Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Biochem Biophys ; 82(2): 1225-1234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744782

ABSTRACT

The treatment of cancer often leads to a range of adverse effects. Encapsulating drugs can mitigate these effects and enhance drug efficacy by enabling a controlled release at the site of interest. This study details the successful synthesis of zinc oxide nanoparticles (ZnONPs) through the precipitation of Zn(NO3)2·6H2O with KOH. A Pd(II) complex drug was synthesized from a Schiff base ligand derived from 2-hydroxybenzohydrazide and (E)-1-(2-(p-tolyl)hydrazono)propan-2-one using potassium tetrachloropalladate(II). This complex was subsequently incorporated into ZnONPs. Characterization of the resulting compounds was performed using Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared (FTIR) Spectroscopy, and UV-visible spectroscopy. TEM imaging revealed particle sizes of 160.69 ± 4.74 nm for ZnONPs and 185.28 ± 2.3 nm for the Pd(II) complex-encapsulated ZnONPs. The Zeta potential values were 6.53 mV for ZnONPs and 7.36 mV for Pd(II) complex-encapsulated ZnONPs. UV-visible spectroscopy showed an absorption peak at 360 nm for ZnONPs, while the Pd(II) complex-encapsulated ZnONPs exhibited a peak at 410 nm. FTIR analysis indicated the presence of the Pd(II) complex within the ZnONPs, as evidenced by a consistent Zn-O vibrational band at 832 cm-1 and a shift in another peak from 460 to 413 cm-1. Additionally, the detection of a C = N stretching vibration at 1548 cm-1 and a carbonyl stretch at 1626 cm-1 was observed. The Encapsulation Efficiency (E.E.) of the Pd(II) complex was 97.2%. A drug release experiment conducted at pH 7 showed a steady-state release pattern after 16 h, with a cumulative release of 44.3%. The cytotoxic effects of the Pd(II) complex and its encapsulated form in ZnONPs on the MCF-7 cell line were assessed via MTT test. The Pd(II) complex encapsulated within ZnONPs exhibited decreased toxicity relative to the unencapsulated drug, as evidenced by a higher IC50 value of 418.5 µg/ml. This suggests that the encapsulation facilitates a sustained release, which allows for targeted accumulation within cells. The elevated IC50 value indicates that the drug delivery system may be engineered to modulate the release of the drug in a more controlled manner, potentially resulting in a prolonged release profile rather than an immediate therapeutic impact.


Subject(s)
Antineoplastic Agents , Palladium , Zinc Oxide , Palladium/chemistry , Zinc Oxide/chemistry , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , MCF-7 Cells , Spectroscopy, Fourier Transform Infrared , Particle Size , Nanoparticles/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Metal Nanoparticles/chemistry , Cell Survival/drug effects , Schiff Bases/chemistry
2.
Mar Life Sci Technol ; 4(3): 373-383, 2022 Aug.
Article in English | MEDLINE | ID: mdl-37073164

ABSTRACT

Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants because of their excellent physicochemical properties, high environmental compatibility, and various biological functions. In this study, a mangrove yeast strain Moesziomyces aphidis XM01 was identified and used for efficient extracellular MEL production. The MEL titer reached 64.5 ± 0.7 g/L at flask level within 7 days with the optimized nitrogen and carbon source of 2.0 g/L NaNO3 and 70 g/L soybean oil. Furthermore, during a 10-L two-stage fed-batch fermentation, the final MEL titer reached 113.6 ± 3.1 g/L within 8 days, with prominent productivity and yield of 14.2 g·L-1·day-1 and 94.6 g/g(glucose and soybean oil). Structural analysis indicated that the produced MELs were mainly MEL-A and its fatty acid profile was composed of only medium-chain fatty acids (C8-C12), especially C10 acids (77.81%). Further applications of this compound were evaluated as one-step self-assembly nanomicelles. The obtained MEL nanomicelles showed good physicochemical stability and antibacterial activity. In addition, using clarithromycin as a model hydrophobic drug, the MEL nanomicelles exhibited high loading capacity and could be used for the controlled and sustained drug release in low-pH environments. Therefore, M. aphidis XM01 is an excellent candidate for efficient MEL production, and the prepared MEL nanomicelles have broad application prospects in the pharmaceutical and cosmetic fields. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00135-0.

3.
ACS Appl Mater Interfaces ; 7(21): 11555-66, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-25946024

ABSTRACT

Gels are interesting soft materials owing to their functional properties leading to potential applications. This paper deals with the synthesis of monocholesteryl derivatized calix[4]arene (G) and its instantaneous gelation at a minimum gelator concentration of 0.6% in 1:1 v/v THF/acetonitrile. The gel shows remarkable thermoreversibility by exhibiting Tgel→sol at ∼48 °C and is demonstrated for several cycles. The gel shows an organized network of nanobundles, while that of the sol shows spherical nanoaggregates in microscopy. A bundle with ∼12 nm diameter possessing hydrophobic pockets in itself is obtained from computationally modeled gel, and hence the gel is suitable for storage and release applications. The guest-entrapped gels exhibit the same microstructures as that observed with simple gels, while fluorescence spectra and molecular mechanics suggests that the drug molecules occupy the hydrophobic pockets. All the entrapped drug molecules are released into water, suggesting a complete recovery of the trapped species. The reusability of the gel for the storage and release of the drug into water is demonstrated for four consecutive cycles, and hence the gel formed from G acts as a functional material that finds application in drug delivery.


Subject(s)
Antineoplastic Agents/chemistry , Calixarenes/chemistry , Coloring Agents/chemistry , Gels/chemistry , Nanocapsules/chemistry , Phenols/chemistry , Antineoplastic Agents/administration & dosage , Coloring Agents/administration & dosage , Curcumin/administration & dosage , Curcumin/chemistry , Diffusion , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Materials Testing , Nanocapsules/ultrastructure , Temperature , Tocopherols/administration & dosage , Tocopherols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL