Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.578
Filter
1.
Front Aging Neurosci ; 16: 1406079, 2024.
Article in English | MEDLINE | ID: mdl-39170896

ABSTRACT

Multifactorial lifestyle approaches could be more effective than a single factor for maintaining cognitive function. This study investigated the association of combining cognitively stimulating leisure activities (CSLAs), including puzzles, quizzes, and cognitive training games, with intake of long-chain polyunsaturated fatty acids (LCPUFAs), including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA), on cognitive function in the older Japanese individuals without dementia. Participants were community-dwelling Japanese individuals without a self-reported history of dementia (n = 906, aged 60-88 years) from datasets of a 2-year longitudinal study (baseline: 2006-2008 and follow-up: 2008-2010). CSLA engagement and LCPUFA intake were divided into high and low groups according to frequency (≥once/week and

2.
Circulation ; 150(6): 488-503, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39102482

ABSTRACT

The pro- and antiarrhythmic effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been extensively studied in preclinical and human trials. Despite early evidence of an antiarrhythmic role of n-3 PUFA in the prevention of sudden cardiac death and postoperative and persistent atrial fibrillation (AF), subsequent well-designed randomized trials have largely not shown an antiarrhythmic benefit. Two trials that tested moderate and high-dose n-3 PUFA demonstrated a reduction in sudden cardiac death, but these findings have not been widely replicated, and the potential of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to reduce arrhythmic death in combination, or as monotherapy, remains uncertain. The accumulated clinical evidence does not support supplementation of n-3 PUFA for postoperative AF or secondary prevention of AF. Several large, contemporary, randomized controlled trials of high-dose n-3 PUFA for primary or secondary cardiovascular prevention have demonstrated a small, significant, dose-dependent increased risk of incident AF compared with mineral oil or corn oil comparator. These findings were reproduced with both icosapent ethyl monotherapy and a mixed EPA+DHA formulation. The proarrhythmic mechanism of increased AF in contemporary cohorts exposed to high-dose n-3 PUFA is unknown. EPA and DHA and their metabolites have pleiotropic cardiometabolic and pro- and antiarrhythmic effects, including modification of the lipid raft microenvironment; alteration of cell membrane structure and fluidity; modulation of sodium, potassium, and calcium currents; and regulation of gene transcription, cell proliferation, and inflammation. Further characterization of the complex association between EPA, EPA+DHA, and DHA and AF is needed. Which formulations, dose ranges, and patient subgroups are at highest risk, remain unclear.


Subject(s)
Arrhythmias, Cardiac , Fatty Acids, Omega-3 , Humans , Fatty Acids, Omega-3/therapeutic use , Arrhythmias, Cardiac/prevention & control , Animals , Atrial Fibrillation/prevention & control , Atrial Fibrillation/drug therapy , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/etiology , Anti-Arrhythmia Agents/therapeutic use , Dietary Supplements , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/therapeutic use , Randomized Controlled Trials as Topic , Docosahexaenoic Acids/therapeutic use
3.
Front Nutr ; 11: 1408647, 2024.
Article in English | MEDLINE | ID: mdl-39086538

ABSTRACT

Introduction: Omega-3 polyunsaturated fatty acids (PUFAs) have been widely studied and used as nutritional supplements because of their anti-inflammatory effects. Previous studies have shown an association between polyunsaturated fatty acids such as omega-3 and omega-6 PUFAs with the development of malignant tumors. However, the relationships of omega-3 and omega-6 PUFAs with esophageal diseases have not been characterized. Methods: Mendelian randomization (MR) is a statistical method for identifying instrumental variables (IVs) from genome-wide association study (GWAS) data, and is associated with little confounding by environmental or other disease-related factors. We used genome-wide association study (GWAS) data from previously published studies on circulating concentrations of omega-3, omega-6, docosahexaenoic acid (DHA) and linoleic acid (LA), as well as esophageal cancer and other esophageal diseases, which were downloaded from the IEU OpenGwas database (https://gwas.mrcieu.ac.uk/) and the GWAS Catalog database (https://www.ebi.ac.uk/). The inverse variance-weighted approach was used as the principal analysis, and the MR-Egger and weighted median methods were used alongside. A series of sensitivity analyses were used to ensure the robustness of the causality estimates. Results: We found that the circulating omega-3 PUFAs concentration was positively associated with esophageal cancer (p = 8 × 10-4), and circulating DHA concentration (the main component of omega-3 in food), was also positively associated with esophageal cancer (p = 2 × 10-2), but no significant association was found between circulating omega-6 PUFAs and esophageal cancer (p = 0.17), and circulating LA concentration (the main component of omega-6 in food), was also no significant associated with esophageal cancer (p = 0.32). We found no significant relationships of circulating omega-3 and omega-6 PUFAs concentration with four other esophageal diseases. Conclusion: This study indicates that higher levels of circulating omega-3 PUFAs and DHA concentrations may be a risk factor for the development of esophageal cancer. Conversely, an increased omega-6/omega-3 ratio may serve as a protective factor against esophageal cancer. These findings have significant implications for the clinical application of omega-3 PUFAs and the prevention and treatment of esophageal cancer.

4.
Int Immunopharmacol ; 140: 112871, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111146

ABSTRACT

Diabetic keratopathy, characterized by corneal structural changes, is a common complication of diabetes mellitus (DM). Docosahexaenoic acid (DHA), an omega-3 fatty acid, has shown potential therapeutic benefits in various diabetic complications. This study aimed to investigate the protective effect of DHA on corneal tissue in streptozotocin (STZ)-induced type 2 DM in rats. Forty male Sprague-Dawley rats were randomly assigned to four groups (n = 10 per group): Control, DHA, DM, and DM + DHA. The DHA group received DHA by oral gavage at a dose of 100 mg/kg daily for 10 days. In the DM group, diabetes was induced by a single intraperitoneal injection of STZ at 50 mg/kg. Confirmation of diabetes induction was based on monitoring fasting blood glucose levels on the third day post-injection. The DM + DHA group underwent the same diabetes induction protocol with STZ and received DHA at 100 mg/kg daily via oral gavage for 10 consecutive days. Corneal tissue samples were collected at the end of the study period for histopathological, immunohistochemical, qRT-PCR, and ELISA analyses. Histopathological analysis showed significant edema, angiogenesis, and degeneration in the DM group compared to the control (p < 0.001). DHA treatment significantly mitigated these changes, approaching control levels (p < 0.01). Immunohistochemistry showed increased VEGFR2 and iNOS expression in the DM group, which was significantly reduced in the DM + DHA group (p < 0.01). qRT-PCR results indicated a significant decrease in Bcl-2 expression (p < 0.001) and an increase in ATF-6, IRE1, NF-κB, TNF-α, IL-1ß, NLRP3, Bax, and Caspase-3 expressions in the DM group (p < 0.001). ELISA analyses revealed significantly elevated levels of inflammatory markers NF-κB, TNF-α, IL-1ß, and IL-6 in the DM group compared to the control (p < 0.001). DHA treatment significantly upregulated Bcl-2 and downregulated apoptotic and inflammatory markers (p < 0.01). DHA demonstrated significant protective effects against STZ-induced corneal damage in diabetic rats by modulating apoptotic and inflammatory pathways. These findings suggest that DHA may be a promising therapeutic agent for preventing diabetic keratopathy.

5.
J Biol Chem ; : 107699, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173949

ABSTRACT

Marine microalgae are the primary producers of ω3 polyunsaturated fatty acids (PUFAs), such as octadecapentaenoic acid (OPA, 18:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) for food chains. However, the biosynthetic mechanisms of these PUFAs in the algae remain elusive. To study how these fatty acids are synthesized in microalgae, a series of radiolabeled precursors were used to trace the biosynthetic process of PUFAs in Emiliania huxleyi. Feeding the alga with 14C-labeled acetic acid in a time course showed that OPA was solely found in glycoglycerolipids such as monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) synthesized plastidically by sequential desaturations while DHA was exclusively found in phospholipids synthesized extraplastidically. Feeding the alga with 14C-labeled α-linolenic acid (ALA), linoleic acid (LA) and oleic acid (OA) showed that DHA was synthesized extraplastidically from fed ALA and LA, but not from OA, implying that the aerobic pathway of DHA biosynthesis is incomplete with missing a Δ12 desaturation step. The in vitro enzymatic assays with 14C-labeled malonyl-CoA showed that DHA was synthesized from acetic acid by a PUFA synthase. These results provide the first and conclusive biochemistry evidence that OPA is synthesized by a plastidic aerobic pathway through sequential desaturations with the last step of Δ3 desaturation, while DHA is synthesized by an extraplastidic anaerobic pathway catalyzed by a PUFA synthase in the microalga.

6.
Sci Rep ; 14(1): 19135, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160161

ABSTRACT

Oxylipins are a group of bioactive fatty acid metabolites generated via enzymatic oxygenation. They are notably involved in inflammation, pain, vascular tone, hemostasis, thrombosis, immunity, and coagulation. Oxylipins have become the focus of therapeutic intervention since they are implicated in many conditions, such as nonalcoholic fatty liver disease, cardiovascular disease, and aging. The liver plays a crucial role in lipid metabolism and distribution throughout the organism. Long-term exposure to pesticides is suspected to contribute to hepatic carcinogenesis via notable disruption of lipid metabolism. Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. The amounts of prometryn documented in the environment, mainly waters, soil and plants used for human and domestic consumption are significantly high. Previous research revealed that prometryn decreased liver development during zebrafish embryogenesis. To understand the mechanisms by which prometryn could induce hepatotoxicity, the effect of prometryn (185 mg/kg every 48 h for seven days) was investigated on hepatic and plasma oxylipin levels in mice. Using an unbiased LC-MS/MS-based lipidomics approach, prometryn was found to alter oxylipins metabolites that are mainly derived from cytochrome P450 (CYP) and lipoxygenase (LOX) in both mice liver and plasma. Lipidomic analysis revealed that the hepatotoxic effects of prometryn are associated with increased epoxide hydrolase (EH) products, increased sEH and mEH enzymatic activities, and induction of oxidative stress. Furthermore, 9-HODE and 13-HODE levels were significantly increased in prometryn treated mice liver, suggesting increased levels of oxidation products. Together, these results support that sEH may be an important component of pesticide-induced liver toxicity.


Subject(s)
Cytochrome P-450 Enzyme System , Epoxide Hydrolases , Herbicides , Lipidomics , Liver , Triazines , Animals , Epoxide Hydrolases/metabolism , Mice , Liver/metabolism , Liver/drug effects , Triazines/toxicity , Cytochrome P-450 Enzyme System/metabolism , Herbicides/toxicity , Male , Lipid Metabolism/drug effects , Oxylipins/metabolism
7.
Trop Anim Health Prod ; 56(7): 243, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172278

ABSTRACT

This meta-analysis consolidates various related studies to identify patterns in the impact of feeding algae on performance aspects, including milk fat, milk protein, and carcass yield in several ruminant species, such as cattle, sheep, and goats. The data were collected from 67 articles that examined factors such as the type of algae (macro- and microalgae), algal species, and animal breed. Barki sheep, Moghani sheep, and Zaraibi goats demonstrated an increased average daily gain (P < 0.05) when fed with both macro- and microalgae. Conversely, sheep such as Canadian Arcott and Ile-de-France showed adverse effects on the feed conversion ratio (FCR) (P < 0.05). Elevated FCR values were observed across castrated and young animals (P < 0.05). Algae extract notably increased the hot carcass weight (P < 0.001), particularly among Moghani sheep (P < 0.001). Raw algae significantly reduced the milk fat content (P < 0.001), particularly in cattle and sheep (P < 0.001). A decrease in milk fat was particularly noticeable in lactating females of Assaf sheep, Damascus goats, and Holstein cows (P < 0.001). Overall, algae inclusion tended to decrease the milk protein content (P < 0.05), leading to reduced milk production (P < 0.001) with cumulative algae feeding in Assaf sheep. However, conjugated linoleic acid (CLA; C18:2 c9,t11-CLA and C18:2 c12,t10-CLA) and docosahexaenoic acid (DHA; C22:6n-3) mostly increased in meat and milk from Holstein cow, Assaf sheep, Dorset sheep, and Ile-de-France sheep (P < 0.01). This meta-analysis highlights the necessity for additional research aimed at optimizing the sustainable use of algae in feed for ruminants, despite the demonstrated improvements in performance and the levels of CLA and DHA found in meat and milk.


Subject(s)
Animal Feed , Diet , Meat , Microalgae , Milk , Seaweed , Animals , Microalgae/chemistry , Animal Feed/analysis , Milk/chemistry , Milk/metabolism , Seaweed/chemistry , Diet/veterinary , Meat/analysis , Sheep/physiology , Sheep/growth & development , Goats/physiology , Cattle/physiology , Female , Animal Nutritional Physiological Phenomena
8.
Arch Biochem Biophys ; 760: 110135, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39181384

ABSTRACT

Autophagy induction in cancer is involved in cancer progression and the acquisition of resistance to anticancer agents. Therefore, autophagy is considered a potential therapeutic target in cancer therapy. In this study, we found that long-chain fatty acids (LCFAs) have inhibitory effects on Atg4B, which is essential for autophagosome formation, through screening based on the pharmacophore of 21f, a recently developed Atg4B inhibitor. Among these fatty acids, docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibited the most potent Atg4B inhibitory activity. DHA inhibited autophagy induced by androgen receptor signaling inhibitors (ARSI) in LNCaP and 22Rv1 prostate cancer cells and significantly increased apoptotic cell death. Furthermore, we investigated the effect of DHA on resistance to ARSI by establishing darolutamide-resistant prostate cancer 22Rv1 (22Rv1/Dar) cells, which had developed resistance to darolutamide, a novel ARSI. At baseline, 22Rv1/Dar cells showed a higher autophagy level than parental 22Rv1 cells. DHA significantly suppressed Dar-induced autophagy and sensitized 22Rv1/Dar cells by inducing apoptotic cell death through mitochondrial dysfunction. These results suggest that DHA supplementation may improve prostate cancer therapy with ARSI.

9.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131270

ABSTRACT

Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR-Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with a small eye morphological phenotype and demonstrate that even the morphologically normal siblings exhibit dysregulated gene pathways related to vision and stress response. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities and provide insight into maternal nutritional strategies that optimize infant brain health.

10.
J Endocrinol Invest ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186221

ABSTRACT

PURPOSE: Docosahexaenoic acid (DHA) is a long-chain omega-3 polyunsaturated fatty acid. We investigated the dual health ability of DHA to modulate gut microbiota in children with obesity and to exert anti-inflammatory activity on human intestinal Caco-2 cells. METHODS: In a pilot study involving 18 obese children (8-14 years), participants received a daily DHA supplement (500 mg/day) and dietary intervention from baseline (T0) to 4 months (T1), followed by dietary intervention alone from 4 months (T1) to 8 months (T2). Fecal samples, anthropometry, biochemicals and dietary assessment were collected at each timepoint. At preclinical level, we evaluated DHA's antioxidant and anti-inflammatory effects on Caco-2 cells stimulated with Hydrogen peroxide (H2O2) and Lipopolysaccharides (LPS), by measuring also Inducible nitric oxide synthase (iNOS) levels and cytokines, respectively. RESULTS: Ten children were included in final analysis. No major changes were observed for anthropometric and biochemical parameters, and participants showed a low dietary compliance at T1 and T2. DHA supplementation restored the Firmicutes/Bacteroidetes ratio that was conserved also after the DHA discontinuation at T2. DHA supplementation drove a depletion in Ruminococcaceae and Dialisteraceae, and enrichment in Bacteroidaceae, Oscillospiraceae, and Akkermansiaceae. At genus level, Allisonella was the most decreased by DHA supplementation. In Caco-2 cells, DHA decreased H2O2-induced reactive oxygen species (ROS) and nitric oxide (NO) production via iNOS pathway modulation. Additionally, DHA modulated proinflammatory (IL-1ß, IL-6, IFN-γ, TNF-α) and anti-inflammatory (IL-10) cytokine production in LPS-stimulated Caco-2 cells. CONCLUSION: An improvement in gut dysbiosis of children with obesity seems to be triggered by DHA and to continue after discontinuation. The ability to modulate gut microbiota, matches also with an anti-inflammatory effect of DHA on Caco-2 cells.

11.
Cancer Metab ; 12(1): 24, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113152

ABSTRACT

BACKGROUND: Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines. METHODS: Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation. RESULTS: In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1. CONCLUSION: In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.

12.
J Oleo Sci ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168625

ABSTRACT

Scallop oil (SCO) prepared from the internal organs of the Japanese giant scallop (Patinopecten yessoensis) contains eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and phospholipids (PL). It was previously shown that SCO consumption improves cholesterol and triacylglycerols (TG) contents in mice. The present study demonstrated the effects of daily SCO consumption (1.2 g/day, containing 376 mg of EPA, 63 mg of DHA, and 150 mg of PL) for 12 weeks in human subjects. In this randomized, doubleblind, placebo-controlled, parallel group comparison study, 70 Japanese subjects with serum TG levels ≥120 but < 200 mg/dL were recruited and randomly assigned to the SCO or placebo group. All subjects ingested six capsules per day for 12 weeks. We conducted medical interviews, body composition measurements, vital sign examinations, and blood sampling at weeks 0 (baseline), 4, 8, and 12, and measured peripheral blood flow at weeks 0 and 12. In the case of subjects with higher serum TG levels, SCO consumption decreased the changes in serum TG and malondialdehyde-low density lipoprotein (MDA-LDL) levels compared with the placebo group. Safety assessment revealed no medically significant changes due to continuous SCO consumption. The findings indicate that 1.2 g/day of SCO consumption may be beneficial for reducing serum TG and MDA-LDL levels in persons with higher TG levels.

13.
Front Nutr ; 11: 1403987, 2024.
Article in English | MEDLINE | ID: mdl-38988860

ABSTRACT

Objective: The association of age-related macular degeneration (AMD) with the intake of high and low fatty acids (FAs), respectively, remains controversial. To this end, we performed a comprehensive meta-analysis of all the existing studies on the association of various intake levels of FA subtypes with AMD to determine these associations. Methods: A systematic search of PubMed, Web of Science, Cochrane Library, and EMBASE databases was conducted from inception to September 2023. To compare the highest and lowest groups, odds ratio (OR) with 95% confidence intervals (CIs) was analyzed with a random-effects model/fixed-effects model. Results: A high intake of omega-3 LCPUFAs (OR:0.67; 95%CI:[0.51, 0.88]; p = 0.004), DHA (OR:0.80; 95%CI:[0.70, 0.90]; p < 0.001), EPA (OR:0.91; 95%CI:[0.86, 0.97]; p = 0.004), and simultaneous intake of DHA and EPA (OR:0.79; 95%CI:[0.67, 0.93]; p = 0.035) significantly reduced the risk of overall AMD. Conversely, a high intake of trans-FAs (OR: 2.05; 95%CI: [1.29, 3.25]; p = 0.002) was significantly related to an increased risk of advanced AMD compared to the low-intake group. The subgroup analysis results are shown in the articles. Conclusion: Increasing dietary intake of omega-3 LCPUFAs, specifically DHA, and EPA, or the simultaneous intake of DHA and EPA, is significantly associated with a reduced risk of overall AMD. Various subtypes of omega-3 also have a significant association with a reduced risk of different stages of AMD. The high intake of trans-fatty acids (TFAs) is significantly and positively correlated with the risk of advanced AMD. This could further support the idea that consuming foods rich in omega-3 LCPUFAs and reducing consumption of foods rich in TFAs may prevent AMD. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023467227.

14.
Article in English | MEDLINE | ID: mdl-38994586

ABSTRACT

OBJECTIVE: To evaluate associations of fish oil supplementation and plasma omega 3 polyunsaturated fatty acids (n-3 PUFAs) with risks of macrovascular and microvascular complications among people with type 2 diabetes, and to further explore the potential mediating role of metabolism-related biomarkers. RESEARCH DESIGN AND METHODS: This study included 20,338 participants with type 2 diabetes from UK Biobank. Diabetic complications were identified through hospital inpatient records. RESULTS: During 13.2 years of follow-up, 5,396 people developed macrovascular complications, and 4,868 people developed microvascular complications. After multivariable adjustment, hazard ratios (HRs) and 95% confidence intervals (CIs) for patients with fish oil were 0.90 (0.85, 0.97) for composite macrovascular complications, 0.91 (0.84, 0.98) for coronary heart disease (CHD), 0.72 (0.61, 0.83) for peripheral artery disease; and 0.89 (0.83, 0.95) for composite microvascular complications, 0.87 (0.79, 0.95) for diabetic kidney disease, and 0.88 (0.80, 0.97) for diabetic retinopathy. In addition, higher n-3 PUFA levels, especially docosahexaenoic acid (DHA), were associated with lower risks of macrovascular and microvascular complications. Comparing extreme quartiles of plasma DHA, the HRs (95% CIs) were 0.68 (0.57, 0.81) for composite macrovascular complications, 0.63 (0.51, 0.77) for CHD; and 0.59 (0.38, 0.91) for diabetic neuropathy. Moreover, biomarkers including lipid profile and inflammation collectively explained 54.4% and 63.1% of associations of plasma DHA with risks of composite macrovascular complications and CHD. CONCLUSIONS: Habitual use of fish oil supplementation and higher plasma n-3 PUFA levels, especially DHA, were associated with lower risks of macrovascular and microvascular complications among individuals with type 2 diabetes, and the favorable associations were partially mediated through improving biomarkers of lipid profile and inflammation.

15.
Food Chem ; 460(Pt 1): 140518, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39047487

ABSTRACT

Docosahexaenoic acid (DHA) is a potential regulatory substance for flesh quality of fish, while the related evaluation is still barely. In this study, the effects of DHA-enriched diets on the flesh quality of freshwater fish (Megalobrama amblycephala) were investigated systematically. The sub-adult M. amblycephala were randomly fed with control diet (CON), 0.2% DHA diet (DL) or 0.8% DHA diet (DH). After 12-week feeding trial, the DH group flesh had higher concentrations of essential amino acids and polyunsaturated fatty acids compared to the CON group. Meanwhile, the hardness, springiness, shear force and moisture-holding capacity, as well as the values of umami, richness and sweetness were also improved by DH. The non-targeted metabolomics analysis revealed the key metabolites that may have significantly positive influence on flavor. Collectively, the diet supplementation with 0.8% DHA could achieve the improvement of the flesh quality in terms of nutritional value, texture and flavor in freshwater fish.

16.
Dokl Biochem Biophys ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955914

ABSTRACT

The composition of fatty acids in the muscle tissue of the unique Central Asian carp-like fish, Potanin Altai osman Oreoleuciscus potanini, was studied for the first time. The populations of these fish in the reservoirs of the semiarid zone (Durgun and Taishir) during the period of their formation are considered. It was shown that the content of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in O. potanini corresponds to the median of this value in the order Cypriniformes. It was established that the basis of the food web of the herbivorous form of this species consists of microalgae (diatoms, Euglena and, possibly, chrysophytes), as well as bacteria. At the same time, the levels of bacterial biomarkers, 15-17BCFA and 17:0 were significantly higher in fish in the Durgun reservoir, whereas the level of EPA (diatom biomarker) in O. potanini was higher in the Taishir reservoir. The established higher values of the heavy nitrogen isotope content in the muscles of O. potanini from the Taishir reservoir are most likely associated with the yet unformed benthic communities and with the incomplete diversification of the riverine form of the Potanin Altai osman into lacustrine forms.

17.
J Nutr ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39025329

ABSTRACT

BACKGROUND: Long-chain PUFA (LC-PUFA) influence varying aspects of inflammation. One mechanism by which they regulate inflammation is by controlling the size and molecular composition of lipid rafts. Lipid rafts are sphingolipid/cholesterol-enriched plasma membrane microdomains that compartmentalize signaling proteins and thereby control downstream inflammatory gene expression and cytokine production. OBJECTIVES: This review summarizes developments in our understanding of how LC-PUFA acyl chains of phospholipids, in addition to oxidized derivatives of LC-PUFAs such as oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC), manipulate formation of lipid rafts and thereby inflammation. METHODS: We reviewed the literature, largely from the past 2 decades, on the impact of LC-PUFA acyl chains and oxidized products of LC-PUFAs on lipid raft biophysical organization of myeloid and lymphoid cells. The majority of the studies are based on rodent or cellular experiments with supporting mechanistic studies using biomimetic membranes and molecular dynamic simulations. These studies have focused largely on the LC-PUFA docosahexaenoic acid, with some studies addressing eicosapentaenoic acid. A few studies have investigated the role of oxidized phospholipids on rafts. RESULTS: The biophysical literature suggests a model in which n-3 LC-PUFAs, in addition to oxPAPC, localize predominately to nonraft regions and impart a disordering effect in this environment. Rafts become larger because of the ensuing increase in the difference in order between raft and nonrafts. Biochemical studies suggest that some n-3 LC-PUFAs can be found within rafts. This deviation from homeostasis is a potential trigger for controlling aspects of innate and adaptive immunity. CONCLUSION: Overall, select LC-PUFA acyl chains and oxidized acyl chains of phospholipids control lipid raft dynamics and downstream inflammation. Gaps in knowledge remain, particularly on underlying molecular mechanisms by which plasma membrane receptor organization is controlled in response to oxidized LC-PUFA acyl chains of membrane phospholipids. Validation in humans is also an area for future study.

18.
Trop Anim Health Prod ; 56(6): 190, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38949740

ABSTRACT

This study aimed to evaluate and analyze the effects of a flushing diet containing Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) from Lemuru (Sardinella sp) fish oil on the reproductive performance parameters of Garut ewes. Forty (n = 40) primiparous Garut ewes aged 12-14 months with an average body weight of 28.92 ± 4.94 kg were assigned into four experimental treatment groups. The experimental diets contained roughage: concentrate (30:70%) designated as control concentrate (CNT), flushing concentrate with 6% palm oil (PO), flushing concentrate with 3% palm oil mixed with 3% lemuru oil as DHA and EPA sources (PFO), and flushing concentrate with the addition of 6% lemuru oil (FO). Treatment animals were fed two weeks before and after conception and parturition (8 weeks of total flushing treatment). The addition of fish oil at either 3% (PFO) or 6% (FO) resulted in significantly higher reproductive performance of ewes by increasing the litter size, as reflected by the birth of multiple kids (P < 0.05) compared to CNT and PO. Adding fish oil (PFO and FO) also maintains gestation, resulting in increased lamb yield, especially in the FO treatment, which yields the highest lamb yield (0% single lamb birth). The lamb male ratio was also higher with fish oil supplementation (PFO and PO) (P < 0.05). This research revealed a positive effect of 6% Lemuru oil on decreasing embryo loss and increasing the proportion of twin births. These findings thus support the hypothesis that ration flushing with double the required DHA and EPA from 6% Lemuru fish oil (FO) resulted in significantly higher reproductive performance in Garut sheep.


Subject(s)
Animal Feed , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fish Oils , Animals , Female , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/analysis , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/analysis , Docosahexaenoic Acids/pharmacology , Fish Oils/administration & dosage , Animal Feed/analysis , Dietary Supplements/analysis , Reproduction/drug effects , Diet/veterinary , Sheep, Domestic/physiology , Pregnancy
19.
Contemp Clin Trials ; 144: 107633, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013543

ABSTRACT

BACKGROUND: Early preterm birth (ePTB) - born before 34 weeks of gestation - poses a significant public health challenge. Two randomized trials indicated an ePTB reduction among pregnant women receiving high-dose docosahexaenoic acid (DHA) supplementation. One of them is Assessment of DHA on Reducing Early Preterm Birth (ADORE). A survey employed in its secondary analysis identified women with low DHA levels, revealing that they derived greater benefits from high-dose DHA supplementation. This survey's inclusion in future trials can provide critical insights for informing clinical practices. OBJECTIVE: To optimize a Phase III trial design, ADORE Precision, aiming at assessing DHA supplement (200 vs. 1000 mg/day) on reducing ePTB among pregnant women with a low baseline DHA. METHODS: We propose a Bayesian Hybrid Response Adaptive Randomization (RAR) Design utilizing a finite mixture model to characterize gestational age at birth. Subsequently, a dichotomized ePTB outcome is used to inform trial design using RAR. Simulation studies were conducted to compare a Fixed Design, an Adaptive Design with early stopping, an ADORE-like Adaptive RAR Design, and two new Hybrid Designs with different hyperpriors. DISCUSSION: Simulation reveals several advantages of the RAR designs, such as higher allocation to the more promising dose and a trial duration reduction. The proposed Hybrid RAR Designs addresses the statistical power drop observed in Adaptive RAR. The new design model shows robustness to hyperprior choices. We recommend Hybrid RAR Design 1 for ADORE Precision, anticipating that it will yield precise determinations, which is crucial for advancing our understanding in this field.


Subject(s)
Bayes Theorem , Dietary Supplements , Docosahexaenoic Acids , Gestational Age , Premature Birth , Research Design , Humans , Female , Premature Birth/prevention & control , Docosahexaenoic Acids/administration & dosage , Pregnancy , Adaptive Clinical Trials as Topic/methods , Randomized Controlled Trials as Topic , Infant, Newborn
20.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999927

ABSTRACT

Docosahexaenoic acid (DHA, C22:6 ω3) may be involved in various neuroprotective mechanisms that could prevent Alzheimer's disease (AD). Its influence has still been little explored regarding the dysfunction of the endolysosomal pathway, known as an early key event in the physiopathological continuum triggering AD. This dysfunction could result from the accumulation of degradation products of the precursor protein of AD, in particular the C99 fragment, capable of interacting with endosomal proteins and thus contributing to altering this pathway from the early stages of AD. This study aims to evaluate whether neuroprotection mediated by DHA can also preserve the endolysosomal function. AD-typical endolysosomal abnormalities were recorded in differentiated human SH-SY5Y neuroblastoma cells expressing the Swedish form of human amyloid precursor protein. This altered phenotype included endosome enlargement, the reduced secretion of exosomes, and a higher level of apoptosis, which confirmed the relevance of the cellular model chosen for studying the associated deleterious mechanisms. Second, neuroprotection mediated by DHA was associated with a reduced interaction of C99 with the Rab5 GTPase, lower endosome size, restored exosome production, and reduced neuronal apoptosis. Our data reveal that DHA may influence protein localization and interactions in the neuronal membrane environment, thereby correcting the dysfunction of endocytosis and vesicular trafficking associated with AD.


Subject(s)
Alzheimer Disease , Docosahexaenoic Acids , Endosomes , Lysosomes , Neurons , rab5 GTP-Binding Proteins , Humans , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , rab5 GTP-Binding Proteins/metabolism , Endosomes/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Lysosomes/metabolism , Cell Line, Tumor , Amyloid beta-Protein Precursor/metabolism , Apoptosis , Neuroprotective Agents/pharmacology , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL