Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Animals (Basel) ; 14(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540001

ABSTRACT

After hatching, sea turtles leave the nest and disperse into the ocean. Many years later, they return to their natal coastlines. The period between their leaving and their returning to natal areas, known as the "Lost Years", is poorly understood. Satellite tracking studies aimed at studying the "Lost Years" are challenging due to the small size and prolonged dispersal phases of young individuals. Here, we summarize preliminary findings about the performance of prototype microsatellite tags deployed over a three-year period on 160 neonate to small juvenile sea turtles from four species released in the North Atlantic Ocean. We provide an overview of results analyzing tag performance with metrics to investigate transmission characteristics and causes of tag failure. Our results reveal that, despite certain unfavorable transmission features, overall tag performance was satisfactory. However, most track durations were shorter than those observed on individuals of similar size in other studies and did not allow for detailed analyses of trajectories and turtle behavior. Our study further suggests that tracking durations are correlated with the targeted species, highlighting a lack of robustness against some neritic behaviors. Unprecedented diving data obtained for neonate sea turtles in this study suggest that the vertical behaviors of early juveniles are already too strenuous for these miniaturized tags. Our findings will help to inform the biologging research community, showcasing recent technological advances for the species and life stages within our study.

2.
Sci Rep ; 14(1): 3908, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38365829

ABSTRACT

Predator-prey interactions in marine ecosystems are dynamically influenced by light, as demonstrated by diel vertical migrations of low-trophic level organisms. At high latitudes, the long winter nights can provide foraging opportunities for marine predators targeting vertically migrating prey closer to the surface at night. However, there is limited documentation of such diel patterns in marine predators under extreme light regimes. To address this, we recorded the diving behavior of 17 harbour porpoises just south of the Arctic circle in West Greenland, from summer to winter. Unlike classical diel vertical migration, the porpoises dove 24-37% deeper at night and the frequency of deep dives (> 100 m) increased tenfold as they entered the darkest months. The daily mean depth was negatively correlated with daylength, suggesting an increased diving activity when approaching the polar night. Our findings suggest a light-mediated strategy in which harbour porpoises would either target (i) benthic prey, (ii) pelagic prey migrating seasonally towards the seafloor, or (iii) vertically migrating prey that may be otherwise inaccessible in deeper waters at night, therefore maximizing feeding activity during extended periods of darkness. Extreme light regimes observed at high latitudes are therefore critical in structuring pelagic communities and food webs.


Subject(s)
Diving , Phocoena , Animals , Ecosystem , Seasons , Arctic Regions , Predatory Behavior , Feeding Behavior
3.
Mov Ecol ; 11(1): 3, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681811

ABSTRACT

BACKGROUND: Studying animal movement in the context of the optimal foraging theory has led to the development of simple movement metrics for inferring feeding activity. Yet, the predictive capacity of these metrics in natural environments has been given little attention, raising serious questions of the validity of these metrics. The aim of this study is to test whether simple continuous movement metrics predict feeding intensity in a marine predator, the southern elephant seal (SES; Mirounga leonine), and investigate potential factors influencing the predictive capacity of these metrics. METHODS: We equipped 21 female SES from the Kerguelen Archipelago with loggers and recorded their movements during post-breeding foraging trips at sea. From accelerometry, we estimated the number of prey encounter events (nPEE) and used it as a reference for feeding intensity. We also extracted several track- and dive-based movement metrics and evaluated how well they explain and predict the variance in nPEE. We conducted our analysis at two temporal scales (dive and day), with two dive profile resolutions (high at 1 Hz and low with five dive segments), and two types of models (linear models and regression trees). RESULTS: We found that none of the movement metrics predict nPEE with satisfactory power. The vertical transit rates (primarily the ascent rate) during dives had the best predictive performance among all metrics. Dive metrics performed better than track metrics and all metrics performed on average better at the scale of days than the scale of dives. However, the performance of the models at the scale of days showed higher variability among individuals suggesting distinct foraging tactics. Dive-based metrics performed better when computed from high-resolution dive profiles than low-resolution dive profiles. Finally, regression trees produced more accurate predictions than linear models. CONCLUSIONS: Our study reveals that simple movement metrics do not predict feeding activity in free-ranging marine predators. This could emerge from differences between individuals, temporal scales, and the data resolution used, among many other factors. We conclude that these simple metrics should be avoided or carefully tested a priori with the studied species and the ecological context to account for significant influencing factors.

4.
Environ Sci Technol ; 57(5): 2054-2063, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36652233

ABSTRACT

Combined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (Alle alle), a keystone Arctic seabird. We compiled behavioral data for 44 birds across 5 years using accelerometers while also quantifying blood Hg and environmental conditions. Warm sea surface temperature (SST) and low sea ice coverage reshaped time activity budgets (TABs) and diving patterns, causing decreased resting, increased flight, and longer dives. Mercury contamination was not associated with TABs. However, highly contaminated birds lengthened interdive breaks when making long dives, suggesting Hg-induced physiological limitations. As dive durations increased with warm SST, subtle toxicological effects threaten to increasingly constrain diving and foraging efficiency as climate change progresses, with ecosystem-wide repercussions.


Subject(s)
Charadriiformes , Mercury , Animals , Ecosystem , Climate Change , Mercury/analysis , Arctic Regions , Birds , Environmental Monitoring
5.
Physiol Biochem Zool ; 95(5): 438-463, 2022.
Article in English | MEDLINE | ID: mdl-35947690

ABSTRACT

Allometry predicts that the 12-17-g American water shrew (Sorex palustris)-the world's smallest mammalian diver-will have the highest diving metabolic rate coupled with the lowest total body oxygen storage capacity, skeletal muscle buffering capacity, and glycolytic potential of any endothermic diver. Consistent with expectations, and potentially owing to their low thermal inertia, water shrews had a significantly higher diving metabolic rate in 10°C water (8.77 mL O2 g-1 h-1) compared with 30°C water (6.57 mL O2 g-1 h-1). Unlike larger-bodied divers, muscle myoglobin contributed minimally (7.7%-12.4%) to total onboard O2 stores of juvenile and adult water shrews, respectively, but was offset by high blood O2 carrying capacities (26.4%-26.9% v/v). Diving was predominantly aerobic, as only 1.2%-2.3% of dives in 10°C and 30°C water, respectively, exceeded the calculated aerobic dive limits at these temperatures (10.8-14.4 s). The mean voluntary dive time of water shrews during 20-min trials in 3°C-30°C water was 5.0±0.1 s (N=25, n=1,628), with a mean maximum dive time of 10.1±0.4 s. However, the average dive duration (6.9±0.2 s, n=257) of radio-telemetered shrews exclusively foraging in a simulated riparian environment (3°C water) for 12-28 h suggests that mean (but not maximum) dive times of water shrews in the wild may be longer. Mean dive duration, duration of the longest dive, and total time in water all decreased significantly as water temperature declined, suggesting that shrews employed behavioral thermoregulation to defend against immersion hypothermia. Additionally, free-diving shrews in the 24-h trials consistently elevated core body temperature by ∼1°C immediately before initiating aquatic foraging bouts and ended these bouts when body temperature was still at or above normal resting levels (∼37.8°C). We suggest that this observed predive hyperthermia aids to heighten the impressive somatosensory physiology, and hence foraging efficiency, of this diminutive predator while submerged.


Subject(s)
Diving , Animals , Body Temperature Regulation/physiology , Diving/physiology , Oxygen Consumption/physiology , Shrews , Water
6.
Ecol Evol ; 11(12): 7579-7590, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188836

ABSTRACT

Hormones are extensively known to be physiological mediators of energy mobilization and allow animals to adjust behavioral performance in response to their environment, especially within a foraging context.Few studies, however, have narrowed focus toward the consistency of hormonal patterns and their impact on individual foraging behavior. Describing these relationships can further our understanding of how individuals cope with heterogeneous environments and exploit different ecological niches.To address this, we measured between- and within-individual variation of basal cortisol (CORT), thyroid hormone T3, and testosterone (TEST) levels in wild adult female Galápagos sea lions (Zalophus wollebaeki) and analyzed how these hormones may be associated with foraging strategies. In this marine predator, females exhibit one of three spatially and temporally distinct foraging patterns (i.e., "benthic," "pelagic," and "night" divers) within diverse habitat types.Night divers differentiated from other strategies by having lower T3 levels. Considering metabolic costs, night divers may represent an energetically conservative strategy with shorter dive durations, depths, and descent rates to exploit prey which migrate up the water column based on vertical diel patterns.Intriguingly, CORT and TEST levels were highest in benthic divers, a strategy characterized by congregating around limited, shallow seafloors to specialize on confined yet reliable prey. This pattern may reflect hormone-mediated behavioral responses to specific risks in these habitats, such as high competition with conspecifics, prey predictability, or greater risks of predation.Overall, our study highlights the collective effects of hormonal and ecological variation on marine foraging. In doing so, we provide insights into how mechanistic constraints and environmental pressures may facilitate individual specialization in adaptive behavior in wild populations.

7.
Ecol Evol ; 11(3): 1432-1445, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33598142

ABSTRACT

Implementation of effective conservation planning relies on a robust understanding of the spatiotemporal distribution of the target species. In the marine realm, this is even more challenging for species rarely seen at the sea surface due to their extreme diving behavior like the sperm whales. Our study aims at (a) investigating the seasonal movements, (b) predicting the potential distribution, and (c) assessing the diel vertical behavior of this species in the Mascarene Archipelago in the south-west Indian Ocean. Using 21 satellite tracks of sperm whales and eight environmental predictors, 14 supervised machine learning algorithms were tested and compared to predict the whales' potential distribution during the wet and dry season, separately. Fourteen of the whales remained in close proximity to Mauritius, while a migratory pattern was evidenced with a synchronized departure for eight females that headed towards Rodrigues Island. The best performing algorithm was the random forest, showing a strong affinity of the whales for sea surface height during the wet season and for bottom temperature during the dry season. A more dispersed distribution was predicted during the wet season, whereas a more restricted distribution to Mauritius and Reunion waters was found during the dry season, probably related to the breeding period. A diel pattern was observed in the diving behavior, likely following the vertical migration of squids. The results of our study fill a knowledge gap regarding seasonal movements and habitat affinities of this vulnerable species, for which a regional IUCN assessment is still missing in the Indian Ocean. Our findings also confirm the great potential of machine learning algorithms in conservation planning and provide highly reproductible tools to support dynamic ocean management.

8.
Ecol Evol ; 11(4): 1620-1633, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33613994

ABSTRACT

Partitioning resources is a key mechanism for avoiding intraspecific competition and maximizing individual energy gain. However, in sexually dimorphic species it is difficult to discern if partitioning is due to competition or the different resource needs of morphologically distinct individuals. In the highly dimorphic southern elephant seal, there are intersexual differences in habitat use; at Iles Kerguelen, males predominantly use shelf waters, while females use deeper oceanic waters. There are equally marked intrasexual differences, with some males using the nearby Kerguelen Plateau, and others using the much more distant Antarctic continental shelf (~2,000 km away). We used this combination of inter and intrasexual behavior to test two hypotheses regarding habitat partitioning in highly dimorphic species. (a) that intersexual differences in habitat use will not appear until the seals diverge in body size and (b) that some habitats have higher rates of energy return than others. In particular, that the Antarctic shelf would provide higher energy returns than the Kerguelen Shelf, to offset the greater cost of travel. We quantified the habitat use of 187 southern elephant seals (102 adult females and 85 subadult males). The seals in the two groups were the same size (~2.4 m) removing the confounding effect of body size. We found that the intersexual differences in habitat use existed before the divergence in body size. Also, we found that the amount of energy gained was the same in all of the major habitats. This suggests that the use of shelf habitats by males is innate, and a trade-off between the need to access the large benthic prey available on shelf waters, against the higher risk of predation there. Intrasexual differences in habitat use are another trade-off; although there are fewer predators on the Antarctic shelf, it is subject to considerable interannual fluctuations in sea-ice extent. In contrast, the Kerguelen Plateau presents more consistent foraging opportunities, but contains higher levels of predation. Habitat partitioning in this highly dimorphic species is therefore the result of complex interplay of life history strategies, environmental conditions and predation pressure.

9.
J Exp Biol ; 223(Pt 5)2020 02 28.
Article in English | MEDLINE | ID: mdl-32041802

ABSTRACT

Knowledge of the diet of marine mammals is fundamental to understanding their role in marine ecosystems and response to environmental change. Recently, animal-borne video cameras have revealed the diet of marine mammals that make short foraging trips. However, novel approaches that allocate video time to target prey capture events is required to obtain diet information for species that make long foraging trips over great distances. We combined satellite telemetry and depth recorders with newly developed date-/time-, depth- and acceleration-triggered animal-borne video cameras to examine the diet of female northern elephant seals during their foraging migrations across the eastern North Pacific. We obtained 48.2 h of underwater video, from cameras mounted on the head (n=12) and jaw (n=3) of seals. Fish dominated the diet (78% of 697 prey items recorded) across all foraging locations (range: 37-55°N, 122-152°W), diving depths (range: 238-1167 m) and water temperatures (range: 3.2-7.4°C), while squid comprised only 7% of the diet. Identified prey included fish such as myctophids, Merluccius sp. and Icosteus aenigmaticus, and squid such as Histioteuthis sp., Octopoteuthis sp. and Taningia danae Our results corroborate fatty acid analysis, which also found that fish are more important in the diet, and are in contrast to stomach content analyses that found cephalopods to be the most important component of the diet. Our work shows that in situ video observation is a useful method for studying the at-sea diet of long-ranging marine predators.


Subject(s)
Diet/veterinary , Feeding Behavior , Seals, Earless/physiology , Video Recording , Acceleration , Animals , Female
10.
Physiol Biochem Zool ; 92(3): 293-302, 2019.
Article in English | MEDLINE | ID: mdl-30864880

ABSTRACT

Diving optimality models predict air breathers to routinely dive within aerobic limits, but predator avoidance dives may be an exception. Lengthening submergence times during a predation threat may enhance survival probability, and we therefore hypothesized that predator avoidance dives in juvenile estuarine crocodiles (Crocodylus porosus) would be partially anaerobically fueled. We also predicted that reliance on anaerobic metabolism would increase at elevated temperatures to offset the faster depletion of body oxygen stores. Crocodiles were maintained at 28° and 34°C for 60 d and subsequently underwent simulated predator avoidance dive trials at two test temperatures (28° and 34°C). Blood was sampled immediately on surfacing to measure plasma lactate concentrations relative to nondiving (control) values. Aerobic dive limits (cADL; min) were also calculated using known body mass and oxygen storage relationships and rates of diving oxygen consumption and compared with observed dive durations. Postdive plasma lactate levels were elevated beyond resting levels at both test temperatures, indicating that aerobic thresholds were surpassed during simulated predator avoidance dives. Similarly, ≥90% of dive durations exceeded cADLs at both test temperatures. Postdive plasma lactate concentrations were independent of water temperature and thermal acclimation treatment. Together, these findings suggest that reliance on anaerobiosis during simulated predator avoidance dives is important regardless of temperature.


Subject(s)
Alligators and Crocodiles/physiology , Diving , Food Chain , Lactates/blood , Oxygen Consumption , Temperature , Animals , Fresh Water , Random Allocation
11.
Ecol Evol ; 9(1): 223-236, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30680109

ABSTRACT

Ontogeny of diving and foraging behavior in marine top predators is poorly understood despite its importance in population recruitment. This lack of knowledge is partly due to the difficulties of monitoring juveniles in the wild, which is linked to high mortality early in life. Pinnipeds are good models for studying the development of foraging behaviors because juveniles are large enough to robustly carry tracking devices for many months. Moreover, parental assistance is absent after a juvenile departs for its first foraging trip, minimizing confounding effects of parental input on the development of foraging skills. In this study, we tracked 20 newly weaned juvenile southern elephant seals from Kerguelen Islands for up to 338 days during their first trip at sea following weaning. We used a new generation of satellite relay tags, which allow for the transmission of dive, accelerometer, and location data. We also monitored, at the same time, nine adult females from the colony during their post-breeding trips, in order to compare diving and foraging behaviors. Juveniles showed a gradual improvement through time in their foraging skills. Like adults females, they remarkably adjusted their swimming effort according to temporal changes in buoyancy (i.e., a proxy of their body condition). They also did not appear to exceed their aerobic physiological diving limits, although dives were constrained by their smaller size compared to adults. Changes in buoyancy appeared to also influence their decision to either keep foraging or return to land, alongside the duration of their haul outs and choice of foraging habitat (oceanic vs. plateau). Further studies are thus needed to better understand how patterns in juveniles survival, and therefore elephant seal populations, might be affected by their changes in foraging skills and changes in their environmental conditions.

12.
Undersea Hyperb Med ; 45(3): 313-322, 2018.
Article in English | MEDLINE | ID: mdl-30028918

ABSTRACT

Hookah diving is a fishing method used in many small-scale fisheries in the Gulf of Mexico and the Caribbean Sea, as well as in many coastal fisheries around the world. Many high-value species like sea cucumber and spiny lobster, among others, are harvested via hookah diving. However, the fishing method presents a risk for both decompression illness and carbon monoxide poisoning, both causes of disabilities and death among small-scale fishers, and with significant negative impacts on the social and economic status of households and coastal communities. Currently, there is a misunderstanding among fishers concerning diving risks. Using a mixed-method analysis, this study reports the risk perceptions of small-scale fishers and hyperbaric personnel about hookah diving, and the actual diving accidents which occur in the spiny lobster and sea cucumber fisheries in the Yucatán northeastern ports. The study highlights the need for appropriate fishing technologies and increased awareness among fishers about the consequences of hookah diving. Fishery managers and health services can make priority decisions based on the information generated.


Subject(s)
Diving/adverse effects , Fisheries , Occupational Diseases/etiology , Adolescent , Adult , Age Factors , Aged , Animals , Diving/statistics & numerical data , Equipment Design , Humans , Hyperbaric Oxygenation , Male , Marital Status , Middle Aged , Palinuridae , Qualitative Research , Risk , Risk Assessment , Sea Cucumbers , Young Adult
13.
Ecol Evol ; 7(19): 7822-7837, 2017 10.
Article in English | MEDLINE | ID: mdl-29043037

ABSTRACT

Here, we describe the diving behavior of sperm whales (Physeter macrocephalus) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1-Hz resolution and GPS-quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS-quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V-shaped, Mid-water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short- and Long-duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.

14.
PeerJ ; 5: e3271, 2017.
Article in English | MEDLINE | ID: mdl-28484673

ABSTRACT

Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California, Mexico, were tracked for periods of 14-134 days. Five of these sharks were adults, with four females visually assessed to be pregnant. At least for the periods they were tracked, juveniles remained in the Gulf of California while adults moved offshore into the eastern Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding two juveniles that remained in the shallow tagging area for the duration of tracking, all sharks spent 65 ± 20.7% (SD) of their time near the surface, even over deep water, often in association with frontal zones characterized by cool-water upwelling. While these six sharks all made dives into the meso- or bathypelagic zones, with two sharks reaching the maximum depth recordable by the tags (1285.8 m), time spent at these depths represented a small proportion of the overall tracks. Most deep dives (72.7%) took place during the day, particularly during the early morning and late afternoon. Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks are less likely to frequent coastal waters after the onset of maturity.

15.
Mov Ecol ; 5: 3, 2017.
Article in English | MEDLINE | ID: mdl-28239473

ABSTRACT

BACKGROUND: We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales (Orcinus orca), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon (Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. RESULTS: Three-dimensional dive tracks indicated that foraging (N = 701) and non-foraging dives (N = 10,618) were kinematically distinct (Wilks' lambda: λ16 = 0.321, P < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. CONCLUSIONS: High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.

16.
Ecol Appl ; 27(1): 10-25, 2017 01.
Article in English | MEDLINE | ID: mdl-28052497

ABSTRACT

Extraction of Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea began in 1997, following a management plan that targets the largest fish with a goal of reducing the spawning biomass by 50% over 35 yr. We investigate the potential long-term consequences of the reduced availability of this prey for Weddell seals (Leptonychotes weddellii). Energy demands in seals are acute, especially immediately following lactation, when females must recover substantial mass and cope with molting costs. We tested the hypothesis that toothfish are critically important for adult female seals during this period. Toothfish body mass is three orders of magnitude greater, and its energy density nearly double that of the most common seal prey, Antarctic silverfish (Pleuragramma antarcticum). Reduction or elimination of toothfish consumption could impair a female's ability to sufficiently recover and successfully produce a pup in the following pupping season. Our goals are to (1) illustrate mechanisms and conditions whereby toothfish depletion might plausibly affect seal population trends; (2) identify measurable parameters of the seals' ecology that may help better understand the potential negative impact of toothfish depletion on seal populations; and (3) promote a precautionary management approach for the fishery that includes monitoring of seal populations We constructed a set of inter-linked models of seal diving behavior, physiological condition, and demography based on existing information. We evaluate the effect of the following factors on seal mass recovery and intrinsic population growth rates: fishery depletion rate, daily diving limits, probability of a successful dive, and body mass recovery target. We show that loss of toothfish has the greatest potential impact on seal populations' growth rate. Under some scenarios, populations may decrease at >10% per year. Critical parameters to better understand fishery impacts include prevalence and size of toothfish in the seals' diet; the relationship between diet and the rate of mass recovery; and female breeding propensity in relation to body condition at the end of the molting period. Our results lend support to concerns about the potential negative impact of toothfish extraction in the Ross Sea; and to advocate for a precautionary management approach by the fishery.


Subject(s)
Energy Metabolism , Food Chain , Perciformes , Seals, Earless/physiology , Animals , Antarctic Regions , Diet , Female , Fisheries , Models, Biological , Oceans and Seas , Population Dynamics , Reproduction
17.
PeerJ ; 4: e2569, 2016.
Article in English | MEDLINE | ID: mdl-27761347

ABSTRACT

Dive duration in air-breathing vertebrates is thought to be constrained by the volume of oxygen stored in the body and the rate at which it is consumed (i.e., "oxygen store/usage hypothesis"). The body mass-dependence of dive duration among endothermic vertebrates is largely supportive of this model, but previous analyses of ectothermic vertebrates show no such body mass-dependence. Here we show that dive duration in both endotherms and ectotherms largely support the oxygen store/usage hypothesis after accounting for the well-established effects of temperature on oxygen consumption rates. Analyses of the body mass and temperature dependence of dive duration in 181 species of endothermic vertebrates and 29 species of ectothermic vertebrates show that dive duration increases as a power law with body mass, and decreases exponentially with increasing temperature. Thus, in the case of ectothermic vertebrates, changes in environmental temperature will likely impact the foraging ecology of divers.

18.
Ecol Evol ; 6(15): 5290-304, 2016 08.
Article in English | MEDLINE | ID: mdl-27551383

ABSTRACT

Comprehension of ecological processes in marine animals requires information regarding dynamic vertical habitat use. While many pelagic predators primarily associate with epipelagic waters, some species routinely dive beyond the deep scattering layer. Actuation for exploiting these aphotic habitats remains largely unknown. Recent telemetry data from oceanic whitetip sharks (Carcharhinus longimanus) in the Atlantic show a strong association with warm waters (>20°C) less than 200 m. Yet, individuals regularly exhibit excursions into the meso- and bathypelagic zone. In order to examine deep-diving behavior in oceanic whitetip sharks, we physically recovered 16 pop-up satellite archival tags and analyzed the high-resolution depth and temperature data. Diving behavior was evaluated in the context of plausible functional behavior hypotheses including interactive behaviors, energy conservation, thermoregulation, navigation, and foraging. Mesopelagic excursions (n = 610) occurred throughout the entire migratory circuit in all individuals, with no indication of site specificity. Six depth-versus-time descent and ascent profiles were identified. Descent profile shapes showed little association with examined environmental variables. Contrastingly, ascent profile shapes were related to environmental factors and appear to represent unique behavioral responses to abiotic conditions present at the dive apex. However, environmental conditions may not be the sole factors influencing ascents, as ascent mode may be linked to intentional behaviors. While dive functionality remains unconfirmed, our study suggests that mesopelagic excursions relate to active foraging behavior or navigation. Dive timing, prey constituents, and dive shape support foraging as the most viable hypothesis for mesopelagic excursions, indicating that the oceanic whitetip shark may regularly survey extreme environments (deep depths, low temperatures) as a foraging strategy. At the apex of these deep-water excursions, sharks exhibit a variable behavioral response, perhaps, indicating the presence or absence of prey.

19.
Article in English | MEDLINE | ID: mdl-27421239

ABSTRACT

To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright.


Subject(s)
Diving/physiology , Mammals/physiology , Spheniscidae/physiology , Animals , Aquatic Organisms/physiology , Caniformia/physiology , Cetacea/physiology , Telemetry/methods , Telemetry/veterinary
20.
Zoology (Jena) ; 119(5): 406-413, 2016 10.
Article in English | MEDLINE | ID: mdl-27461910

ABSTRACT

Foraging drives many fundamental aspects of ecology, and an understanding of foraging behavior aids in the conservation of threatened species by identifying critical habitats and spatial patterns relevant to management. The world's largest ray, the oceanic manta (Manta birostris) is poorly studied and threatened globally by targeted fisheries and incidental capture. Very little information is available on the natural history, ecology and behavior of the species, complicating management efforts. This study provides the first data on the diving behavior of the species based on data returned from six tagged individuals, and an opportunistic observation from a submersible of a manta foraging at depth. Pop-off archival satellite tags deployed on mantas at the Revillagigedo Archipelago, Mexico recorded seasonal shifts in diving behavior, likely related to changes in the location and availability of zooplankton prey. Across seasons, mantas spent a large proportion of their time centered around the upper limit of the thermocline, where zooplankton often aggregate. Tag data reveal a gradual activity shift from surface waters to 100-150m across the tagging period, possibly indicating a change in foraging behavior from targeting surface-associated zooplankton to vertical migrators. The depth ranges accessed by mantas in this study carry variable bycatch risks from different fishing gear types. Consequently, region-specific data on diving behavior can help inform local management strategies that reduce or mitigate bycatch of this vulnerable species.


Subject(s)
Feeding Behavior/physiology , Skates, Fish/physiology , Animal Identification Systems , Animals , Diving , Endangered Species , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL