in disease progression. The methodology employed in this study included data collection, pre-processing, analysis, and interpretation of the results. Six microarray datasets were used to identify differentially expressed genes (DEGs), and only the common DEGs were used for further downstream analysis, such as hub gene identification, gene ontology, pathway enrichment analysis, and drug-gene interaction analysis. The study identified 1728 DEGs, including 906 upregulated and 822 downregulated genes. Five hub genes were identified that were: STAT1, GBP5, GBP1, FCGR1A, and BATF2. Gene ontology and pathway enrichment revealed that most of the genes were involved in interferon-gamma signaling. In addition, through drug-gene interactions, known drugs have been identified for STAT1, FCGR1A and GBP1. The findings of this study may contribute to early detection and treatment of active TB.


Subject(s)
Biomarkers , Disease Progression , Transcriptome , Tuberculosis , Tuberculosis/diagnosis , Tuberculosis/genetics , Tuberculosis/immunology , Gene Expression Profiling , Gene Ontology , Protein Interaction Maps , Databases, Genetic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL