Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Biomed Pharmacother ; 174: 116562, 2024 May.
Article in English | MEDLINE | ID: mdl-38626518

ABSTRACT

Rhabdomyosarcoma (RMS), a mesenchymal tumor occurring in the soft tissue of children, is associated with a defect in differentiation. This study unveils a novel anti-tumor mechanism of dimethylaminomicheliolide (DMAMCL), which is a water-soluble derivative of Micheliolide. First, we demonstrate that DMAMCL inhibits RMS cell growth without obvious cell death, leading to morphological alterations, enhanced expression of muscle differentiation markers, and a shift from a malignant to a more benign metabolic phenotype. Second, we detected decreased expression of DLL1 in RMS cells after DMAMCL treatment, known as a pivotal ligand in the Notch signaling pathway. Downregulation of DLL1 inhibits RMS cell growth and induces morphological changes similar to the effects of DMAMCL. Furthermore, DMAMCL treatment or loss of DLL1 expression also inhibits RMS xenograft tumor growth and augmented the expression of differentiation markers. Surprisingly, in C2C12 cells DMAMCL treatment or DLL1 downregulation also induces cell growth inhibition and an elevation in muscle differentiation marker expression. These data indicated that DMAMCL induced RMS differentiation and DLL1 is an important factor for RMS differentiation, opening a new window for the clinical use of DMAMCL as an agent for differentiation-inducing therapy for RMS treatment.


Subject(s)
Calcium-Binding Proteins , Cell Differentiation , Cell Proliferation , Down-Regulation , Rhabdomyosarcoma , Cell Differentiation/drug effects , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/metabolism , Animals , Down-Regulation/drug effects , Humans , Cell Line, Tumor , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Proliferation/drug effects , Mice , Xenograft Model Antitumor Assays , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Nude , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology
2.
Drug Deliv Transl Res ; 14(7): 2003-2018, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38161194

ABSTRACT

Long noncoding RNAs (lncRNAs) have been demonstrated to participate in neuroblastoma cisplatin resistance and tumorigenesis. LncRNA LINC00460 was previously reported to play a critical regulatory role in many cancer development. Nevertheless, its role in modulating neuroblastoma cisplatin resistance has not been explored till now. Cisplatin-resistant neuroblastoma cell lines were established by exposing neuroblastoma cell lines to progressively increasing concentrations of cisplatin for 6 months. LINC00460, microRNA (miR)-149-5p, and delta-like ligand 1 (DLL1) mRNA expression was measured through RT-qPCR. The protein levels of DLL1, epithelial-to-mesenchymal transition (EMT) markers, and the Notch signaling-related molecules were measured via western blotting. The IC50 value for cisplatin, cell growth, metastasis and apoptosis were analyzed in cisplatin-resistant neuroblastoma cells. The binding between LINC00460 (or DLL1) and miR-149-5p was validated through dual-luciferase reporter assay. The murine xenograft model was established to perform in vivo assays. LINC00460 and DLL1 levels were elevated, while miR-149-5p level was reduced in cisplatin-resistant neuroblastoma cells. LINC00460 depletion attenuated IC50 values for cisplatin, weakened cell growth, metastasis, and EMT, and enhanced apoptosis in cisplatin-resistant neuroblastoma cells. Mechanically, LINC00460 sponged miR-338-3p to increase DLL1 level, thereby activating Notch signaling pathway. DLL1 overexpression antagonized LINC00460 silencing-induced suppression on neuroblastoma cell cisplatin resistance and malignant behaviors, while such effects were further reversed by treatment with DAPT, the inhibitor of Notch pathway. Additionally, LINC00460 knockdown further augmented cisplatin-induced impairment on tumor growth in vivo. LINC00460 contributes to neuroblastoma cisplatin resistance and tumorigenesis through miR-149-5p/DLL1/Notch pathway, providing new directions to improve the therapeutic efficacy of chemotherapy drugs applied in patients with neuroblastoma.


Subject(s)
Calcium-Binding Proteins , Cisplatin , Drug Resistance, Neoplasm , MicroRNAs , Neuroblastoma , RNA, Long Noncoding , Receptors, Notch , Signal Transduction , Cisplatin/pharmacology , MicroRNAs/genetics , Neuroblastoma/genetics , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Humans , Animals , Drug Resistance, Neoplasm/drug effects , RNA, Long Noncoding/genetics , Cell Line, Tumor , Receptors, Notch/metabolism , Receptors, Notch/genetics , Signal Transduction/drug effects , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Mice , Mice, Nude , Membrane Proteins/genetics , Membrane Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinogenesis/genetics , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred BALB C
3.
Stem Cell Reports ; 18(11): 2047-2055, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37832539

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) of human skin provides a tool for validating observations from in vitro experimental models. By analyzing a published dataset of healthy adult epidermis, we confirm that the basal epidermal layer is heterogeneous, and three subpopulations of non-dividing cells can be distinguished. We show that Delta-like ligand 1 (DLL1) is expressed in a subset of basal cells previously identified as stem cells in cultured human keratinocytes and map the distribution of other Notch ligands and receptors to specific epidermal cell compartments. Although DLL1 is expressed at low levels, it is expressed in the same cell state as the Notch regulator, Lunatic -fringe (LFNG, O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase). Overexpression of LFNG amplifies the effects of DLL1 in cultured keratinocytes, increasing proliferation and colony-forming ability. We conclude that using scRNA-seq resources from healthy human skin not only validates previous experimental data but allows formulation of testable new hypotheses.


Subject(s)
Glycosyltransferases , Receptors, Notch , Adult , Humans , Receptors, Notch/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Signal Transduction , Epidermis/metabolism , Keratinocytes/metabolism , Stem Cells/metabolism , Sequence Analysis, RNA
4.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298115

ABSTRACT

Sepsis is defined as organ failure caused by dysregulated host response to infection. While early antibiotic treatment in patients with acute infection is essential, treating non-infectious patients must be avoided. Current guidelines recommend procalcitonin (PCT) to guide discontinuation of antibiotic treatment. For initiation of therapy, there is currently no recommended biomarker. In this study, we evaluated Host-Derived Delta-like Canonical Notch Ligand 1 (DLL1), a monocyte membrane ligand that has shown promising results in differentiating infectious from non-infectious critically ill patients. Soluble DLL1 levels were measured in plasma samples of six different cohorts. The six cohorts comprise two cohorts with non-infectious inflammatory auto-immune diseases (Hidradenitis Suppurativa, Inflammatory Bowel Disease), one cohort of bacterial skin infection, and three cohorts of suspected systemic infection or sepsis. In total, soluble DLL1 plasma levels of 405 patients were analyzed. Patients were divided into three groups: inflammatory disease, infection, and sepsis (defined according to the Sepsis-3 definition), followed by the evaluation of its diagnostic performance via Area Under the Receiver Operating Characteristics (AUROC) analyses. Patients of the sepsis group showed significantly elevated plasma DLL1 levels compared to patients with uncomplicated infections and sterile inflammation. However, patients with infections had significantly higher DLL1 levels than patients with inflammatory diseases. Diagnostic performance was evaluated and showed better performance for DLL1 for the recognition of sepsis (AUC: 0.823; CI 0.731-0.914) than C-reactive protein (AUC 0.758; CI 0.658-0.857), PCT (AUC 0.593; CI 0.474-0.711) and White Blood Cell count (AUC 0.577; CI 0.46-0.694). DLL1 demonstrated promising results for diagnosing sepsis and was able to differentiate sepsis from other infectious and inflammatory diseases.


Subject(s)
Communicable Diseases , Sepsis , Humans , Ligands , Calcitonin , Biomarkers , Sepsis/diagnosis , Procalcitonin
5.
J Transl Med ; 21(1): 309, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37149661

ABSTRACT

BACKGROUND: The previous studies have revealed that abnormal RNA-binding protein Musashi-2 (MSI2) expression is associated with cancer progression through post-transcriptional mechanisms, however mechanistic details of this regulation in acute myeloid leukemia (AML) still remain unclear. Our study aimed to explore the relationship between microRNA-143 (miR-143) and MSI2 and to clarify their clinical significance, biological function and mechanism. METHODS: Abnormal expression of miR-143 and MSI2 were evaluated in bone marrow samples from AML patients by quantitative real time-PCR. Effects of miR-143 on regulating MSI2 expression were investigated using luciferase reporter assay. Functional roles of MSI2 and miR-143 on AML cell proliferation and migration were determined by CCK-8 assay, colony formation, and transwell assays in vitro and in mouse subcutaneous xenograft and orthotopic transplantation models in vivo. RNA immunoprecipitation, RNA stability measurement and Western blotting were performed to assess the effects of MSI2 on AML. RESULTS: We found that MSI2 was significantly overexpressed in AML and exerted its role of promoting AML cell growth by targeting DLL1 and thereby activating Notch signaling pathway. Moreover, we found that MSI2 bound to Snail1 transcript and inhibited its degradation, which in turn upregulated the expression of matrix metalloproteinases. We also found that MSI2 targeting miR-143 is downregulated in AML. In the AML xenograft mouse model, overexpression of MSI2 recapitulated its leukemia-promoting effects, and overexpression of miR-143 partially attenuated tumor growth and prevented metastasis. Notably, low expression of miR-143, and high expression of MSI2 were associated with poor prognosis in AML patients. CONCLUSIONS: Our data demonstrate that MSI2 exerts its malignant properties via DLL1/Notch1 cascade and the Snail1/MMPs axes in AML, and upregulation of miR-143 may be a potential therapeutic approach for AML.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , Humans , Animals , Mice , Leukemia, Myeloid, Acute/pathology , Genes, Tumor Suppressor , Cell Proliferation/genetics , Up-Regulation , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , RNA-Binding Proteins/genetics
6.
Front Immunol ; 14: 1134123, 2023.
Article in English | MEDLINE | ID: mdl-37063841

ABSTRACT

Objectives: The Notch signaling pathway has been implicated in the pathogenesis of active tuberculosis (TB), and Th1-type cell-mediated immunity is essential for effective control of mycobacterial infection. However, it remains unclear whether Notch signaling molecules (Notch1, DLL1, and Hes1) and Th1-type factors (T-bet and IFN-γ) can serve as biomarkers for tracking the progression of active TB at different stages along with peripheral blood white blood cell (WBC) parameters. Methods: A total of 60 participants were enrolled in the study, including 37 confirmed TB patients (mild (n=17), moderate/severe (n=20)) and 23 healthy controls. The mRNA expression of Notch1, DLL1, Hes1, T-bet and IFN-γ in the peripheral blood mononuclear cells (PBMCs) of the subjects was measured by RT-qPCR, then analyzed for differences. Receiver Operating Characteristic curve (ROC) was used to assess the effectiveness of each factor as a biomarker in identifying lung injury. Results: We found that mRNA expression levels of Notch1, DLL1, and Hes1 were upregulated in active TB patients, with higher levels observed in those with moderate/severe TB than those with mild TB or without TB. In contrast, mRNA levels of T-bet and IFN-γ were downregulated and significantly lower in mild and moderate/severe cases. Furthermore, the combiROC analysis of IFN-γ and the percentage of lymphocytes (L%) among WBC parameters showed superior discriminatory ability compared to other factors for identifying individuals with active TB versus healthy individuals. Notably, Notch pathway molecules were more effective than Th1-type factors and WBC parameters in differentiating mild and moderate/severe cases of active TB, particularly in the combiROC model that included Notch1 and Hes1. Conclusions: Our study demonstrated that Notch1, Hes1, IFN-γ, and L% can be used as biomarkers to identify different stages of active TB patients and to monitor the effectiveness of treatment.


Subject(s)
Leukocytes, Mononuclear , Tuberculosis , Humans , Leukocytes, Mononuclear/metabolism , Tuberculosis/diagnosis , Biomarkers , Prognosis , RNA, Messenger , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
7.
Orphanet J Rare Dis ; 18(1): 59, 2023 03 19.
Article in English | MEDLINE | ID: mdl-36935482

ABSTRACT

BACKGROUND: Terminal 6q deletions are rare, and the number of well-defined published cases is limited. Since parents of children with these aberrations often search the internet and unite via international social media platforms, these dedicated platforms may hold valuable knowledge about additional cases. The Chromosome 6 Project is a collaboration between researchers and clinicians at the University Medical Center Groningen and members of a Chromosome 6 support group on Facebook. The aim of the project is to improve the surveillance of patients with chromosome 6 aberrations and the support for their families by increasing the available information about these rare aberrations. This parent-driven research project makes use of information collected directly from parents via a multilingual online questionnaire. Here, we report our findings on 93 individuals with terminal 6q deletions and 11 individuals with interstitial 6q26q27 deletions, a cohort that includes 38 newly identified individuals. RESULTS: Using this cohort, we can identify a common terminal 6q deletion phenotype that includes microcephaly, dysplastic outer ears, hypertelorism, vision problems, abnormal eye movements, dental abnormalities, feeding problems, recurrent infections, respiratory problems, spinal cord abnormalities, abnormal vertebrae, scoliosis, joint hypermobility, brain abnormalities (ventriculomegaly/hydrocephaly, corpus callosum abnormality and cortical dysplasia), seizures, hypotonia, ataxia, torticollis, balance problems, developmental delay, sleeping problems and hyperactivity. Other frequently reported clinical characteristics are congenital heart defects, kidney problems, abnormalities of the female genitalia, spina bifida, anal abnormalities, positional foot deformities, hypertonia and self-harming behaviour. The phenotypes were comparable up to a deletion size of 7.1 Mb, and most features could be attributed to the terminally located gene DLL1. Larger deletions that include QKI (> 7.1 Mb) lead to a more severe phenotype that includes additional clinical characteristics. CONCLUSIONS: Terminal 6q deletions cause a common but highly variable phenotype. Most clinical characteristics can be linked to the smallest terminal 6q deletions that include the gene DLL1 (> 500 kb). Based on our findings, we provide recommendations for clinical follow-up and surveillance of individuals with terminal 6q deletions.


Subject(s)
Abnormalities, Multiple , Nervous System Malformations , Social Media , Female , Humans , Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 6 , Nervous System Malformations/genetics , Phenotype , Seizures/genetics
8.
Cancer Commun (Lond) ; 42(9): 868-886, 2022 09.
Article in English | MEDLINE | ID: mdl-35848447

ABSTRACT

BACKGROUND: Elucidation of the post-transcriptional modification has led to novel strategies to treat intractable tumors, especially glioblastoma (GBM). The ubiquitin-proteasome system (UPS) mediates a reversible, stringent and stepwise post-translational modification which is closely associated with malignant processes of GBM. To this end, developing novel therapeutic approaches to target the UPS may contribute to the treatment of this disease. This study aimed to screen the vital and aberrantly regulated component of the UPS in GBM. Based on the molecular identification, functional characterization, and mechanism investigation, we sought to elaborate a novel therapeutic strategy to target this vital factor to combat GBM. METHODS: We combined glioma datasets and human patient samples to screen and identify aberrantly regulated E3 ubiquitin ligase. Multidimensional database analysis and molecular and functional experiments in vivo and in vitro were used to evaluate the roles of HECT, UBA and WWE domain-containing E3 ubiquitin ligase 1 (HUWE1) in GBM. dCas9 synergistic activation mediator system and recombinant adeno-associated virus (rAAV) were used to endogenously overexpress full-length HUWE1 in vitro and in glioma orthotopic xenografts. RESULTS: Low expression of HUWE1 was closely associated with worse prognosis of GBM patients. The ubiquitination and subsequent degradation of N-Myc mediated by HUWE1, leading to the inactivation of downstream Delta-like 1 (DLL1)-NOTCH1 signaling pathways, inhibited the proliferation, invasion, and migration of GBM cells in vitro and in vivo. A rAAV dual-vector system for packaging and delivery of dCas9-VP64 was used to augment endogenous HUWE1 expression in vivo and showed an antitumor activity in glioma orthotopic xenografts. CONCLUSIONS: The E3 ubiquitin ligase HUWE1 acts through the N-Myc-DLL1-NOTCH1 signaling axis to suppress GBM progression. Antitumor activity of rAAV dual-vector delivering dCas9-HUWE1 system uncovers a promising therapeutic strategy for GBM.


Subject(s)
Glioblastoma , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Glioblastoma/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
9.
Dev Biol ; 487: 42-56, 2022 07.
Article in English | MEDLINE | ID: mdl-35429490

ABSTRACT

In mammalian development, oscillatory activation of Notch signaling is required for segmentation clock function during somitogenesis. Notch activity oscillations are synchronized between neighboring cells in the presomitic mesoderm (PSM) and have a period that matches the rate of somite formation. Normal clock function requires cyclic expression of the Lunatic fringe (LFNG) glycosyltransferase, as well as expression of the inhibitory Notch ligand Delta-like 3 (DLL3). How these factors coordinate Notch activation in the clock is not well understood. Recent evidence suggests that LFNG can act in a signal-sending cell to influence Notch activity in the clock, raising the possibility that in this context, glycosylation of Notch pathway proteins by LFNG may affect ligand activity. Here we dissect the genetic interactions of Lfng and Dll3 specifically in the segmentation clock and observe distinctions in the skeletal and clock phenotypes of mutant embryos showing that paradoxically, loss of Dll3 is associated with strong reductions in Notch activity in the caudal PSM. The patterns of Notch activity in the PSM suggest that the loss of Dll3 is epistatic to the loss of Lfng in the segmentation clock, and we present direct evidence for the modification of several DLL1 and DLL3 EGF-repeats by LFNG. We further demonstrate that DLL3 expression in cells co-expressing DLL1 and NOTCH1 can potentiate a cell's signal-sending activity and that this effect is modulated by LFNG, suggesting a mechanism for coordinated regulation of oscillatory Notch activation in the clock by glycosylation and cis-inhibition.


Subject(s)
Receptors, Notch , Somites , Animals , Gene Expression Regulation, Developmental , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Ligands , Mammals/genetics , Mesoderm/metabolism , Receptors, Notch/metabolism , Somites/metabolism
10.
Saudi Pharm J ; 30(1): 72-90, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35145347

ABSTRACT

Excessive interleukin (IL)-6 production is a driver for malignancy and drug resistance in colorectal cancer (CRC). Our study investigated a seven-week post-treatment with the anti-inflammatory drug, Diacerein (Diac), alone or in combination with 5-fluorouracil (5-FU), using a 1,2-dimethylhydrazine (DMH) rat model of CRC. Diac alone and 5-FU+Diac reduced serum levels of carcino-embryonic antigen (CEA), while all regimens decreased serum levels of colon cancer-specific antigen (CCSA), a more specific CRC biomarker. Additionally, Diac, 5-FU and their combination suppressed colonic content/gene expression of IL-6, its downstream oncogene, Kirsten rat sarcoma viral oncogene homolog (K-Ras), and consequently Notch intracellular domain and nuclear factor-kappa B (NF-κB) p65. In turn, NF-κB downstream factors, viz., matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF), c-Myc, and B-cell lymphoma-2 (Bcl-2) were also downregulated, while E-cadherin was elevated. Additionally, the drugs reduced the immunoreactivity of CD31 to prove their anti-angiogenic effect, while the TUNEL assay confirmed the apoptotic effect. The apoptotic effect was confirmed by transferase dUTP nick-end labeling assay. Moreover, these drugs inhibited colon content of p-Akt, ß-catenin, and cyclin D1 immunoreactivity. The drugs also activated the tumor suppressor glycogen synthase kinase 3- ß (GSK3-ß) and upregulated the expression of the Nur77 gene, which represents the second arm of IL-6 signaling. However, only 5-FU upregulated miR-200a, another K-Ras downstream factor. The in-vitro cytotoxic and migration/invasion assays verified the molecular trajectories. Accordingly, we evaluated the antineoplastic effect of Diac alone and its possible chemosensitization effect when added to 5-FU. This combination may target critical oncogenic pathways, including the IL-6/K-Ras/Notch/NF-κB p65 axis, p-Akt/GSK3-ß/ß-catenin/cyclin D-1 hub, and Nur77.

11.
Dig Dis Sci ; 67(10): 4770-4779, 2022 10.
Article in English | MEDLINE | ID: mdl-35088188

ABSTRACT

BACKGROUND: We previously reported that clumps of a few epithelial cells were scattered in ulcer regions in a dextran sulfate sodium (DSS)-induced mouse model of ulcerative colitis (UC). AIMS: To determine the ectopically localized epithelial clumps might be derived from stem cells or their daughter progenitor cells. METHODS: Female BALB/c mice were administered DSS in drinking water for 6 days, followed by withdrawal of DSS for 6 days. Histological and immunohistochemical examinations were conducted in the distal region and proximal region of the colorectum to determine expression of stem cell markers in the epithelial clumps. RESULTS: Similar to the characteristics of UC, the ulcers were more severe in the distal region close to the anus than in the proximal region of the colorectum. Quantitative analyses revealed that the epithelial clumps appeared in relation to the severity of the ulcer, and they expressed the cell adhesion molecules E-cadherin and ß-catenin. Among stem cell markers, the epithelial clumps primarily expressed +5 cell marker Dll1 as reserved intestinal stem cells, followed by +4 cell marker Bmi1 and crypt stem cell marker Lgr5 in that order. Nuclear expression of Sox9, but not nuclear ß-catenin, was identified in the clumps. CONCLUSION: The present results suggest that most epithelial clumps comprised crypt-derived, reserved stem cells, which might have potential for mucosal healing.


Subject(s)
Colitis, Ulcerative , Colitis , Drinking Water , Animals , Cadherins/metabolism , Colitis/chemically induced , Colitis, Ulcerative/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Drinking Water/adverse effects , Drinking Water/metabolism , Epithelial Cells/metabolism , Female , Intestinal Mucosa/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Stem Cells/pathology , Ulcer/chemically induced , Ulcer/pathology , beta Catenin/metabolism
12.
J Biomol Struct Dyn ; 40(14): 6450-6462, 2022 09.
Article in English | MEDLINE | ID: mdl-33559526

ABSTRACT

Pidilizumab is a monoclonal antibody tested against several types of malignancies, such as lymphoma and metastatic melanoma, showing promising results. In 2016, the FDA put Pidilizumab's clinical studies on partial hold due to emerging evidence pointing to the antibody target uncertainty. Although initial studies indicated an interaction with the PD-1 checkpoint receptor, recent updates assert that Pidilizumab binds primarily to Notch ligand DLL1. However, a detailed description of which interactions coordinate antibody-antigen complex formation is lacking. Therefore, this study uses computational tools to identify molecular interactions between Pidilizumab and its reported targets PD-1 and DLL1. A docking methodology was validated and applied to determine the binding modes between modeled Pidilizumab scFvs and the two antigens. We used Molecular Dynamics (MD) simulations to verify the complexes' stability and submitted the resulting trajectory files to MM/PBSA and Principal Component Analysis. A set of different prediction tools determined scFv interface hot-spots. Whereas docking and MD simulations revealed that the antibody fragments do not interact straightforwardly with PD-1, ten scFv hot-spots, including Met93 and Leu112, mediated the interaction with the DLL1 C2 domain. The interaction triggered a conformational selection-like effect on DLL1, allowing new hydrogen bonds on the ß3-ß4 interface loop. The unprecedented structural data on Pidilizumab's interactions provided novel evidence that its legitimate target is the DLL1 protein and offered structural insight on how these molecules interact, shedding light on the pathways that could be affected by the use of this essential immunobiological. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antibodies, Monoclonal , Programmed Cell Death 1 Receptor , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
13.
J Infect Dis ; 225(3): 476-480, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34375432

ABSTRACT

Bleeding associated with endothelial damage is a key feature of severe dengue fever. In the current study, we investigated whether Notch ligands were associated with bleeding in 115 patients with confirmed dengue infection in Vietnam. Soluble Notch ligands were determined by means of enzyme-linked immunosorbent assay. Seventeen of 115 patients (14.8%) experienced bleeding manifestations. High soluble delta-like ligand 1 (sDLL1) plasma levels was associated with bleeding (median, 15 674 vs 7117 pg/mL; P < .001). Receiver operating characteristic (ROC) curve analysis demonstrated that sDLL1 had the best test performance (area under the ROC curve, 0.852), with 88% sensitivity and 84% specificity. The combination with alanine aminotransferase and aspartate aminotransferase slightly increased sDLL1 performance. sDLL1 may be useful to guide clinical management of patients with patients in endemic settings.


Subject(s)
Dengue , Severe Dengue , Alanine Transaminase , Aspartate Aminotransferases , Calcium-Binding Proteins , Dengue/complications , Humans , Ligands , Membrane Proteins , Severe Dengue/complications
14.
Front Physiol ; 12: 766713, 2021.
Article in English | MEDLINE | ID: mdl-34955884

ABSTRACT

Vascular leakage associated with vascular endothelial cell (vEC) dysfunction is a hallmark of sepsis. Causative for the decreased integrity of the vascular endothelium (vE) is a complex concurrence of pathogen components, inflammation-associated host factors, and the interaction of vECs and activated circulating immune cells. One signaling pathway that regulates the integrity of the vE is the Notch cascade, which is activated through the binding of a Notch ligand to its respective Notch receptor. Recently, we showed that the soluble form of the Notch ligand Delta-like1 (sDLL1) is highly abundant in the blood of patients with sepsis. However, a direct connection between DLL1-activated Notch signaling and loss of vEC barrier function has not been addressed so far. To study the impact of infection-associated sDLL1, we used human umbilical vein cells (HUVEC) grown in a transwell system and cocultured with blood. Stimulation with sDLL1 induced activation as well as loss of endothelial tight structure and barrier function. Moreover, LPS-stimulated HUVEC activation and increase in endothelial cell permeability could be significantly decreased by blocking DLL1-receptor binding and Notch signaling, confirming the involvement of the cascade in LPS-mediated endothelial dysfunction. In conclusion, our results suggest that during bacterial infection and LPS recognition, DLL1-activated Notch signaling is associated with vascular permeability. This finding might be of clinical relevance in terms of preventing vascular leakage and the severity of sepsis.

15.
Exp Cell Res ; 409(2): 112933, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34793773

ABSTRACT

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. Muscle stem cells can proliferate, they can generate differentiating cells, or they self-renew to produce new stem cells. Notch signaling plays a crucial role in this process. Recent studies revealed that expression of the Notch effector HES1 oscillates in activated muscle stem cells. The oscillatory expression of HES1 periodically represses transcription from the genes encoding the myogenic transcription factor MYOD and the Notch ligand DLL1, thereby driving MYOD and DLL1 oscillations. This oscillatory network allows muscle progenitor cells and activated muscle stem cells to remain in a proliferative and 'undecided' state, in which they can either differentiate or self-renew. When HES1 is downregulated, MYOD oscillations become unstable and are replaced by sustained expression, which drives the cells into terminal differentiation. During development and regeneration, proliferating stem cells contact each other and the stability of the oscillatory expression depends on regular DLL1 inputs provided by neighboring cells. In such communities of cells that receive and provide Notch signals, the appropriate timing of DLL1 inputs is important, as sustained DLL1 cannot replace oscillatory DLL1. Thus, in cell communities, DLL1 oscillations ensure the appropriate balance between self-renewal and differentiation. In summary, oscillations in myogenic cells are an important example of dynamic gene expression determining cell fate.


Subject(s)
Cell Differentiation , Muscle, Skeletal/cytology , Periodicity , Receptors, Notch/metabolism , Stem Cells/cytology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Humans , Ligands , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle, Skeletal/metabolism , Receptors, Notch/genetics , Stem Cells/metabolism , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism
16.
BMC Res Notes ; 14(1): 383, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34583743

ABSTRACT

OBJECTIVE: The mammalian Notch ligand DLL1 has essential functions during development. To visualise DLL1 in tissues, for sorting and enrichment of DLL1-expressing cells, and to efficiently purify DLL1 protein complexes we tagged DLL1 in mice with AcGFPHA or Strep/FLAG. RESULTS: We generated constructs to express DLL1 that carried C-terminal in-frame an AcGFPHA tag flanked by loxP sites followed by a Strep/FLAG (SF) tag out of frame. Cre-mediated recombination replaced AcGFP-HA by SF. The AcGFPHAstopSF cassette was added to DLL1 for tests in cultured cells and introduced into endogenous DLL1 in mice by homologous recombination. Tagged DLL1 protein was detected by antibodies against GFP and HA or Flag, respectively, both in CHO cells and embryo lysates. In CHO cells the AcGFP fluorophore fused to DLL1 was functional. In vivo AcGFP expression was below the level of detection by direct fluorescence. However, the SF tag allowed us to specifically purify DLL1 complexes from embryo lysates. Homozygous mice expressing AcGFPHA or SF-tagged DLL1 revealed a vertebral column phenotype reminiscent of disturbances in AP polarity during somitogenesis, a process most sensitive to reduced DLL1 function. Thus, even small C-terminal tags can impinge on sensitive developmental processes requiring DLL1 activity.


Subject(s)
Embryo, Mammalian , Animals , CHO Cells , Cricetinae , Cricetulus , Ligands , Mice , Protein Transport
17.
Cancers (Basel) ; 13(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34439228

ABSTRACT

The Notch-signaling ligand DLL1 has emerged as an important player and promising therapeutic target in breast cancer (BC). DLL1-induced Notch activation promotes tumor cell proliferation, survival, migration, angiogenesis and BC stem cell maintenance. In BC, DLL1 overexpression is associated with poor prognosis, particularly in estrogen receptor-positive (ER+) subtypes. Directed therapy in early and advanced BC has dramatically changed the natural course of ER+ BC; however, relapse is a major clinical issue, and new therapeutic strategies are needed. Here, we report the development and characterization of a novel monoclonal antibody specific to DLL1. Using phage display technology, we selected an anti-DLL1 antibody fragment, which was converted into a full human IgG1 (Dl1.72). The Dl1.72 antibody exhibited DLL1 specificity and affinity in the low nanomolar range and significantly impaired DLL1-Notch signaling and expression of Notch target genes in ER+ BC cells. Functionally, in vitro treatment with Dl1.72 reduced MCF-7 cell proliferation, migration, mammosphere formation and endothelial tube formation. In vivo, Dl1.72 significantly inhibited tumor growth, reducing both tumor cell proliferation and liver metastases in a xenograft mouse model, without apparent toxicity. These findings suggest that anti-DLL1 Dl1.72 could be an attractive agent against ER+ BC, warranting further preclinical investigation.

18.
N Biotechnol ; 64: 17-26, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-33992842

ABSTRACT

Notch signalling is a well-established oncogenic pathway, and its ligand Delta-like 1 (DLL1) is overexpressed in estrogen receptor-positive (ER+) breast cancers and associated with poor patient prognosis. Hence, DLL1 has become an interesting therapeutic target for breast cancer. Here, the development of specific functional blocking anti-DLL1 antibodies with potential activity against ER+ breast cancer cells is reported. Human DLL1 proteins, containing the essential regions for binding to the Notch receptor and Notch signalling activation, were produced and used to select specific scFv antibody fragments by phage display. Fifteen unique scFvs were identified and reformatted into full IgGs. Characterization of these antibodies by ELISA, surface plasmon resonance and flow cytometry enabled selection of three specific anti-DLL1 IgGs, sharing identical VH regions, with nM affinities. Cellular assays on ER+ breast cancer MCF-7 cells showed that one of the IgGs (IgG-69) was able to partially impair DLL1-mediated activation of the Notch pathway, as determined by Notch reporter and RT-qPCR assays, and to attenuate cell growth. Treatment of MCF-7 cells with IgG-69 reduced mammosphere formation, suggesting that it decreases the breast cancer stem cell subpopulation. These results support the use of this strategy to develop and identify potential anti-DLL1 antibodies candidates against breast cancer.


Subject(s)
Breast Neoplasms , Calcium-Binding Proteins/immunology , Cell Surface Display Techniques , Immunoglobulin G/biosynthesis , Membrane Proteins/immunology , Female , Humans , Ligands , MCF-7 Cells
19.
Cancer Cell Int ; 21(1): 234, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33902591

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is a common malignancy around the globe. Increasing long non-coding RNAs (lncRNAs) have been confirmed to be associated with the progression of cancers, including NSCLC. Long intergenic non-protein coding RNA 1783 (LINC01783) is a novel lncRNA and its regulatory function as competing endogenous RNA (ceRNA) has not been studied in NSCLC. METHODS: RT-qPCR measured the expression level of LINC01783 in NSCLC cells. CCK-8, EdU, transwell and wound healing assays were conducted to detect cell proliferation, migration and invasion in NSCLC. The relationship between miR-432-5p and LINC01783 along with delta like 1 (DLL-1) was illustrated by RNA pull down, RIP and luciferase reporter assays. RESULTS: LINC01783 was found remarkably increased in NSCLC cell lines, and down-regulation of LINC01783 suppressed cell proliferation, migration and invasion. Then, we discovered Notch pathway was related to the progression of NSCLC, and DLL-1 expression was reduced by LINC01783 knockdown. Furthermore, DLL-1 overexpression could counteract the suppressive effects of LINC01783 down-regulation on the growth of NSCLC cells. MiR-432-5p was observed to be the mutual miRNA that could bind with both LINC01783 and DLL-1. Overexpression of miR-432-5p inhibited DLL-1 expression. In the rescue assays, miR-432-5p depletion offset the impacts of LINC01783 knockdown, and then DLL-1 silence recovered the influence of miR-432-5p down-regulation on NSCLC cell growth. CONCLUSION: LINC01783 aggravates NSCLC cell growth by regulating Notch pathway and sponging miR-432-5p, being a potential target in the treatment for NSCLC.

20.
Mol Aspects Med ; 79: 100938, 2021 06.
Article in English | MEDLINE | ID: mdl-33341260

ABSTRACT

The Notch receptors are a family of transmembrane proteins that mediate direct cell-cell interactions and control numerous cell-fate specifications in humans. The extracellular domains of mammalian Notch proteins contain 29-36 tandem epidermal growth factor-like (EGF) repeats, most of which have O-linked glycan modifications: O-glucose added by POGLUT1, O-fucose added by POFUT1 and elongated by Fringe enzymes, and O-GlcNAc added by EOGT. The extracellular domain is also N-glycosylated. Mutations in the glycosyltransferases modifying Notch have been identified in several diseases, including Dowling-Degos Disease (haploinsufficiency of POFUT1 or POGLUT1), a form of limb-girdle muscular dystrophy (autosomal recessive mutations in POGLUT1), Spondylocostal Dysostosis 3 (autosomal recessive mutations in LFNG), Adams-Oliver syndrome (autosomal recessive mutations in EOGT), and some cancers (amplification, gain or loss-of-function of POFUT1, Fringe enzymes, POGLUT1, MGAT3). Here we review the characteristics of these diseases and potential molecular mechanisms.


Subject(s)
Ectodermal Dysplasia , Limb Deformities, Congenital , Animals , Epidermal Growth Factor/metabolism , Glucosyltransferases , Glycosylation , Glycosyltransferases/genetics , Humans , Receptors, Notch/genetics , Receptors, Notch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL