Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Chem Biol Interact ; 397: 111092, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38825053

ABSTRACT

The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, is over expressed in renal cell carcinoma (RCC). However, the cell biology functions of RCC are not well understood. The present study aimed to verify the ability of CDKN3 to promote the proliferation and migration of RCC through in vitro experiments. Subsequently, the clinical prognostic effects were analyzed using The Cancer Genome Atlas (TCGA; https://www.cancer.gov/) and Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The chelators, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), an analogue of the anti-tumor agent, were screened through bioinformatics analysis. The expression of CDKN3 is positively correlated with the IC50 of Dp44mT. In two RCC cell lines, 786-0 and Caki-1, we conducted small interfering RNA (siRNA) knockdown of CDKN3 and overexpression of CDKN3 by transfection plasmid. Subsequently, we administered Dp44mT to examine the resulting alterations in cell proliferation, migration, and apoptosis, thereby elucidating the role of CDKN3 and Dp44mT in these processes. The results of the experiment revealed a positive association between CDKN3 expression and the proliferation of RCC cell lines. Down-regulating CDKN3 significantly increased the apoptosis rate and inhibited cell migration in 786-0 and Caki-1 cells. Furthermore, bioinformatics analysis revealed a high expression of CDKN3 in RCC and a negative association between CDKN3 expression and survival. Gene set enrichment analysis (GSEA) revealed a significant association between high CDKN3 expression and the cell cycle pathway. Furthermore, we identified Dp44mT as a drug highly correlated with CDKN3 through the database. Subsequent addition of Dp44mT resulted in similar findings to those observed upon CDKN3 knockdown. Our findings have important implications for the diagnosis and treatment of CDKN3 in RCC. Additionally, Dp44mT is likely to be a promising candidate for future clinical applications.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor Proteins , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/drug therapy , Cell Movement/drug effects , Cell Proliferation/drug effects , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Thiosemicarbazones/pharmacology , RNA, Small Interfering/metabolism , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Dual-Specificity Phosphatases
2.
Biomaterials ; 289: 121760, 2022 10.
Article in English | MEDLINE | ID: mdl-36044788

ABSTRACT

Selective targeting of elevated copper (Cu) in cancer cells by chelators to induce tumor-toxic reactive oxygen species (ROS) may be a promising approach in the treatment of glioblastoma multiforme (GBM). Previously, the Cu chelator di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) attracted much interest due to its potent anti-tumor activity mediated by the formation of a highly redox-active Cu-Dp44mT complex. However, its translational potential was limited by the development of toxicity in murine models of cancer reflecting poor selectivity. Here, we overcame the limitations of Dp44mT by incorporating it in new biomimetic nanoparticles (NPs) optimized for GBM therapy. Biomimetic design elements enhancing selectivity included angiopeptide-2 functionalized red blood cell membrane (Ang-M) camouflaging of the NPs carrier. Co-loading Dp44mT with regadenoson (Reg), that transiently opens the blood-brain-barrier (BBB), yielded biomimetic Ang-MNPs@(Dp44mT/Reg) NPs that actively targeted and traversed the BBB delivering Dp44mT specifically to GBM cells. To further improve selectivity, we innovatively pre-loaded GBM tumors with Cu. Oral dosing of U87MG-Luc tumor bearing mice with diacetyl-bis(4-methylthiosemicarbazonato)-copperII (Cu(II)-ATSM), significantly enhanced Cu-level in GBM tumor. Subsequent treatment of mice bearing Cu-enriched orthotopic U87MG-Luc GBM with Ang-MNPs@(Dp44mT/Reg) substantially prevented orthotopic GBM growth and led to maximal increases in median survival time. These results highlighted the importance of both angiopeptide-2 functionalization and tumor Cu-loading required for greater selective cytotoxicity. Targeting Ang-MNPs@(Dp44mT/Reg) NPs also down-regulated antiapoptotic Bcl-2, but up-regulated pro-apoptotic Bax and cleaved-caspase-3, demonstrating the involvement of the apoptotic pathway in GBM suppression. Notably, Ang-MNPs@(Dp44mT/Reg) showed negligible systemic drug toxicity in mice, further indicating therapeutic potential that could be adapted for other central nervous system disorders.


Subject(s)
Antineoplastic Agents , Glioblastoma , Nanoparticles , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Biomimetics , Caspase 3 , Cell Line, Tumor , Chelating Agents/pharmacology , Copper/metabolism , Diacetyl , Glioblastoma/drug therapy , Glioblastoma/pathology , Mice , Reactive Oxygen Species/metabolism , Thiosemicarbazones , bcl-2-Associated X Protein
3.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35887336

ABSTRACT

Iron is a crucial element for mammalian cells, considering its intervention in several physiologic processes. Its homeostasis is finely regulated, and its alteration could be responsible for the onset of several disorders. Iron is closely related to inflammation; indeed, during inflammation high levels of interleukin-6 cause an increased production of hepcidin which induces a degradation of ferroportin. Ferroportin degradation leads to decreased iron efflux that culminates in elevated intracellular iron concentration and consequently iron toxicity in cells and tissues. Therefore, iron chelation could be considered a novel and useful therapeutic strategy in order to counteract the inflammation in several autoimmune and inflammatory diseases. Several iron chelators are already known to have anti-inflammatory effects, among them deferiprone, deferoxamine, deferasirox, and Dp44mT are noteworthy. Recently, eltrombopag has been reported to have an important role in reducing inflammation, acting both directly by chelating iron, and indirectly by modulating iron efflux. This review offers an overview of the possible novel biological effects of the iron chelators in inflammation, suggesting them as novel anti-inflammatory molecules.


Subject(s)
Iron Overload , Animals , Benzoates/therapeutic use , Deferasirox/therapeutic use , Deferiprone , Deferoxamine/therapeutic use , Inflammation/complications , Inflammation/drug therapy , Iron/therapeutic use , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Iron Overload/drug therapy , Iron Overload/etiology , Mammals , Pyridones/therapeutic use
4.
Biochim Biophys Acta Gen Subj ; 1866(8): 130152, 2022 08.
Article in English | MEDLINE | ID: mdl-35436509

ABSTRACT

BACKGROUND: The di-2-pyridylketone thiosemicarbazones, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), demonstrate potent and selective anti-tumor activity. In fact, DpC entered Phase I clinical trials for advanced and resistant tumors. METHODS: This investigation examined the activity of these thiosemicarbazones in five tumor cell-types compared to nine clinically used chemotherapeutics and also in combination with these drugs. RESULTS: Dp44mT and especially DpC demonstrated potent anti-proliferative activity that was significantly greater than a range of standard anti-cancer therapeutics. As most anti-cancer drugs are given in combination, further studies were performed to examine the synergistic activity of DpC or Dp44mT with these chemotherapeutics. Combination experiments revealed broad synergy between Dp44mT or DpC upon addition of these drugs, with a sequential protocol of treating first with standard chemotherapies followed by incubation with the thiosemicarbazones being optimal. However, combining DpC and Dp44mT resulted in a pronounced antagonistic drug interaction. To dissect the mechanism of this latter effect, custom-prepared 14C-DpC was implemented and examined for its uptake by cells. The avid uptake of 14C-DpC by tumor cells observed at 37 °C was suppressed at 4 °C and by the metabolic inhibitor, sodium fluoride, suggesting a temperature- and energy-dependent mechanism. Furthermore, competition studies using an excess of unlabeled Dp44mT or DpC inhibited 14C-DpC or 14C-Dp44mT uptake, respectively, suggesting these ligands utilize the same carrier/receptor, antagonizing the internalization of each other. CONCLUSIONS AND GENERAL SIGNIFICANCE: These studies demonstrate the potent and broad anti-proliferative activity of Dp44mT and particularly DpC, and are important for establishing optimized combinations with standard chemotherapies.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Antineoplastic Agents/pharmacology , Biological Transport , Cell Line, Tumor , Temperature , Thiosemicarbazones/pharmacology
5.
Biochim Biophys Acta Gen Subj ; 1866(4): 130078, 2022 04.
Article in English | MEDLINE | ID: mdl-34974127

ABSTRACT

BACKGROUND: Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. METHODS: Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. RESULTS: In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. CONCLUSIONS AND GENERAL SIGNIFICANCE: Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.


Subject(s)
Emodin , Thiosemicarbazones , Ascorbic Acid/chemistry , Emodin/pharmacology , Ferrous Compounds , Hydrogen Peroxide , Iron/metabolism , Ligands , Micelles , Oxidation-Reduction , Reactive Oxygen Species , Thiosemicarbazones/pharmacology
6.
In Vitro Cell Dev Biol Anim ; 57(3): 332-341, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33594608

ABSTRACT

Inflammation is increased by infection with pathogens such as viruses, bacteria, and parasites. High levels of inflammatory mediators and infiltration of macrophages into inflammatory lesions were reported in severe inflammatory diseases. Here, the aim of this study was to evaluate an anti-inflammatory activity of di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Dp44mT (1-100 ng/mL) had no effect on viability of RAW 264.7 macrophages. Dp44mT (100 ng/mL) significantly reduced LPS-induced release of nitric oxide and expression of inducible nitric oxide synthase and cyclooxygenase-2. A significant upregulation of tumor necrosis factor (TNF)-α and interleukin (IL)-6 by LPS stimulation was downregulated by treatment with Dp44mT. Dp44mT blocked activation of nuclear factor-κB by the interruption of IκBα phosphorylation. Dp44mT suppressed the phagocytosis. Furthermore, administration of Dp44mT significantly reduced the serum levels of TNF-α and IL-6 in LPS-treated mice without side effects. In conclusion, these results indicate that Dp44mT has an anti-inflammatory activity and may be of therapeutic significant for the prevention and treatment of inflammatory diseases.


Subject(s)
Cell Nucleus/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , NF-kappa B/metabolism , Thiosemicarbazones/pharmacology , Animals , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phagocytosis/drug effects , Protein Transport , RAW 264.7 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sepsis/blood , Sepsis/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Adv Healthc Mater ; 10(2): e2001261, 2021 01.
Article in English | MEDLINE | ID: mdl-33191612

ABSTRACT

The limited effectiveness of current therapeutics against malignant brain gliomas has led to an urgent need for development of new formulations against these tumors. Chelator Dp44mT (di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone) presents a promising candidate to defeat gliomas due to its exceptional anti-tumor activity and its unique ability to overcome multidrug resistance. The goal of this study is to develop a targeted nano-carrier for Dp44mT delivery to glioma tumors and to assess its therapeutic efficacy in vitro and in vivo. Dp44mT is loaded into poly(ethylene glycol) (PEG)ylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) decorated with glioma-targeting ligand Interlukin 13 (IL13). IL13-conjugation enhanced the NP uptake by glioma cells and also improved their transport across an in vitro blood-brain-barrier (BBB) model. This targeted formulation showed an outstanding toxicity towards glioma cell lines and patient-derived stem cells in vitro, with IC50 values less than 125 nM, and caused no significant death in healthy brain microvascular endothelial cells. In vivo, when tested on a xenograft mouse model, IL13-conjugated Dp44mT-NPs reduced the glioma tumor growth by ≈62% while their untargeted counterparts reduced the tumor growth by only ≈16%. Notably, this formulation does not cause any significant weight loss or kidney/liver toxicity in mice, demonstrating its great therapeutic potential.


Subject(s)
Brain Neoplasms , Glioma , Nanoparticles , Animals , Brain Neoplasms/drug therapy , Cell Line, Tumor , Drug Delivery Systems , Drug Resistance, Multiple , Endothelial Cells , Glioma/drug therapy , Humans , Mice
8.
Cancers (Basel) ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334021

ABSTRACT

Combining low-dose chemotherapies is a strategy for designing less toxic and more potent childhood cancer treatments. We examined the effects of combining the novel thiosemicarbazones, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), or its analog, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), with the standard chemotherapies, celecoxib (CX), etoposide (ETO), or temozolomide (TMZ). These combinations were analyzed for synergism to inhibit proliferation of three pediatric tumor cell-types, namely osteosarcoma (Saos-2), medulloblastoma (Daoy) and neuroblastoma (SH-SY5Y). In terms of mechanistic dissection, this study discovered novel thiosemicarbazone targets not previously identified and which are important for considering possible drug combinations. In this case, DpC and Dp44mT caused: (1) up-regulation of a major protein target of CX, namely cyclooxygenase-2 (COX-2); (2) down-regulation of the DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), which is known to affect TMZ resistance; (3) down-regulation of mismatch repair (MMR) proteins, MSH2 and MSH6, in Daoy and SH-SY5Y cells; and (4) down-regulation in all three cell-types of the MMR repair protein, MLH1, and also topoisomerase 2α (Topo2α), the latter of which is an ETO target. While thiosemicarbazones up-regulate the metastasis suppressor, NDRG1, in adult cancers, it is demonstrated herein for the first time that they induce NDRG1 in all three pediatric tumor cell-types, validating its role as a potential target. In fact, siRNA studies indicated that NDRG1 was responsible for MGMT down-regulation that may prevent TMZ resistance. Examining the effects of combining thiosemicarbazones with CX, ETO, or TMZ, the most promising synergism was obtained using CX. Of interest, a positive relationship was observed between NDRG1 expression of the cell-type and the synergistic activity observed in the combination of thiosemicarbazones and CX. These studies identify novel thiosemicarbazone targets relevant to childhood cancer combination chemotherapy.

9.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165970, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32950675

ABSTRACT

Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and its analogues are potent anti-cancer agents through their ability to target lysosomes. Considering this, it was important to understand the mechanisms involved in the Dp44mT-mediated induction of autophagy and the role of 5'-adenosine monophosphate-activated protein kinase (AMPK) as a critical autophagic regulator. As such, this investigation examined AMPK's role in the regulation of the transcription factor EB (TFEB), which transcribes genes involved in autophagy and lysosome biosynthesis. For the first time, this study demonstrated that Dp44mT induces translocation of TFEB to the nucleus. Furthermore, Dp44mT-mediated nuclear translocation of TFEB was AMPK-dependent. Considering that: (1) the mammalian target of rapamycin complex 1 (mTORC1) plays an important role in the regulation of TFEB; and (2) that AMPK is a known regulator of mTORC1, this study also elucidated the mechanisms through which Dp44mT regulates nuclear translocation of TFEB via AMPK. Silencing AMPK led to increased mTOR phosphorylation, that activates mTORC1. Since Dp44mT inhibits mTORC1 in an AMPK-dependent manner through raptor phosphorylation, Dp44mT is demonstrated to regulate TFEB translocation through dual mechanisms: AMPK activation, which inhibits mTOR, and inhibition of mTORC1 via phosphorylation of raptor. Collectively, Dp44mT-mediated activation of AMPK plays a crucial role in lysosomal biogenesis and TFEB function. As Dp44mT potently chelates copper and iron that are crucial for tumor growth, these studies provide insight into the regulatory mechanisms involved in intracellular clearance and energy metabolism that occur upon alterations in metal ion homeostasis.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/drug effects , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Thiosemicarbazones/pharmacology , AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/chemistry , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Molecular Structure , Phosphorylation/drug effects , Structure-Activity Relationship , Thiosemicarbazones/chemistry , Tumor Cells, Cultured
10.
Biometals ; 33(4-5): 201-215, 2020 10.
Article in English | MEDLINE | ID: mdl-32757166

ABSTRACT

Iron chelators have long been a target of interest as anticancer agents. Iron is an important cellular resource involved in cell replication, metabolism and growth. Iron metabolism is modulated in cancer cells reflecting their increased replicative demands. Originally, iron chelators were first developed for use in iron overload disorders, however, their potential as anticancer agents has been gaining increasing interest. This is due, in part, to the downstream effects of iron depletion such as the inhibition of proliferation through ribonucleotide reductase activity. Additionally, some chelators form redox active metal complexes with iron resulting in the production of reactive oxygen species and oxidative stress. Newer synthetic iron chelators such as Deferasirox, Triapine and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicrbazone (Dp44mt) have improved pharmacokinetic properties over the older chelator Deferoxamine. This review examines and discusses the various iron chelators that have been trialled for cancer therapy including both preclinical and clinical studies. The successes and shortcomings of each of the chelators and their use in combination therapies are highlighted and future potential in the cancer therapy world is considered.


Subject(s)
Antineoplastic Agents/therapeutic use , Iron Chelating Agents/therapeutic use , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Humans , Iron Chelating Agents/chemistry , Iron Chelating Agents/metabolism
11.
Cell Oncol (Dordr) ; 43(3): 461-475, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32207044

ABSTRACT

PURPOSE: The iron-chelating agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) has been found to inhibit cell growth and to induce apoptosis in several human cancers. However, its effects and mechanism of action in glioma are unknown. METHODS: Human glioma cell line LN229 and patient-derived glioma stem cells GSC-42 were applied for both in vitro and in vivo xenograft nude mouse experiments. The anti-tumor effects of Dp44mT were assessed using MTS, EdU, TUNEL, Western blotting, qRT-PCR, luciferase reporter, chromatin immunoprecipitation and immunohistochemical assays. RESULTS: We found that Dp44mT can upregulate the expression of the anti-oncogene N-myc downstream-regulated gene (NDRG)2 by directly binding to and activating the RAR-related orphan receptor (ROR)A. In addition, we found that NDRG2 overexpression suppressed inflammation via activation of interleukin (IL)-6/Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling. CONCLUSIONS: Our data indicate that Dp44mT may serve as an effective drug for the treatment of glioma by targeting RORA and enhancing NDRG2-mediated IL-6/JAK2/STAT3 signaling.


Subject(s)
Apoptosis/drug effects , Glioma/pathology , Iron Chelating Agents/pharmacology , Janus Kinase 2/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , STAT3 Transcription Factor/metabolism , Thiosemicarbazones/pharmacology , Tumor Suppressor Proteins/metabolism , Animals , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Interleukin-6/metabolism , Mice, Inbred BALB C , Models, Biological , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/genetics
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165657, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31904416

ABSTRACT

Upon activation, the 5'-adenosine monophosphate-activated protein kinase (AMPK) increases catabolism, while inhibiting anabolism. The anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), activates AMPK in multiple tumor cell-types (Biochim. Biophys Acta 2016;1863:2916-2933). This acts as an initial cell "rescue response" after iron-depletion mediated by Dp44mT. Considering Dp44mT-mediated AMPK activation, the role of AMPK on Dp44mT cytotoxicity was examined. Dp44mT increased the p-AMPK/AMPK ratio in multiple tumor cell-types over short (24 h) and longer (72 h) incubations. Notably, Dp44mT was more effective in inhibiting tumor cell proliferation after AMPK silencing, potentially due to the loss of AMPK-mediated metabolic plasticity that protects cells against Dp44mT cytotoxicity. The silencing of AMPK-increased cellular cholesterol and stabilized lysosomes against Dp44mT-mediated lysosomal membrane permeabilization. This was substantiated by studies demonstrating that the cholesterol-depleting agent, methyl-ß-cyclodextrin (MßCD), restores Dp44mT-mediated lysosomal membrane permeabilization in AMPK silenced cells. The increased levels of cholesterol after AMPK silencing were independent of the ability of AMPK to inhibit the rate-limiting step of cholesterol synthesis via the inactivating phosphorylation of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) at Ser872. In fact, Dp44mT did not increase phosphorylation of HMGCR at (Ser872), but decreased total HMGCR expression similarly in both the presence or absence of AMPK silencing. Dp44mT was demonstrated to increase autophagic initiation after AMPK silencing via an AMPK- and Beclin-1-independent mechanism. Further, there was increased cleaved caspase 3 and cleaved PARP after incubation of AMPK silenced cells with Dp44mT. Overall, AMPK silencing promotes Dp44mT anti-proliferative activity, suggesting a role for AMPK in rescuing its cytotoxicity by inhibiting autophagy and also apoptosis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/drug therapy , Thiosemicarbazones/pharmacology , AMP-Activated Protein Kinases/genetics , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , RNA Interference , RNA, Small Interfering/metabolism , Thiosemicarbazones/therapeutic use
13.
Inflammation ; 41(5): 1744-1754, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29967928

ABSTRACT

Our previous study showed that an iron chelator and anticancer agent Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) has an antiinflammatory effect in human mast cells. However, antiinflammatory effect of Dp44mT remains unclear in animal models. In this study, we assessed whether administration of Dp44mT could relieve clinical symptoms of ovalbumin (OVA)-induced allergic rhinitis (AR) mice. After administration of Dp44mT, number of rubs was significantly decreased, and levels of histamine and IgE were suppressed in serum of AR mice. Also, serum levels of interleukin (IL)-1ß, thymic stromal lymphopoietin (TSLP), and tumor necrosis factor (TNF)-α increased by OVA challenge were significantly lowered by administration of Dp44mT. T helper type 1 (Th1) cytokine interferon-γ level was significantly increased by administration of Dp44mT, whereas Th2 cytokines such as IL-4, IL-5, and IL-13 were significantly reduced by administration of Dp44mT. In intranasal tissues of AR mice, levels of IL-1ß, TSLP, TNF-α, and IL-6 and activities and protein levels of caspase-1 were significantly reduced by administration of Dp44mT. Interestingly, administration of Dp44mT reduced number of infiltrated eosinophils and mast cells through the inhibition of macrophage inflammatory protein-2 and intercellular adhesion molecule-1 in intranasal tissues of AR mice. In conclusion, these results indicate that Dp44mT also has potential antiinflammatory effects in vivo as well as in vitro.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Rhinitis, Allergic/drug therapy , Thiosemicarbazones/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Chemokine CXCL2/antagonists & inhibitors , Eosinophils/drug effects , Intercellular Adhesion Molecule-1/drug effects , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Mast Cells/drug effects , Mice , Rhinitis, Allergic/pathology , Thiosemicarbazones/therapeutic use
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(8): 2644-2663, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29679718

ABSTRACT

The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), exhibits pleiotropic activity, inhibiting metastasis of various tumor-types, while being correlated with metastasis in others. Notably, NDRG1 phosphorylation and cleavage are associated with its function, although it is unclear if these modifications occur universally, or selectively, in different cancer cell-types and if it contributes to its pleiotropy. Considering the suggested DNA repair role of nuclear NDRG1, the effects of the above post-translational modifications on its nuclear localization was examined. Herein, the full-length (FL) and truncated (T) NDRG1 isoforms were detected using a C-terminus-directed antibody, while only the FL isoform was identified using an N-terminus-directed antibody. For the first time, we demonstrate that the expression of the NDRG1 FL and T forms occurs in all cancer cell-types examined, as does its phosphorylation (p-NDRG1) at Ser330 and Thr346. The FL isoform localized highly in the nucleus compared to the T isoform. Moreover, p-NDRG1 (Ser330) was also markedly localized in the nucleus, while p-NDRG1 (Thr346) was predominantly cytoplasmic in all cell-types. These results indicate the N-terminus region and phosphorylation at Ser330 could be crucial for NDRG1 nuclear localization and function. PTEN silencing indicated that p-NDRG1 (Thr346) could be regulated differentially in different tumor cell-types, indicating PTEN may be involved in the mechanism(s) underlying the pleiotropic activity of NDRG1. Finally, therapeutics of the di-2-pyridylketone thiosemicarbazone class increased nuclear NDRG1 isoforms (FL and T) detected by the C-terminus-directed antibody in HepG2 cells, while having no significant effect in PC3 cells, indicating differential activity depending on the cell-type.


Subject(s)
Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/metabolism , Cell Cycle Proteins/genetics , Hep G2 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Neoplasm Metastasis , PTEN Phosphohydrolase/genetics , Phosphorylation/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport/genetics
15.
Biochim Biophys Acta Gen Subj ; 1862(3): 761-774, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29032246

ABSTRACT

BACKGROUND: The cyclin-dependent kinase inhibitor, p21, is well known for its role in cell cycle arrest. Novel anti-cancer agents that deplete iron pools demonstrate marked anti-tumor activity and are also active in regulating p21 expression. These agents induce p21 mRNA levels independently of the tumor suppressor, p53, and differentially regulate p21 protein expression depending on the cell-type. Several chelators, including an analogue of the potent anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), have entered clinical trials, and thus, their molecular mechanism of action is crucial to assess. Hence, this investigation examined how several iron chelators transcriptionally regulate p21. METHODS: Promoter-deletion constructs; luciferase assays; RT-PCR; western analysis; gene silencing; co-immunoprecipitation. RESULTS: The transcriptional regulation of the p21 promoter by iron chelators was demonstrated to be dependent on the chelator and cell-type examined. The potent anti-cancer chelator, Dp44mT, induced p21 promoter activity in SK-MEL-28 melanoma cells, but not in MCF-7 breast cancer cells. Further analysis of the p21 promoter identified a 50-bp region between -104 and -56-bp that was required for Dp44mT-induced activation in SK-MEL-28 cells. This region contained several Sp1-binding sites and mutational analysis of this region revealed the Sp1-3-binding site played a significant role in Dp44mT-induced activation of p21. Further, co-immunoprecipitation demonstrated that Dp44mT induced a marked increase in the interactions between Sp1 and the transcription factors, estrogen receptor-α and c-Jun. CONCLUSIONS AND GENERAL SIGNIFICANCE: Dp44mT-induced p21 promoter activation via the Sp1-3-binding site and increased Sp1/ER-α and Sp1/c-Jun complex formation in SK-MEL-28 cells, suggesting these complexes were involved in p21 promoter activation.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Gene Expression Regulation, Neoplastic/drug effects , Iron Chelating Agents/pharmacology , Neoplasm Proteins/drug effects , Promoter Regions, Genetic/drug effects , Thiosemicarbazones/pharmacology , Transcriptional Activation/drug effects , Binding Sites , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Melanoma/pathology , Molecular Structure , Mutation , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Proto-Oncogene Proteins c-jun/metabolism , RNA Interference , RNA, Small Interfering/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Sequence Deletion , Transcription Factors/metabolism
16.
Inflamm Res ; 66(10): 871-879, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28616734

ABSTRACT

OBJECTIVE: Inflammation has been closely associated with the development and progression of cancer. Previously, we reported that mast cells play a critical role in tumor growth. The purpose of this study is to investigate the anti-inflammatory effect of an anticancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), on an activated human mast cell line, in this case HMC-1 cells. METHODS: We evaluated the effect and specific molecular mechanism of Dp44mT on phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI) using HMC-1 cells. RESULTS: Here, we demonstrated that Dp44mT significantly decreased the protein levels of hypoxia-inducible factor-1α and vascular endothelial growth factor without exposing activated HMC-1 cells to any cytotoxicity. In activated mast cells, Dp44mT mitigated the strong production and mRNA expression of inflammatory cytokines, in this case, interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, and thymic stromal lymphopoietin, through a blockade of caspase-1 and nuclear factor-κB activities. Furthermore, phosphorylations of the mitogen-activated protein kinase family included in inflammatory signaling cascades were significantly inhibited by a Dp44mT treatment. CONCLUSIONS: Overall, our results indicate that the anticancer agent Dp44mT has an anti-inflammatory effect and may be of therapeutic importance for the treatment of mast cell-mediated inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Mast Cells/drug effects , Thiosemicarbazones/pharmacology , Calcimycin/pharmacology , Caspase Inhibitors/pharmacology , Cell Line , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Humans , Hypoxia-Inducible Factor 1/pharmacology , Ionophores/pharmacology , MAP Kinase Signaling System/drug effects , NF-kappa B/antagonists & inhibitors , RNA, Messenger/biosynthesis , Tetradecanoylphorbol Acetate/pharmacology , Vascular Endothelial Growth Factor A/biosynthesis , Thymic Stromal Lymphopoietin
19.
Biochim Biophys Acta ; 1863(12): 2916-2933, 2016 12.
Article in English | MEDLINE | ID: mdl-27639899

ABSTRACT

Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor that monitors ATP levels. There is also evidence that AMPK has onco-suppressive properties. Iron plays a crucial role in cellular energy transducing pathways and tumor cell proliferation. Therefore, metals (e.g., iron) could play an important role in the regulation of AMPK-dependent pathways. Hence, this investigation examined the effect of the iron and copper chelator and potent anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), on the AMPK-mediated pathway. These studies demonstrated that Dp44mT, which forms intracellular redox-active complexes with iron and copper, significantly activated AMPK (i.e., p-AMPK/AMPK ratio) in 5 different tumor cell-types. Furthermore, examination of the Dp44mT-metal complexes demonstrated that the effect of Dp44mT on AMPK was due to a dual mechanism: (1) its ability to chelate metal ions; and (2) the generation of reactive oxygen species (ROS). The activation of the AMPK-pathway by Dp44mT was mediated by the upstream kinase, liver kinase B1 (LKB1) that is a known tumor suppressor. Moreover, using AMPKα1-selective silencing, we demonstrated that Dp44mT activated AMPK, resulting in inhibition of acetyl CoA carboxylase 1 (ACC1) and raptor, and activation of Unc-51 like kinase (ULK1). These effects are vital for inhibition of fatty acid synthesis, suppression of protein synthesis and autophagic activation, respectively. Together, this AMPK-mediated repair response aims to rescue the loss of metal ions via chelation and the induction of cytotoxic damage mediated by redox cycling of the Dp44mT-metal ion complex. In conclusion, this study demonstrates for the first time that chelators target the AMPK-dependent pathway.


Subject(s)
AMP-Activated Protein Kinases/genetics , Antineoplastic Agents/pharmacology , Epithelial Cells/drug effects , Gene Expression Regulation, Neoplastic , Iron Chelating Agents/pharmacology , Thiosemicarbazones/pharmacology , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Cell Line, Tumor , Energy Metabolism/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fatty Acids/antagonists & inhibitors , Fatty Acids/biosynthesis , Fibroblasts , Human Umbilical Vein Endothelial Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Iron/metabolism , Mice , Protein Biosynthesis/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Regulatory-Associated Protein of mTOR , Signal Transduction
20.
J Hematol Oncol ; 9(1): 98, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27678372

ABSTRACT

BACKGROUND: Neuroblastoma is a relatively common and highly belligerent childhood tumor with poor prognosis by current therapeutic approaches. A novel anti-cancer agent of the di-2-pyridylketone thiosemicarbazone series, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), demonstrates promising anti-tumor activity. Recently, a second-generation analogue, namely di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), has entered multi-center clinical trials for the treatment of advanced and resistant tumors. The current aim was to examine if these novel agents were effective against aggressive neuroblastoma in vitro and in vivo and to assess their mechanism of action. METHODS: Neuroblastoma cancer cells as well as immortalized normal cells were used to assess the efficacy and selectivity of DpC in vitro. An orthotopic SK-N-LP/Luciferase xenograft model was used in nude mice to assess the efficacy of DpC in vivo. Apoptosis in tumors was confirmed by Annexin V/PI flow cytometry and H&E staining. RESULTS: DpC demonstrated more potent cytotoxicity than Dp44mT against neuroblastoma cells in a dose- and time-dependent manner. DpC significantly increased levels of phosphorylated JNK, neuroglobin, cytoglobin, and cleaved caspase 3 and 9, while decreasing IkBα levels in vitro. The contribution of JNK, NF-ĸB, and caspase signaling/activity to the anti-tumor activity of DpC was verified by selective inhibitors of these pathways. After 3 weeks of treatment, tumor growth in mice was significantly (p < 0.05) reduced by DpC (4 mg/kg/day) given intravenously and the agent was well tolerated. Xenograft tissues showed significantly higher expression of neuroglobin, cytoglobin, caspase 3, and tumor necrosis factor-α (TNFα) levels and a slight decrease in interleukin-10 (IL-10). CONCLUSIONS: DpC was found to be highly potent against neuroblastoma, demonstrating its potential as a novel therapeutic for this disease. The ability of DpC to increase TNFα in tumors could also promote the endogenous immune response to mediate enhanced cancer cell apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL