Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Genes (Basel) ; 15(3)2024 03 12.
Article in English | MEDLINE | ID: mdl-38540413

ABSTRACT

Sweetpotato (Ipomoea batatas L.) is a strategic crop with both economic and energy value. However, improving sweetpotato varieties through traditional breeding approaches can be a time-consuming and labor-intensive process due to the complex genetic nature of sweetpotato as a hexaploid species (2n = 6x = 90). Double haploid (DH) breeding, based on in vivo haploid induction, provides a new approach for rapid breeding of crops. The success of haploid induction can be achieved by manipulating specific genes. Two of the most critical genes, DMP (DUF679 membrane proteins) and MTL (MATRILINEAL), have been shown to induce haploid production in several species. Here, we identified and characterized DMP and MTL genes in sweetpotato using gene family analysis. In this study, we identified 5 IbDMPs and 25 IbpPLAs. IbDMP5 and IbPLAIIs (IbPLAIIκ, IbPLAIIλ, and IbPLAIIµ) were identified as potential haploid induction (HI) genes in sweetpotato. These results provide valuable information for the identification and potential function of HI genes in sweetpotato and provide ideas for the breeding of DH lines.


Subject(s)
Ipomoea batatas , Ipomoea batatas/genetics , Plant Breeding
2.
Mol Breed ; 44(4): 26, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38516204

ABSTRACT

Rapeseed is a significant global source of plant oil. Silique size, particularly silique length (SL), impacts rapeseed yield. SL is a typical quantitative trait controlled by multiple genes. In our previous study, we constructed a DH population of 178 families known as the 158A-SGDH population. In this study, through SL QTL mapping, we identified twenty-six QTL for SL across five replicates in two environments. A QTL meta-analysis revealed eight consensus QTL, including two major QTL: cqSL.A02-1 (11.32-16.44% of PVE for SL), and cqSL.C06-1 (10.90-11.95% of PVE for SL). Based on biparental resequencing data and microcollinearity analysis of target regions in Brassica napus and Arabidopsis, we identified 11 candidate genes at cqSL.A02-1 and 6 candidate genes at cqSL.C06-1, which are potentially associated with silique development. Furthermore, transcriptome analysis of silique valves from both parents on the 14th, 21st, and 28th days after pollination (DAP) combined with gene function annotation revealed three significantly differentially expressed genes at cqSL.A02-1, BnaA02G0058500ZS, BnaA02G0060100ZS, and BnaA02G0060900ZS. Only the gene BnaC06G0283800ZS showed significant differences in parental transcription at cqSL.C06-1. Two tightly linked insertion-deletion markers for the cqSL.A02-1 and cqSL.C06-1 loci were developed. Using these two QTL, we generated four combinations: A02SGDH284C06158A, A02SGDH284C06SGDH284, A02158AC06158A, and A02158AC06SGDH284. Subsequent analysis identified an ideal QTL combination, A02158AC06SGDH284, which exhibited the longest SL of this type, reaching 6.06 ± 0.10 cm, significantly surpassing the other three combinations. The results will provide the basis for the cloning of SL-related genes of rapeseed, along with the development of functional markers of target genes and the breeding of rapeseed varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01464-x.

3.
aBIOTECH ; 4(3): 202-212, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37970468

ABSTRACT

Induced mutations are important for genetic research and breeding. Mutations induced by physical or chemical mutagenesis are usually heterozygous during the early generations. However, mutations must be fixed prior to phenotyping or field trials, which requires additional rounds of self-pollination. Microspore culture is an effective method to produce double-haploid (DH) plants that are fixed homozygotes. In this study, we conducted ethyl methanesulfonate (EMS)-induced mutagenesis of microspore cultures of barley (Hordeum vulgare) cultivar 'Hua30' and landrace 'HTX'. The EMS concentrations were negatively correlated with the efficiency of callus induction and the frequency of mutant plant regeneration. The two genotypes showed different regeneration efficiencies. The phenotypic variation of the regenerated M1 plants and the presence of genome-wide nucleotide mutations, revealed by whole-genome sequencing, highlight the utility of EMS-induced mutagenesis of isolated microspore cultures for developing DH mutants. Genome-wide analysis of the mutation frequency in the regenerated plants revealed that a considerable proportion of mutations resulted from microspore culture (somaclonal variation) rather than EMS-induced mutagenesis. In addition to producing a population of 1972 homozygous mutant lines that are available for future field trials, this study lays the foundation for optimizing the regeneration efficiency of DH plants and the richness of mutations (mainly by fine-tuning the mutagen dosage).

4.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762635

ABSTRACT

Zinc (Zn) deficiency is a common limiting factor in agricultural soils, which leads to significant reduction in both the yield and nutritional quality of agricultural produce. Exploring the quantitative trait loci (QTL) for shoot and grain Zn accumulation would help to develop new barley cultivars with greater Zn accumulation efficiency. In this study, two glasshouse experiments were conducted by growing plants under adequate and low Zn supply. From the preliminary screening of ten barley cultivars, Sahara (0.05 mg/pot) and Yerong (0.06 mg/pot) showed the lowest change in shoot Zn accumulation, while Franklin (0.16 mg/pot) had the highest change due to changes in Zn supply for plant growth. Therefore, the double haploid (DH) population derived from Yerong × Franklin was selected to identify QTL for shoot mineral accumulation and biomass production. A major QTL hotspot was detected on chromosome 2H between 31.91 and 73.12 cM encoding genes for regulating shoot mineral accumulations of Zn, Fe, Ca, K and P, and the biomass. Further investigation demonstrated 16 potential candidate genes for mineral accumulation, in addition to a single candidate gene for shoot biomass in the identified QTL region. This study provides a useful resource for enhancing nutritional quality and yield potential in future barley breeding programs.


Subject(s)
Hordeum , Malnutrition , Zinc , Hordeum/genetics , Quantitative Trait Loci , Biomass , Plant Breeding , Minerals
5.
Genes (Basel) ; 14(9)2023 08 24.
Article in English | MEDLINE | ID: mdl-37761813

ABSTRACT

Leaf sheath blight disease (SB) of rice caused by the soil-borne fungus Rhizoctonia solani results in 10-30% global yield loss annually and can reach 50% under severe outbreaks. Many disease resistance genes and receptor-like kinases (RLKs) are recruited early on by the host plant to respond to pathogens. Wall-associated receptor kinases (WAKs), a subfamily of receptor-like kinases, have been shown to play a role in fungal defense. The rice gene WAK91 (OsWAK91), co-located in the major SB resistance QTL region on chromosome 9, was identified by us as a candidate in defense against rice sheath blight. An SNP mutation T/C in the WAK91 gene was identified in the susceptible rice variety Cocodrie (CCDR) and the resistant line MCR010277 (MCR). The consequence of the resistant allele C is a stop codon loss, resulting in an open reading frame with extra 62 amino acid carrying a longer protein kinase domain and additional phosphorylation sites. Our genotype and phenotype analysis of the parents CCDR and MCR and the top 20 individuals of the double haploid SB population strongly correlate with the SNP. The susceptible allele T is present in the japonica subspecies and most tropical and temperate japonica lines. Multiple US commercial rice varieties with a japonica background carry the susceptible allele and are known for SB susceptibility. This discovery opens the possibility of introducing resistance alleles into high-yielding commercial varieties to reduce yield losses incurred by the sheath blight disease.


Subject(s)
Moraxellaceae Infections , Oryza , Humans , Codon, Nonsense , Oryza/genetics , Disease Resistance/genetics , Alleles , Chromosomes, Human, Pair 9
6.
Mol Breed ; 43(2): 11, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37313129

ABSTRACT

Ovule number (ON) produced during flower development determines the maximum number of seeds per silique and thereby affects crop productivity; however, the genetic basis of ON remains poorly understood in oilseed rape (Brassica napus). In this study, we genetically dissected the ON variations in a double haploid (DH) population and in natural population (NP) by linkage mapping and genome-wide association analysis. Phenotypic analysis showed that ON displayed normal distribution in both populations with the broad-sense heritability of 0.861 (DH population) and 0.930 (natural population). Linkage mapping identified 5 QTLs related to ON, including qON-A03, qON-A07, qON-A07-2, qON-A10, and qON-C06. Genome-wide association studies (GWAS) revealed 214, 48, and 40 significant single-nucleotide polymorphisms (SNPs) by individually using the single-locus model GLM and the multiple-locus model MrMLM and FASTMrMLM. The phenotypic variation explained (PVE) by these QTLs and SNPs ranged from 2.00-17.40% to 5.03-7.33%, respectively. Integration of the results from both strategies identified four consensus genomic regions associated with ON from the chromosomes A03, A07, and A10. Our results preliminarily resolved the genetic basis of ON and provides useful molecular markers for plant yield improvement in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01355-7.

7.
Front Plant Sci ; 14: 1100691, 2023.
Article in English | MEDLINE | ID: mdl-36818885

ABSTRACT

Introduction: Onion (Allium cepa L., 2n=16) is an economically and nutritionally important vegetable crop worldwide. Construction of a high-resolution genetic map and map-based gene mining in onion have lagged behind other vegetable crops such as tomato and pepper. Methods: In this study, we constructed a high-resolution genetic map of onion using 321 F2 individuals from a cross between two double haploid lines DH-1×DH-17 and employing specific length amplified fragment (SLAF)-seq technology. The genetic map containing 10,584 polymorphic SLAFs with 21,250 single nucleotide polymorphism (SNP) markers and 8 linkage groups was developed for onion, which spanned 928.32 cM, with an average distance of 0.09 cM between adjacent markers. Results: Using this map, we carried out QTL mapping of Ms locus related to the male-fertile trait and reproduced previous mapping results, which proved that this map was of good quality. Then, four QTLs (located on LG2, LG5, and LG8) were detected for flower stalk height, explaining 26.60% of the phenotypic variance. Among them, we proposed that 20 SLAF markers (in three QTLs) of flower stalk height trait were effective favorable allelic variant markers associated with heterosis. Discussion: Overall, the genetic map was structured using SLAF-seq based on DH lines, and it is the highest-quality and highest-resolution linkage map of onion to date. It lays a foundation for the fine mapping and candidate gene identification of flower stalk height, and provides new insights into the developmental genetic mechanisms in onion breeding.

8.
Protoplasma ; 260(2): 545-555, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35941329

ABSTRACT

Microspore embryogenesis is an effective method of obtaining double haploid (DH) lines in only 1 year. However, the microspore embryogenesis protocol was not efficient in pakchoi. This study aimed to establish an effective microspore culture protocol in pakchoi for hybrid breeding. The embryos were obtained from three genotypes (18SY01, 18SY02, 18SY03), but the frequency of microspore embryogenesis was significantly different. Globular embryos from three genotypes were placed into a rotary shaker (50 r/min, 25 ℃) for further culture to improve microspore embryogenesis and plantlet regeneration without callus development. Shake culture not only increased the frequency of cotyledonary embryos but also accelerated microspore embryogenesis in the NLN-13 liquid medium. Moreover, the doubled haploid rates of regenerated plants for the three genotypes were above 50%. The morphological characters and plot yield of DH lines were identified, and there were significant differences between them. According to the measurement of the self-compatibility index, all the DH lines were self-incompatible. Furthermore, the hybrid combination was prepared with the selected DH lines and the pakchoi genic male sterile line GMS010 to develop excellent hybrids. This work contributes to accelerating the application of microspore embryogenesis and supplying the DH lines in pakchoi hybrid breeding.


Subject(s)
Brassica , Brassica/genetics , Plant Breeding , Embryonic Development , Genotype
9.
Crit Rev Biotechnol ; 43(4): 575-593, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35435095

ABSTRACT

Bounteous modern and innovative biotechnological tools have resulted in progressive development in the barley breeding program. Doubled haploids developed (homozygous lines) in a single generation is significant. Since the first discovery of haploid plants in 1920 and, in particular, after discovering in vitro androgenesis in 1964 by Guha and Maheshwari, the doubled haploidy techniques have been progressively developed and constantly improved. It has shortened the cultivar development time and has been extensively used in: genetic studies, gene mapping, marker/trait association, and QTL studies. In barley, the haploid occurrence developed gradually from being a sporadic and random process (spontaneous) to haploid development by in vivo method of modified pollination or by in vitro culture of immature male or female gametophytes. Although significant improvement in DH induction protocols has been made, challenges still exist for improvement in areas such as: low efficiency, albinism, genotypic specificity etc. Here, the paper focuses on: haploidization via different in vitro, in vivo techniques, the recent advances technologies like centromere-mediated haploidization, hap induction gene, and Doubled haploid CRISPR. The au-courant work of different researchers in barley using these technologies is reviewed. Studies on different factors affecting haploid induction and work on genome doubling of barley haploids to produce DH lines via spontaneous and induced technologies has also been highlighted.


Subject(s)
Hordeum , Haploidy , Hordeum/genetics , Plants , Phenotype , Plant Breeding
10.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499375

ABSTRACT

The development of Fusarium head blight (FHB)-resistant winter wheat cultivars using the gene Fhb1 has been conducted in northern China. Sumai 3, a Chinese FHB-resistant spring wheat cultivar, carries three FHB resistance genes: Fhb1, Fhb2 and Fhb5. To better use these genes for increasing FHB resistance in northern China, it is necessary to elucidate the pyramiding effects of Fhb1, Fhb2 and Fhb5 in winter wheat backgrounds. Eight gene combinations involving Fhb1, Fhb2 and Fhb5 were identified in a double haploid (DH) population, and the effects on FHB resistance were evaluated in six tests. At the single gene level, Fhb1 was more efficient than the other two genes in single-floret inoculation tests, whereas Fhb5 showed better resistance than Fhb1 and Fhb2 under a natural infection test. Pyramiding Fhb1, Fhb2 and Fhb5 showed better FHB resistance than the other gene combinations. Forty-nine DH lines showing consistently better resistance than the moderately susceptible control Huaimai 20 in multiple tests were evaluated for main agronomic traits, and no difference in grain yield was found between the mean values of DH lines and the recipient parents Lunxuan 136 and Lunxuan 6, which are higher than those of recipient parent Zhoumai 16 and the donor parent Sumai 3 (p < 0.05). Based on the phenotypic and genomic composition analyses, five promising DH lines fully combined the FHB resistance of donor Sumai 3 and the elite agronomic traits from the recipient parents. This study elucidates the pyramiding effects of three FHB resistance genes and that the promising DH lines with resistance to FHB can be directly applied in wheat production or as parents in winter wheat breeding programs.


Subject(s)
Fusarium , Fusarium/genetics , Triticum/genetics , Plant Breeding , Chromosome Mapping , Quantitative Trait Loci , Plant Diseases/genetics
11.
Appl Microbiol Biotechnol ; 106(22): 7417-7430, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36241928

ABSTRACT

Sugar beet (Beta vulgaris L.) is the second largest sugar-producing crop (following sugarcane), accounting around 40% of total global sugar output. It has been reckoned with huge contribution in sugar, ethanol, and fodder industries. Since sugar beet is recalcitrant in nature, to address the multifaceted difficulties associated with its conventional propagation, several biotechnological tools and techniques aiming with in vitro-based mass regeneration-cum-genetic enhancement are becoming popular. The implementation of effective methodology for in vitro regeneration from ex vitro explant sources becomes the necessity for successful commercial-scale clonal propagation and genetic modification. Substantial research achievements have been made in the past few decades in connection to the optimization of in vitro protocols for direct and callus-mediated regeneration, homozygous line production, somatic hybridization, and genetic transformation of sugar beet. The current review summarizes several reported findings on various physio-chemical factors responsible for direct, indirect organogenesis, somatic embryogenesis, protoplast culture, haploid culture, acclimatization accountable for plantlet mass multiplication, assessing the genetic integrity of in vitro-cultured plantlets, and, finally, successful transgenic approaches to remediate biotic and abiotic stresses. Furthermore, this study highlights undiscovered regions, research gaps, and major bottlenecks that might be considered in developing significant innovative ideas related to sugar beet biotechnology in the near future. KEY POINTS: • Sugar beet, the second largest sugar producer, is a major contributor in sugar, ethanol, and fodder industries. • Current review comprehensively evaluates diverse factors influencing the success of in vitro biotechnological interventions. • This review further highlights the research gaps and offers way outs to attain comprehensive genetic improvement.


Subject(s)
Beta vulgaris , Prospective Studies , Biotechnology/methods , Ethanol , Sugars
12.
Plants (Basel) ; 11(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235331

ABSTRACT

Soil salinity is a major abiotic stress that causes disastrous losses in crop yields. To identify favorable alleles that enhance the salinity resistance of rice (Oryza sativa L.) crops, a set of 120 Cheongcheong Nagdong double haploid (CNDH) lines derived from a cross between the Indica variety Cheongcheong and the Japonica variety Nagdong were used. A total of 23 QTLs for 8 different traits related to salinity resistance on chromosomes 1-3 and 5-12 were identified at the seedling stage. A QTL related to the salt injury score (SIS), qSIS-3b, had an LOD score of six within the interval RM3525-RM15904 on chromosome 3, and a phenotypic variation of 31% was further examined for the candidate genes. Among all the CNDH populations, five resistant lines (CNDH 27, CNDH 34-1, CNDH 64, CNDH 78, and CNDH 112), five susceptible lines (CNDH 52-1, CNDH 67, CNDH 69, CNDH 109, and CNDH 110), and the parent lines Cheongcheong and Nagdong were selected for relative gene expression analysis. Among all the genes, two candidate genes were highly upregulated in resistant lines, including the auxin-responsive protein IAA13 (Os03g0742900) and the calmodulin-like protein 4 (Os03g0743500-1). The calmodulin-like protein 4 (Os03g0743500-1) showed a higher expression in all the resistant lines than in the susceptible lines and a high similarity with other species in sequence alignment and phylogenetic tree, and it also showed a protein-protein interaction with other important proteins. The genes identified in our study will provide new genetic resources for improving salt resistance in rice using molecular breeding strategies in the future.

13.
Int J Mol Sci ; 23(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35806382

ABSTRACT

Low temperature is a serious threat to the seed emergence of rice, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In the current experiment, 120 lines of the Cheongcheong Nagdong Double Haploid (CNDH) population were used for quantitative trait locus (QTL) analysis of low-temperature germinability. The results showed a significant difference in germination under low different temperature (LDT) (15 °C, 20 °C) conditions. In total, four QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the four QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real-time polymerase chain reaction (qRT-PCR). Based on gene function annotation and level of expression under low-temperature, our study suggested the OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding and lay the basis for further mining molecular mechanisms of low-temperature germination tolerance in rice.


Subject(s)
Oryza , Genetic Association Studies , Germination/genetics , Oryza/genetics , Plant Breeding , Seeds/genetics , Temperature
14.
Front Plant Sci ; 13: 871006, 2022.
Article in English | MEDLINE | ID: mdl-35557722

ABSTRACT

When homozygously fertile plants were induced using doubled haploid (DH) induction lines Y3380 and Y3560, the morphology of the induced F1 generation was basically consistent with the female parent, but the fertility was separated, showing characteristics similar to cytoplasmic male sterile (CMS) and maintainer lines. In this study, the morphology, fertility, ploidy, and cytoplasm genotype of the induced progeny were identified, and the results showed that the sterile progeny was polima cytoplasm sterile (pol CMS) and the fertile progeny was nap cytoplasm. The molecular marker and test-cross experimental results showed that the fertile progeny did not carry the restorer gene of pol CMS and the genetic distance between the female parent and the offspring was 0.002. This suggested that those inductions which produced sterile and fertile progeny were coordinated to CMS and maintainer lines. Through the co-linearity analysis of the mitochondrial DNA (mtDNA), it was found that the rearrangement of mtDNA by DH induction was the key factor that caused the transformation of fertility (nap) into sterility (pol). Also, when heterozygous females were induced with DH induction lines, the induction F2 generation also showed the segregation of fertile and sterile lines, and the genetic distance between sterile and fertile lines was approximately 0.075. Therefore, the induction line can induce different types of female parents, and the breeding of the sterile line and the maintainer line can be achieved through the rapid synchronization of sister crosses and self-crosses. The induction of DH inducer in B. napus can provide a new model for the innovation of germplasm resources and open up a new way for its application.

15.
Plants (Basel) ; 11(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35270165

ABSTRACT

Interspecific hybridization of rapeseed is an important way to innovate breeding resources. This research used Brassica napus and Brassica rapa for artificial synthesis interspecific hybridization of F1. The F1 self-fruiting rate was particularly low. By comparing the fertilization rate and seed setting rate of nine crosses and selfing combinations of interspecific hybrid progeny F1 and control B. napus, the results proved that the genetic stability of egg cells was greater than that of sperm cells, so the F1 could get seed by artificial pollination with other normal pollen. Based on these results, interspecific maternal inbred offspring (induced F1) from egg cells was obtained by emasculation and pollination with the pollen of DH inducer Y3380. It was found through morphological analysis, flow cytometry identification, and meiotic observation of induced F1, the plants had most normal fertile tetraploid and the meiosis was normal. The FISH results showed that the induced F1 were B. napus (2n = 4x = 38, AACC), 20 A and 19 C chromosomes. The results of SNP chip detection and genetic cluster analysis found that the genetic variation between interspecies could be preserved or broadened in the induced F1. The use of DH inducer created special breeding resources for interspecific hybridization and distant hybridization of rapeseed while shortening time, improving efficiency, and providing a new insight into innovate breeding resources.

16.
New Phytol ; 233(6): 2405-2414, 2022 03.
Article in English | MEDLINE | ID: mdl-35015909

ABSTRACT

Reactive oxygen species (ROS) play important roles during anther and pollen development. DNA damage may cause chromosome fragmentation that is considered to underlie chromosome elimination for haploid induction by matrilineal pollen, a key step in MATRILINEAL-based double haploid breeding technology. But when and how DNA damage occurs is unknown. We performed comparative studies of wheat pollens from the wild-type and the CRISPR/Cas9 edited matrilineal mutant (mMTL). Chemical assays detected a second wave of ROS in mMTL pollen at the three-nuclei-stage and subsequently, along with reduced antioxidant enzyme activities. RNA-seq analysis revealed disturbed expression of genes for fatty acid biosynthesis and ROS homoeostasis. Gas chromatography-mass spectrometry measurement identified abnormal fatty acid metabolism that may contribute to defective mMTL pollen walls as observed using electron microscopy, consistent with the function of MTL as a phospholipase. Moreover, DNA damage was identified using TdT-mediated dUTP nick-end labelling and quantified using comet assays. Velocity patterns showed that ROS increments preceded that of DNA damage over the course of pollen maturation. Our work hypothesises that mMTL-triggered later-stage-specific ROS causes DNA damage that may contribute to chromosome fragmentation and hence chromosome elimination during haploid induction. These findings may provide more ways to accelerate double haploid-based plant breeding.


Subject(s)
Plant Breeding , Triticum , Gene Expression Regulation, Plant , Haploidy , Pollen/metabolism , Reactive Oxygen Species/metabolism , Triticum/metabolism
17.
Mol Breed ; 42(8): 43, 2022 Aug.
Article in English | MEDLINE | ID: mdl-37313515

ABSTRACT

Radish (Raphanus sativus L.), an important annual or biennial root vegetable crop, is widely cultivated in the world for its high nutritive value. Isolated microspore culture (IMC) is one of the most effective methods for rapid development of homozygous lines. Due to imperfection of the IMC technology system, it is particularly important to establish an efficient IMC system in radish. In this study, the effects of different factors on radish microspore embryogenesis were investigated with 23 genotypes. Buds with the largest population of late-uninucleate-stage microspores were most suitable for embryogenesis, with a ratio of petal length to anther length (P/A) in buds of about 3/4 ~ 1. Cold pretreatment was found to be genotype specific, and the highest microspore-derived embryoid (MDE) yield occurred for treatment of the heat shock of 48 h. In addition, the supplement of 0.75 g/L activated charcoal (AC) could increase the yield of embryoids. It was found that genotypes, bud size, as well as temperature treatments had significant effects on microspore embryogenesis. Furthermore, somatic embryogenesis-related kinase (SERK) genes were profiled by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, which indicated that they are involved in the process of MDE formation and plantlet regeneration. The ploidy of microspore-derived plants was identified by chromosome counting and flow cytometry, and the microspore-derived plants were further proved as homozygous plants through expressed sequence tags-simple sequence repeats (EST-SSR) and genetic-SSR markers. The results would facilitate generating the large-scale double haploid (DH) from various genotypes, and promoting further highly efficient genetic improvement in radish. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01312-w.

18.
BMC Plant Biol ; 21(1): 207, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33941091

ABSTRACT

BACKGROUND: Artificial synthesis of octoploid rapeseed double haploid (DH) induction lines Y3380 and Y3560 was made possible by interspecific hybridization and genome doubling techniques. Production of pure lines by DH induction provides a new way to achieve homozygosity earlier in B.napus. Previously, the mechanism of induction, and whether the induction has obvious maternal genotypic differences or not, are not known so far. RESULTS: In this study, different karyogene and cytoplasmic genotype of B.napus were pollinated with the previously reported DH inducers e.g. Y3380 and Y3560. Our study presents a fine comparison of different cytoplasmic genotypes hybridization to unravel the mechanism of DH induction. Ploidy identification, fertility and SSR marker analysis of induced F1 generation, revealed that ploidy and phenotype of the induced F1 plants were consistent with that type of maternal, rather than paternal parent. The SNP chip analysis revealed that induction efficiency of DH inducers were affected by the karyogene when the maternal cytoplasmic genotypes were the same. However, DH induction efficiency was also affected by cytoplasmic genotype when the karyogenes were same, and the offspring of the ogura cytoplasm showed high frequency inducer gene hybridization or low-frequency infiltration. CONCLUSION: The induction effect is influenced by the interaction between maternal karyogene and cytoplasmic genotype, and the results from the partial hybridization of progeny chromosomes indicate that the induction process may be attributed to the selective elimination of paternal chromosome. This study provides a basis for exploring the mechanism of DH inducer in B.napus, and provides new insights for utilization of inducers in molecular breeding.


Subject(s)
Brassica napus/genetics , Chromosomes, Plant/genetics , DNA Shuffling/methods , Hybridization, Genetic , Cell Nucleus/genetics , Cytoplasm/genetics , Genotype , Haploidy , Phenotype , Plant Breeding
19.
BMC Genet ; 21(1): 123, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33183224

ABSTRACT

BACKGROUND: Farmed Atlantic salmon are one of the most economically significant global aquaculture products. Early sexual maturation of farmed males represents a significant challenge to this industry and has been linked with the vgll3 genotype. However, tools to aid research of this topic, such as all-male and clonal fish, are still lacking. The present 6-year study examined if all-male production is possible in Atlantic salmon, a species with heteromorphic sex chromosomes (males being XY, females XX), and if all-male fish can be applied to further explore the vgll3 contribution on the likelihood of early maturation. RESULTS: Estrogen treatment of mixed sex yolk sac larvae gave rise to one sexually mature hermaphrodite with a male genotype (XY) that was used to produce both self-fertilized offspring and androgenetic double haploid (dh) offspring following egg activation with UV treated sperm and pressure shock to block the first mitotic division. There were YY supermales among both offspring types, which were crossed with dh females. Between 1 and 8% of the putative all-male offspring from the eight crosses with self-fertilized supermales were found to have ovaries, and 95% of these phenotypic females were also genetically female. None of the offspring from the one dh supermale cross had ovaries. When assessing the general contribution of the vgll3 locus on the likelihood of early post-smolt sexual maturation (jacking) in the all-male populations we found individuals that were homozygous for the early maturing genotype (97%) were more likely to enter puberty than individuals that were homozygous for the late maturing genotype (26%). However, the likelihood of jacking within individuals with an early/late heterozygous genotype was higher when the early allele came from the dam (94%) compared to the sire (45%). CONCLUSIONS: The present results show that supermale Atlantic salmon are viable and fertile and can be used as a research tool to study important aspects of sexual maturation, such as to further explore the sex dependent parental genetic contribution to age at puberty in Atlantic salmon. In addition, we report the production of viable double haploid supermale fish.


Subject(s)
Salmo salar/genetics , Sexual Maturation/genetics , Alleles , Animals , Female , Fertility , Genotype , Haploidy , Hermaphroditic Organisms , Male , Phenotype , Salmo salar/physiology , Transcription Factors/genetics
20.
Plants (Basel) ; 9(7)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698526

ABSTRACT

Production of homozygous lines derived from transgenic plants is one of the important steps for phenotyping and genotyping transgenic progeny. The selection of homozygous plants is a tedious process that can be significantly shortened by androgenesis, cultivation of anthers, or isolated microspores. Doubled haploid (DH) production achieves complete homozygosity in one generation. We obtained transgenic homozygous DH lines from six different transgenic events by using anther culture. Anthers were isolated from T0 transgenic primary regenerants and cultivated in vitro. The ploidy level was determined in green regenerants. At least half of the 2n green plants were transgenic, and their progeny were shown to carry the transgene. The process of dihaploidization did not affect the expression of the transgene. Embryo cultures were used to reduce the time to seed of the next generation. The application of these methods enables rapid evaluation of transgenic lines for gene function studies and trait evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL