Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Cell Metab ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964323

ABSTRACT

Mature red blood cells (RBCs) lack mitochondria and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in blood banks. Here, we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify associations between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs); hexokinase 1 (HK1); and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine (HYPX) levels-and the genetic traits linked to them-were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes.

2.
Cell Rep ; 43(6): 114296, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823019

ABSTRACT

To explore the influence of genetics on homeostatic regulation of dendritic cell (DC) numbers, we present a screen of DCs and their progenitors in lymphoid and non-lymphoid tissues in Collaborative Cross (CC) and Diversity Outbred (DO) mice. We report 30 and 71 loci with logarithm of the odds (LOD) scores >8.18 and ranging from 6.67 to 8.19, respectively. The analysis reveals the highly polygenic and pleiotropic architecture of this complex trait, including many of the previously identified genetic regulators of DC development and maturation. Two SNPs in genes potentially underlying variation in DC homeostasis, a splice variant in Gramd4 (rs235532740) and a missense variant in Orai3 (rs216659754), are confirmed by gene editing using CRISPR-Cas9. Gramd4 is a central regulator of DC homeostasis that impacts the entire DC lineage, and Orai3 regulates cDC2 numbers in tissues. Overall, the data reveal a large number of candidate genes regulating DC homeostasis in vivo.


Subject(s)
Dendritic Cells , Quantitative Trait Loci , Animals , Dendritic Cells/metabolism , Mice , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide , Mice, Inbred C57BL , Cell Count , Chromosome Mapping , Homeostasis
3.
Infect Immun ; 92(7): e0026323, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38899881

ABSTRACT

Because most humans resist Mycobacterium tuberculosis infection, there is a paucity of lung samples to study. To address this gap, we infected Diversity Outbred mice with M. tuberculosis and studied the lungs of mice in different disease states. After a low-dose aerosol infection, progressors succumbed to acute, inflammatory lung disease within 60 days, while controllers maintained asymptomatic infection for at least 60 days, and then developed chronic pulmonary tuberculosis (TB) lasting months to more than 1 year. Here, we identified features of asymptomatic M. tuberculosis infection by applying computational and statistical approaches to multimodal data sets. Cytokines and anti-M. tuberculosis cell wall antibodies discriminated progressors vs controllers with chronic pulmonary TB but could not classify mice with asymptomatic infection. However, a novel deep-learning neural network trained on lung granuloma images was able to accurately classify asymptomatically infected lungs vs acute pulmonary TB in progressors vs chronic pulmonary TB in controllers, and discrimination was based on perivascular and peribronchiolar lymphocytes. Because the discriminatory lesion was rich in lymphocytes and CD4 T cell-mediated immunity is required for resistance, we expected CD4 T-cell genes would be elevated in asymptomatic infection. However, the significantly different, highly expressed genes were from B-cell pathways (e.g., Bank1, Cd19, Cd79, Fcmr, Ms4a1, Pax5, and H2-Ob), and CD20+ B cells were enriched in the perivascular and peribronchiolar regions of mice with asymptomatic M. tuberculosis infection. Together, these results indicate that genetically controlled B-cell responses are important for establishing asymptomatic M. tuberculosis lung infection.


Subject(s)
B-Lymphocytes , Lung , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Animals , Mice , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Mycobacterium tuberculosis/immunology , B-Lymphocytes/immunology , Lung/microbiology , Lung/pathology , Lung/immunology , Granuloma/microbiology , Granuloma/immunology , Granuloma/pathology , Lymphoid Tissue/immunology , Lymphoid Tissue/microbiology , Lymphoid Tissue/pathology , Disease Models, Animal , Female , Asymptomatic Infections , Cytokines/metabolism , Cytokines/genetics
4.
Vaccines (Basel) ; 12(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38543901

ABSTRACT

Group B coxsackieviruses (CVBs) cause a wide range of diseases in humans, but no vaccines are currently available to prevent these infections. Previously, we had demonstrated that a live attenuated CVB3 vaccine virus, Mutant 10 (Mt10), offers protection against multiple CVB serotypes as evaluated in various inbred mouse strains; however, the applicability of these findings to the outbred human population remains uncertain. To address this issue, we used Diversity Outbred (DO) mice, whose genome is derived from eight inbred mouse strains that may capture the level of genetic diversity of the outbred human population. To determine the efficacy of the Mt10 vaccine, we established the CVB3 infection model in the DO mice. We noted that CVB3 infection resulted mainly in pancreatitis, although viral RNA was detected in both the pancreas and heart. Histologically, the pancreatic lesions comprised of necrosis, post-necrotic atrophy, and lymphocyte infiltration. In evaluating the efficacy of the Mt10 vaccine, both male and female DO mice were completely protected in challenge studies with CVB3, and viral RNA was not detected in the heart or pancreas. Likewise, vaccine recipients of both sexes showed significant levels of virus-neutralizing antibodies. Furthermore, by using the CVB3 viral protein 1, virus-reactive antibodies were found to be diverse in the order of IgG2c, followed by IgG2a, IgG2b/IgG3, and IgG1. Together, the data suggest that the Mt10 vaccine virus can offer protection against CVB infections that may have translational significance.

5.
Vaccines (Basel) ; 12(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38543876

ABSTRACT

Mycobacterium bovis Bacillus Calmette-Guérin (BCG) protects against childhood tuberculosis; and unlike most vaccines, BCG broadly impacts immunity to other pathogens and even some cancers. Early in the COVID-19 pandemic, epidemiological studies identified a protective association between BCG vaccination and outcomes of SARS-CoV-2, but the associations in later studies were inconsistent. We sought possible reasons and noticed the study populations often lived in the same country. Since individuals from the same regions can share common ancestors, we hypothesized that genetic background could influence associations between BCG and SARS-CoV-2. To explore this hypothesis in a controlled environment, we performed a pilot study using Diversity Outbred mice. First, we identified amino acid sequences shared by BCG and SARS-CoV-2 spike protein. Next, we tested for IgG reactive to spike protein from BCG-vaccinated mice. Sera from some, but not all, BCG-vaccinated Diversity Outbred mice contained higher levels of IgG cross-reactive to SARS-CoV-2 spike protein than sera from BCG-vaccinated C57BL/6J inbred mice and unvaccinated mice. Although larger experimental studies are needed to obtain mechanistic insight, these findings suggest that genetic background may be an important variable contributing to different associations observed in human randomized clinical trials evaluating BCG vaccination on SARS-CoV-2 and COVID-19.

7.
Vaccines (Basel) ; 12(1)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276675

ABSTRACT

The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.

8.
FEBS Open Bio ; 14(3): 426-433, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129969

ABSTRACT

Genetically diverse outbred mice allow for the study of genetic variation in the context of high dietary and environmental control. Using a machine learning approach, we investigated clinical and morphometric factors that associate with serum cholesterol levels in 840 genetically unique Diversity Outbred mice of both sexes (n = 417 male and 423 female), and on both a control chow (% kcals in diet: protein 22%, carbohydrate 62%, fat 16%, no cholesterol) and high fat high sucrose (% kcals in diet: protein 15%, carbohydrate 41%, fat 45%, 0.05% cholesterol). We find expected elevations of cholesterol in male mice, as well as in mice with elevated serum triglycerides and/or fed a high fat high sucrose diet. The third strongest predictor was serum calcium which correlated with serum cholesterol across both diets and sexes (r = 0.39-0.48) in both Diversity Outbred (P = 3.0 × 10-43 ) and BXD (P = 0.005) mice. This is in-line with several human cohort studies which show associations between calcium and cholesterol, and calcium as an independent predictor of cardiovascular events.


Subject(s)
Calcium , Dietary Carbohydrates , Humans , Mice , Male , Female , Animals , Triglycerides , Cross-Sectional Studies , Cholesterol/metabolism , Sucrose
9.
bioRxiv ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37745421

ABSTRACT

Genetic factors play a significant role in the risk for development of alcohol use disorder (AUD). Using 3-bottle choice intermittent access ethanol (IEA), we have employed the Diversity Outbred (DO) mouse panel as a model of alcohol use disorder in a genetically diverse population. Through use of gene expression network analysis techniques, in combination with expression quantitative trait loci (eQTL) mapping, we have completed an extensive analysis of the influence of genetic background on gene expression changes in the prefrontal cortex (PFC). This approach revealed that, in DO mice, genes whose expression was significantly disrupted by intermittent ethanol in the PFC also tended to be those whose expression correlated to intake. This finding is in contrast to previous studies of both mice and nonhuman primates. Importantly, these analyses identified genes involved in myelination in the PFC as significantly disrupted by IEA, correlated to ethanol intake, and having significant eQTLs. Genes that code for canonical components of the myelin sheath, such as Mbp, also emerged as key drivers of the gene expression response to intermittent ethanol drinking. Several regulators of myelination were also key drivers of gene expression, and had significant QTLs, indicating that genetic background may play an important role in regulation of brain myelination. These findings underscore the importance of disruption of normal myelination in the PFC in response to prolonged ethanol exposure, that genetic variation plays an important role in this response, and that this interaction between genetics and myelin disruption in the presence of ethanol may underlie previously observed behavioral changes under intermittent access ethanol drinking such as escalation of consumption.

10.
Elife ; 122023 07 26.
Article in English | MEDLINE | ID: mdl-37494090

ABSTRACT

Systems genetics has begun to tackle the complexity of insulin resistance by capitalising on computational advances to study high-diversity populations. 'Diversity Outbred in Australia (DOz)' is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged this variance to explore skeletal muscle's contribution to whole-body insulin action through metabolic phenotyping and skeletal muscle proteomics of 215 DOz mice. Linear modelling identified 553 proteins that associated with whole-body insulin sensitivity (Matsuda Index) including regulators of endocytosis and muscle proteostasis. To enrich for causality, we refined this network by focusing on negatively associated, genetically regulated proteins, resulting in a 76-protein fingerprint of insulin resistance. We sought to perturb this network and restore insulin action with small molecules by integrating the Broad Institute Connectivity Map platform and in vitro assays of insulin action using the Prestwick chemical library. These complementary approaches identified the antibiotic thiostrepton as an insulin resistance reversal agent. Subsequent validation in ex vivo insulin-resistant mouse muscle and palmitate-induced insulin-resistant myotubes demonstrated potent insulin action restoration, potentially via upregulation of glycolysis. This work demonstrates the value of a drug-centric framework to validate systems-level analysis by identifying potential therapeutics for insulin resistance.


Subject(s)
Insulin Resistance , Mice , Animals , Insulin Resistance/physiology , Muscle Fibers, Skeletal/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Proteins/metabolism , Genetic Variation
11.
Infect Immun ; 91(7): e0016823, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37338410

ABSTRACT

Tuberculosis is still the leading cause of death globally from any infectious disease, despite the widespread use of the live attenuated vaccine Bacille Calmette Guerin (BCG). While BCG has some efficacy against disseminated TB disease in children, protection wanes into adulthood resulting in over 1.8 million TB deaths per year. This has led to efforts to develop novel vaccine candidates that either replace or boost BCG, as well as to test novel delivery mechanisms to enhance BCG's efficacy. Traditional BCG vaccination is performed as an intradermal (ID) injection but delivering BCG by an alternate route may enhance the depth and breadth of protection. Previously, we demonstrated that phenotypically and genotypically disparate Diversity Outbred (DO) mice have heterogenous responses to M. tuberculosis challenge following intradermal BCG vaccination. Here, we utilize DO mice to examine BCG-induced protection when BCG is delivered systemically via intravenous (IV) administration. We find that DO mice vaccinated with IV BCG had a greater distribution of BCG throughout their organs compared to ID-vaccinated animals. However, compared to ID-vaccinated mice, M. tuberculosis burdens in lungs and spleens were not significantly reduced in animals vaccinated with BCG IV, nor was lung inflammation significantly altered. Nonetheless, DO mice that received BCG IV had increased survival over those vaccinated by the traditional ID route. Thus, our results suggest that delivering BCG by the alternate IV route enhances protection as detected in this diverse small animal model.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , BCG Vaccine , Collaborative Cross Mice , Tuberculosis/prevention & control , Vaccination
12.
Cell Genom ; 3(4): 100283, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37082146

ABSTRACT

Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies.

13.
Trends Cancer ; 9(7): 578-590, 2023 07.
Article in English | MEDLINE | ID: mdl-37087398

ABSTRACT

Realizing the clinical promise of cancer immunotherapy is hindered by gaps in our knowledge of in vivo mechanisms underlying treatment response as well as treatment limiting toxicity. Preclinical in vivo model systems and technologies are required to address these knowledge gaps and to surmount the challenges faced in the clinical application of immunotherapy. Mice are commonly used for basic and translational research to support development and testing of immune interventions, including for cancer. Here, we discuss the advantages and the limitations of current models as well as future developments.


Subject(s)
Neoplasms , Animals , Mice , Neoplasms/drug therapy , Medical Oncology , Disease Models, Animal , Translational Research, Biomedical , Immunotherapy
14.
bioRxiv ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36798159

ABSTRACT

Genetically diverse outbred mice allow for the study of genetic variation in the context of high dietary and environmental control. Using a machine learning approach we investigated clinical and morphometric factors that associate with serum cholesterol levels in 840 genetically unique mice of both sexes, and on both a control chow and high fat high sucrose diet. We find expected elevations of cholesterol in male mice, those with elevated serum triglycerides and/or fed a high fat high sucrose diet. The third strongest predictor was serum calcium which correlated with serum cholesterol across both diets and sexes (r=0.39-0.48). This is in-line with several human cohort studies which show associations between calcium and cholesterol, and calcium as an independent predictor of cardiovascular events.

15.
Neuropharmacology ; 226: 109409, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36592885

ABSTRACT

The gut microbiome is thought to play a critical role in the onset and development of psychiatric disorders, including depression and substance use disorder (SUD). To test the hypothesis that the microbiome affects addiction predisposing behaviors and cocaine intravenous self-administration (IVSA) and to identify specific microbes involved in the relationship, we performed 16S rRNA gene sequencing on feces from 228 diversity outbred mice. Twelve open field measures, two light-dark assay measures, one hole board and novelty place preference measure significantly differed between mice that acquired cocaine IVSA (ACQ) and those that failed to acquire IVSA (FACQ). We found that ACQ mice are more active and exploratory and display decreased fear than FACQ mice. The microbial abundances that differentiated ACQ from FACQ mice were an increased abundance of Barnesiella, Ruminococcus, and Robinsoniella and decreased Clostridium IV in ACQ mice. There was a sex-specific correlation between ACQ and microbial abundance, a reduced Lactobacillus abundance in ACQ male mice, and a decreased Blautia abundance in female ACQ mice. The abundance of Robinsoniella was correlated, and Clostridium IV inversely correlated with the number of doses of cocaine self-administered during acquisition. Functional analysis of the microbiome composition of a subset of mice suggested that gut-brain modules encoding glutamate metabolism genes are associated with the propensity to self-administer cocaine. These findings establish associations between the microbiome composition and glutamate metabolic potential and the ability to acquire cocaine IVSA thus indicating the potential translational impact of targeting the gut microbiome or microbial metabolites for treatment of SUD. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Subject(s)
Cocaine , Mice , Male , Female , Animals , Collaborative Cross Mice/genetics , Glutamic Acid , RNA, Ribosomal, 16S/genetics , Administration, Intravenous
16.
Curr Protoc ; 2(9): e547, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36066328

ABSTRACT

The Collaborative Cross (CC) and the Diversity Outbred (DO) stock mouse panels are the most powerful murine genetics tools available to the genetics community. Together, they combine the strength of inbred animal models with the diversity of outbred populations. Using the 63 CC strains or a panel of DO mice, each derived from the same 8 parental mouse strains, researchers can map genetic contributions to exceptionally complex immunological and infectious disease traits that would require far greater powering if performed by genome-wide association studies (GWAS) in human populations. These tools allow genes to be studied in heterozygous and homozygous states and provide a platform to study epistasis between interacting loci. Most importantly, once a quantitative phenotype is investigated and quantitative trait loci are identified, confirmatory genetic studies can be performed, which is often problematic using the GWAS approach. In addition, novel stable mouse models for immune phenotypes are often derived from studies utilizing the DO and CC mice that can serve as stronger model systems than existing ones in the field. The CC/DO systems have contributed to the fields of cancer immunology, autoimmunity, vaccinology, infectious disease, allergy, tissue rejection, and tolerance but have thus far been greatly underutilized. In this article, we present a recent review of the field and point out key areas of immunology that are ripe for further investigation and awaiting new CC/DO research projects. We also highlight some of the strong computational tools that have been developed for analyzing CC/DO genetic and phenotypic data. Additionally, we have formed a centralized community on the CyVerse infrastructure where immunogeneticists can utilize those software tools, collaborate with groups across the world, and expand the use of the CC and DO systems for investigating immunogenetic phenomena. © 2022 Wiley Periodicals LLC.


Subject(s)
Collaborative Cross Mice , Communicable Diseases , Animals , Collaborative Cross Mice/genetics , Communicable Diseases/genetics , Crosses, Genetic , Genome-Wide Association Study , Humans , Mice , Quantitative Trait Loci
17.
Elife ; 112022 07 15.
Article in English | MEDLINE | ID: mdl-35838133

ABSTRACT

The diet and age of mice can modulate how different genetic variants impact body weight, demonstrating the need to take context into account when performing genetic studies.


Subject(s)
Diet , Quantitative Trait Loci , Animals , Mice
18.
Elife ; 112022 07 15.
Article in English | MEDLINE | ID: mdl-35838135

ABSTRACT

Understanding how genetic variation shapes a complex trait relies on accurately quantifying both the additive genetic and genotype-environment interaction effects in an age-dependent manner. We used a linear mixed model to quantify diet-dependent genetic contributions to body weight measured through adulthood in diversity outbred female mice under five diets. We observed that heritability of body weight declined with age under all diets, except the 40% calorie restriction diet. We identified 14 loci with age-dependent associations and 19 loci with age- and diet-dependent associations, with many diet-dependent loci previously linked to neurological function and behavior in mice or humans. We found their allelic effects to be dynamic with respect to genomic background, age, and diet, identifying several loci where distinct alleles affect body weight at different ages. These results enable us to more fully understand and predict the effectiveness of dietary intervention on overall health throughout age in distinct genetic backgrounds.


Body weight is one trait influenced by genes, age and environmental factors. Both internal and external environmental pressures are known to affect genetic variation over time. However, it is largely unknown how all factors ­ including age ­ interact to shape metabolism and bodyweight. Wright et al. set out to quantify the interactions between genes and diet in ageing mice and found that the effect of genetics on mouse body weight changes with age. In the experiments, Wright et al. weighed 960 female mice with diverse genetic backgrounds, starting at two months of age into adulthood. The animals were randomized to different diets at six months of age. Some mice had unlimited food access, others received 20% or 40% less calories than a typical mouse diet, and some fasted one or two days per week. Variations in their genetic background explained about 80% of differences in mice's weight, but the influence of genetics relative to non-genetic factors decreased as they aged. Mice on the 40% calorie restriction diet were an exception to this rule and genetics accounted for 80% of their weight throughout adulthood, likely due to reduced influence from diet and reduced interactions between diet and genes. Several genes involved in metabolism, neurological function, or behavior, were associated with mouse weight. The experiments highlight the importance of considering interactions between genetics, environment, and age in determining complex traits like body weight. The results and the approaches used by Wright et al. may help other scientists learn more about how the genetic predisposition to disease changes with environmental stimuli and age.


Subject(s)
Collaborative Cross Mice , Diet , Adult , Alleles , Animals , Body Weight/genetics , Female , Genetic Variation , Genomics , Humans , Mice , Phenotype
19.
FASEB J ; 36(6): e22354, 2022 06.
Article in English | MEDLINE | ID: mdl-35616343

ABSTRACT

Resolvin E1 (RvE1), a specialized pro-resolving mediator (SPM), improves glucose homeostasis in inbred mouse models of obesity. However, an impediment toward translation is that obesity is a highly heterogenous disease in which individuals will respond very differently to interventions such as RvE1. Thus, there is a need to study SPMs in the context of modeling the heterogeneity of obesity that is observed in humans. We investigated how RvE1 controls the concentration of key circulating metabolic biomarkers using diversity outbred (DO) mice, which mimic human heterogeneity. We first demonstrate that weights of DO mice can be classified into distinct distributions of fat mass (i.e., modeling differing classes of obesity) in response to a high-fat diet and in the human population when examining body composition. Next, we show RvE1 administration based on body weight for four consecutive days after giving mice a high-fat diet led to approximately half of the mice responding positively for serum total gastric inhibitory polypeptide (GIP), glucagon, insulin, glucose, leptin, and resistin. Interestingly, RvE1 improved hyperleptinemia most effectively in the lowest class of fat mass despite adjusting the dose of RvE1 with increasing adiposity. Furthermore, leptin levels after RvE1 treatment were the lowest in those mice that were also RvE1 positive responders for insulin and resistin. Collectively, these results suggest a therapeutic fat mass-dependent window for RvE1, which should be considered in future clinical trials. Moreover, the data underscore the importance of studying SPMs with heterogenous mice as a step toward precision SPM administration in humans.


Subject(s)
Eicosapentaenoic Acid , Obesity , Animals , Collaborative Cross Mice , Disease Models, Animal , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Glucose , Humans , Insulins , Leptin , Mice , Obesity/drug therapy , Resistin
20.
Oncoimmunology ; 11(1): 2064958, 2022.
Article in English | MEDLINE | ID: mdl-35481286

ABSTRACT

Immune checkpoint inhibitors (ICI) have improved outcomes for a variety of malignancies; however, many patients fail to benefit. While tumor-intrinsic mechanisms are likely involved in therapy resistance, it is unclear to what extent host genetic background influences response. To investigate this, we utilized the Diversity Outbred (DO) and Collaborative Cross (CC) mouse models. DO mice are an outbred stock generated by crossbreeding eight inbred founder strains, and CC mice are recombinant inbred mice generated from the same eight founders. We generated 207 DOB6F1 mice representing 48 DO dams and demonstrated that these mice reliably accept the C57BL/6-syngeneic B16F0 tumor and that host genetic background influences response to ICI. Genetic linkage analysis from 142 mice identified multiple regions including one within chromosome 13 that associated with therapeutic response. We utilized 6 CC strains bearing the positive (NZO) or negative (C57BL/6) driver genotype in this locus. We found that 2/3 of predicted responder CCB6F1 crosses show reproducible ICI response. The chromosome 13 locus contains the murine prolactin family, which is a known immunomodulating cytokine associated with various autoimmune disorders. To directly test whether prolactin influences ICI response rates, we implanted inbred C57BL/6 mice with subcutaneous slow-release prolactin pellets to induce mild hyperprolactinemia. Prolactin augmented ICI response against B16F0, with increased CD8 infiltration and 5/8 mice exhibiting slowed tumor growth relative to controls. This study highlights the role of host genetics in ICI response and supports the use of F1 crosses in the DO and CC mouse populations as powerful cancer immunotherapy models.


Subject(s)
Collaborative Cross Mice , Immune Checkpoint Inhibitors , Animals , Genotype , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Mice, Inbred C57BL , Prolactin
SELECTION OF CITATIONS
SEARCH DETAIL