Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Arch Biochem Biophys ; 758: 110080, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960345

ABSTRACT

Glycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents. Given that GA nicotinate derivatives (Glycyvir) demonstrate activity against various DNA- and RNA-viruses, a search for a possible mechanism of action of these compounds is required. In the present paper, the interaction of Glycyvir with the transmembrane domain of the SARS-CoV-2 E-protein (ETM) in a model lipid membrane was investigated by NMR spectroscopy and molecular dynamics simulation. The lipid-mediated influence on localization of the SARS-CoV-2 E-protein by Glycyvir was observed. The presence of Glycyvir leads to deeper immersion of the ETM in lipid bilayer. Taking into account that E-protein plays a significant role in virus production and takes part in virion assembly and budding, the data on the effect of potential antiviral agents on ETM localization and structure in the lipid environment may provide a basis for further studies of potential coronavirus E-protein inhibitors.


Subject(s)
Antiviral Agents , Glycyrrhizic Acid , Lipid Bilayers , Molecular Dynamics Simulation , SARS-CoV-2 , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Coronavirus Envelope Proteins/metabolism , Coronavirus Envelope Proteins/chemistry , Humans , Protein Domains , COVID-19 Drug Treatment
2.
Virol J ; 21(1): 128, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840203

ABSTRACT

The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.


Subject(s)
Encephalitis Virus, Japanese , Viral Envelope Proteins , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/drug effects , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Animals , Cell Line , Virulence , Virus Replication , Encephalitis, Japanese/virology , Humans , Heparin/pharmacology , Amino Acid Substitution , Mutation, Missense , Mice , Mutation , Virulence Factors/genetics , Membrane Glycoproteins
3.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928376

ABSTRACT

SARS-CoV-2 is the causative agent of the COVID-19 pandemic, the acute respiratory disease which, so far, has led to over 7 million deaths. There are several symptoms associated with SARS-CoV-2 infections which include neurological and psychiatric disorders, at least in the case of pre-Omicron variants. SARS-CoV-2 infection can also promote the onset of glioblastoma in patients without prior malignancies. In this study, we focused on the Envelope protein codified by the virus genome, which acts as viroporin and that is reported to be central for virus propagation. In particular, we characterized the electrophysiological profile of E-protein transfected U251 and HEK293 cells through the patch-clamp technique and FURA-2 measurements. Specifically, we observed an increase in the voltage-dependent (Kv) and calcium-dependent (KCa) potassium currents in HEK293 and U251 cell lines, respectively. Interestingly, in both cellular models, we observed a depolarization of the mitochondrial membrane potential in accordance with an alteration of U251 cell growth. We, therefore, investigated the transcriptional effect of E protein on the signaling pathways and found several gene alterations associated with apoptosis, cytokines and WNT pathways. The electrophysiological and transcriptional changes observed after E protein expression could explain the impact of SARS-CoV-2 infection on gliomagenesis.


Subject(s)
COVID-19 , Glioblastoma , Membrane Potential, Mitochondrial , SARS-CoV-2 , Humans , Glioblastoma/metabolism , Glioblastoma/virology , Glioblastoma/pathology , Glioblastoma/genetics , HEK293 Cells , SARS-CoV-2/physiology , COVID-19/virology , COVID-19/metabolism , Cell Line, Tumor , Coronavirus Envelope Proteins/metabolism , Coronavirus Envelope Proteins/genetics , Apoptosis , Brain Neoplasms/metabolism , Brain Neoplasms/virology , Brain Neoplasms/pathology , Brain Neoplasms/genetics
4.
Trop Med Infect Dis ; 9(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38787050

ABSTRACT

Japanese encephalitis virus (JEV) has a positive-sense single-stranded RNA genome and belongs to the genus Flavivirus of the family Flaviviridae. Persistent JEV infection was previously shown in pig blood cells, which act as a natural reservoir of this virus. We aimed to determine the pathogenicity factors involved in persistent JEV infection by analyzing the pathogenicity and genome sequences of a virus isolated from a persistent infection model. We established persistent JEV infections in cells by inoculating mouse fetus primary cell cultures with the Beijing-1 strain of JEV and then performing repeated infected cell passages, harvesting viruses after each passage while monitoring the plaque size over 100 generations. The virus growth rate was compared among Vero, C6/36, and Neuro-2a cells. The pathogenicity was examined in female ICR mice at several ages. Additionally, we determined the whole-genome sequences. The 134th Beijing-1-derived persistent virus (ME134) grew in Vero cells at a similar rate to the parent strain but did not grow well in C6/36 or Neuro-2a cells. No differences were observed in pathogenicity after intracerebral inoculation in mice of different ages, but the survival time was extended in older mice. Mutations in the persistent virus genomes were found across all regions but were mainly focused in the NS3, NS4b, and 3'NCR regions, with a 34-base-pair deletion found in the variable region. The short deletion in the 3'NCR region appeared to be responsible for the reduced pathogenicity and growth efficiency.

5.
Vet Microbiol ; 293: 110095, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643723

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) envelope protein (E) has been characterized as an important structural protein that plays critical roles in the interplay with its host to affect the virus life cycle. Stress granules (SGs) are host translationally silent ribonucleoproteins, which are mainly induced by the phosphorylation of eIF2α in the PERK/eIF2α signaling pathway. Our previous study found that PEDV E protein caused endoplasmic reticulum stress response (ERS)-mediated suppression of antiviral proteins' translation. However, the link and the underlying mechanism by which PEDV induces SGs formation and suppresses host translation remain elusive. In this study, our results showed that PEDV E protein significantly elevated the expression of GRP78, CANX, and phosphorylation of PERK and eIF2α, indicating that the PERK/eIF2α branch of ERS was activated. PEDV E protein localized to the ER and aggregated into puncta to reconstruct ER structure, and further induced SGs formation, which has been caused through upregulating the G3BP1 expression level. In addition, a significant global translational stall and endogenous protein translation attenuation were detected in the presence of E protein overexpression, but the global mRNA transcriptional level remained unchanged, suggesting that the shutoff of protein translation was associated with the translation, not with the transcription process. Collectively, this study demonstrates that PERK/eIF2α activation is required for SGs formation and protein translation stall. This study is beneficial for us to better understand the mechanism by which PEDV E suppresses host protein synthesis, and provides us a new insight into the host translation regulation during virus infection.


Subject(s)
Eukaryotic Initiation Factor-2 , Porcine epidemic diarrhea virus , Protein Biosynthesis , Signal Transduction , Stress Granules , Viral Envelope Proteins , eIF-2 Kinase , Animals , Chlorocebus aethiops , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Phosphorylation , Porcine epidemic diarrhea virus/physiology , Stress Granules/metabolism , Stress Granules/genetics , Swine , Vero Cells , Viral Envelope Proteins/metabolism
6.
Front Mol Biosci ; 11: 1334819, 2024.
Article in English | MEDLINE | ID: mdl-38606285

ABSTRACT

COVID-19, the infectious disease caused by the most recently discovered coronavirus SARS- CoV-2, has caused millions of sick people and thousands of deaths all over the world. The viral positive-sense single-stranded RNA encodes 31 proteins among which the spike (S) is undoubtedly the best known. Recently, protein E has been reputed as a potential pharmacological target as well. It is essential for the assembly and release of the virions in the cell. Literature describes protein E as a voltage-dependent channel with preference towards monovalent cations whose intracellular expression, though, alters Ca2+ homeostasis and promotes the activation of the proinflammatory cascades. Due to the extremely high sequence identity of SARS-CoV-2 protein E (E-2) with the previously characterized E-1 (i.e., protein E from SARS-CoV) many data obtained for E-1 were simply adapted to the other. Recent solid state NMR structure revealed that the transmembrane domain (TMD) of E-2 self-assembles into a homo-pentamer, albeit the oligomeric status has not been validated with the full-length protein. Prompted by the lack of a common agreement on the proper structural and functional features of E-2, we investigated the specific mechanism/s of pore-gating and the detailed molecular structure of the most cryptic protein of SARS-CoV-2 by means of MD simulations of the E-2 structure and by expressing, refolding and analyzing the electrophysiological activity of the transmembrane moiety of the protein E-2, in its full length. Our results show a clear agreement between experimental and predictive studies and foresee a mechanism of activity based on Ca2+ affinity.

7.
Front Microbiol ; 15: 1380578, 2024.
Article in English | MEDLINE | ID: mdl-38577683

ABSTRACT

Introduction: Porcine epidemic diarrhea (PED) is an acute, highly contagious, and high-mortality enterophilic infectious disease caused by the porcine epidemic diarrhea virus (PEDV). PEDV is globally endemic and causes substantial economic losses in the swine industry. The PEDV E protein is the smallest structural protein with high expression levels that interacts with the M protein and participates in virus assembly. However, how the host proteins interact with E proteins in PEDV replication remains unknown. Methods: We identified host proteins that interact with the PEDV E protein using a combination of PEDV E protein-labeled antibody co-immunoprecipitation and tandem liquid-chromatography mass-spectroscopy (LC-MS/MS). Results: Bioinformatical analysis showed that in eukaryotes, ribosome biogenesis, RNA transport, and amino acid biosynthesis represent the three main pathways that are associated with the E protein. The interaction between the E protein and isocitrate dehydrogenase [NAD] ß-subunit (NAD-IDH-ß), DNA-directed RNA polymerase II subunit RPB9, and mRNA-associated protein MRNP 41 was validated using co-immunoprecipitation and confocal assays. NAD-IDH-ß overexpression significantly inhibited viral replication. Discussion: The antiviral effect of NAD-IDH-ß suggesting that the E protein may regulate host metabolism by interacting with NAD-IDH-ß, thereby reducing the available energy for viral replication. Elucidating the interaction between the PEDV E protein and host proteins may clarify its role in viral replication. These results provide a theoretical basis for the study of PEDV infection mechanism and antiviral targets.

8.
Immunology ; 172(3): 408-419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38501859

ABSTRACT

Although the roles of E proteins and inhibitors of DNA-binding (Id) in T follicular helper (TFH) and T follicular regulatory (TFR) cells have been previously reported, direct models demonstrating the impact of multiple E protein members have been lacking. To suppress all E proteins including E2A, HEB and E2-2, we overexpressed Id1 in CD4 cells using a CD4-Id1 mouse model, to observe any changes in TFH and TFR cell differentiation. Our objective was to gain better understanding of the roles that E proteins and Id molecules play in the differentiation of TFH and TFR cells. The CD4-Id1 transgenic (TG) mice that we constructed overexpressed Id1 in CD4 cells, inhibiting E protein function. Our results showed an increase in the proportion and absolute numbers of Treg, TFH and TFR cells in the spleen of TG mice. Additionally, the expression of surface characterisation molecules PD-1 and ICOS was significantly upregulated in TFH and TFR cells. The study also revealed a downregulation of the marginal zone B cell precursor and an increase in the activation and secretion of IgG1 in spleen B cells. Furthermore, the peripheral TFH cells of TG mice enhanced the function of assisting B cells. RNA sequencing results indicated that a variety of TFH-related functional molecules were upregulated in TFH cells of Id1 TG mice. In conclusion, E proteins play a crucial role in regulating TFH/TFR cell differentiation and function and suppressing E protein activity promotes germinal centre humoral immunity, which has important implications for immune regulation and treating related diseases.


Subject(s)
Cell Differentiation , Inhibitor of Differentiation Protein 1 , Mice, Transgenic , T Follicular Helper Cells , T-Lymphocytes, Regulatory , Animals , Inhibitor of Differentiation Protein 1/metabolism , Inhibitor of Differentiation Protein 1/genetics , Mice , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Up-Regulation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Germinal Center/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Lymphocyte Activation , Mice, Inbred C57BL , Immunoglobulin G/immunology
9.
Bioorg Med Chem Lett ; 99: 129623, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38242331

ABSTRACT

Dengue virus (DENV) is a significant global health threat, causing millions of cases worldwide each year. Developing antiviral drugs for DENV has been a challenging endeavor. Our previous study identified anti-DENV properties of two (-)-cytisine derivatives contained substitutions within the 2-pyridone core from a pool of 19 (-)-cytisine derivatives. This study aimed to expand on the previous research by investigating the antiviral potential of N-methylcytisine thio (mCy thio) derivatives against DENV, understanding the molecular mechanisms of antiviral activity for the active thio derivatives. The inhibitory assays on DENV-2-induced cytopathic effect and infectivity revealed that mCy thio derivatives 3 ((1R,5S)-3-methyl-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocine-8-thione) and 6 ((1S,5R)-3-methyl-2-thioxo-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one) were identified as the active compounds against both DENV-1 and DENV-2. Derivative 6 displayed robust antiviral activity against DENV-2, with EC50 values ranging from 0.002 to 0.005 µM in different cell lines. Derivative 3 also exhibited significant antiviral activity against DENV-2. The study found that these compounds are effective at inhibiting DENV-2 at both the entry stage (including virus attachment) and post-entry stages of the viral life cycle. The study also investigated the inhibition of the DENV-2 NS2B-NS3 protease activity by these compounds. Derivative 6 demonstrated notably stronger inhibition compared to mCy thio 3, revealing its dual antiviral action at both the entry and post-entry stages. Molecular docking simulations indicated that mCy thio derivatives 3 and 6 bind to the domain I and III of the DENV E protein, as well as the active of NS2B-NS3 protease, suggesting their molecular interactions with the virus. The study demonstrates the antiviral efficacy of N-methylcytisine thio derivatives against DENV. It provides valuable insights into the potential interactions between these compounds and viral target proteins, which could be useful in the development of antiviral drugs for DENV.


Subject(s)
Dengue Virus , Quinolizidine Alkaloids , Molecular Docking Simulation , Viral Envelope Proteins , Peptide Hydrolases , Serine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins
10.
Microb Pathog ; 185: 106419, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866549

ABSTRACT

Duck Tembusu virus (DTMUV) is an infectious disease that emerged in China in 2010. It has caused serious economic losses to the poultry industry and may pose a threat to public health. We aimed to develop a new Bacillus subtilis (B. subtilis)-based oral vaccine to control DTMUV transmission among poultry; to this end, we constructed a B. subtilis strain that can secrete DTMUV E protein. Ducklings were orally immunized, and serum antibodies, mucosal antibodies, and splenic cytokines were detected. The results showed that, in addition to high levels of specific IgG, there were also high levels of specific secretory immunoglobulin A (sIgA) in ducklings orally treated with recombinant B. subtilis. In addition, the levels of IFN-γ, IL-2, IL-4, and IL-10 in spleens were significantly boosted by recombinant B. subtilis. Recombinant B. subtilis could effectively enhance ducklings resistance to DTMUV and significantly reduce viral load (p<0.01), along with pathological damage in the brain, heart, and spleen. This is the first study to apply a B. subtilis live-vector vaccine platform for DTMUV disease prevention and control, and our results suggest that B. subtilis expressing DTMUV E protein may be a candidate vaccine against DTMUV.


Subject(s)
Bacillus , Flavivirus Infections , Poultry Diseases , Vaccines , Animals , Bacillus subtilis , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Ducks , Antibodies, Viral , Transcription Factors
11.
J Virol ; 97(10): e0042623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37830820

ABSTRACT

IMPORTANCE: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has caused a global public health crisis. The E protein, a structural protein found in this virus particle, is also known to be a viroporin. As such, it forms oligomeric ion channels or pores in the host cell membrane. However, the relationship between these two functions is poorly understood. In this study, we showed that the roles of E protein in virus particle and viroporin formation are distinct. This study contributes to the development of drugs that inhibit SARS-CoV-2 virus particle formation. Additionally, we designed a highly sensitive and high-throughput virus-like particle detection system using the HiBiT tag, which is a useful tool for studying the release of SARS-CoV-2.


Subject(s)
Coronavirus Envelope Proteins , SARS-CoV-2 , Humans , COVID-19 , Lysosomes/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Viroporin Proteins/metabolism , Coronavirus Envelope Proteins/metabolism , Amino Acid Motifs , Virus Release
12.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628973

ABSTRACT

Proteins containing PDZ (post-synaptic density, PSD-95/disc large, Dlg/zonula occludens, ZO-1) domains assemble signaling complexes that orchestrate cell responses. Viral pathogens target host PDZ proteins by coding proteins containing a PDZ-binding motif (PBM). The presence of a PBM in the SARS-CoV-2 E protein contributes to the virus's pathogenicity. SARS-CoV-2 infects epithelia, but also cells from the innate immune response, including monocytes and alveolar macrophages. This process is critical for alterations of the immune response that are related to the deaths caused by SARS-CoV-2. Identification of E-protein targets in immune cells might offer clues to understanding how SARS-CoV-2 alters the immune response. We analyzed the interactome of the SARS-CoV-2 E protein in human monocytes. The E protein was expressed fused to a GFP tag at the amino terminal in THP-1 monocytes, and associated proteins were identified using a proteomic approach. The E-protein interactome provided 372 partners; only 8 of these harbored PDZ domains, including the cell polarity protein ZO-2, the chemoattractant IL-16, and syntenin. We addressed the expression and localization of the identified PDZ proteins along the differentiation of primary and THP-1 monocytes towards macrophages and dendritic cells. Our data highlight the importance of identifying the functions of PDZ proteins in the maintenance of immune fitness and the viral alteration of inflammatory response.


Subject(s)
COVID-19 , Monocytes , Humans , SARS-CoV-2 , Proteomics , Macrophages , Transcription Factors
13.
Front Cell Neurosci ; 17: 1173120, 2023.
Article in English | MEDLINE | ID: mdl-37545876

ABSTRACT

Neurotropic viruses can cross the otherwise dynamically regulated blood-brain barrier (BBB) and affect the brain cells. Zika virus (ZIKV) is an enveloped neurotropic Flavivirus known to cause severe neurological complications, such as encephalitis and fetal microcephaly. In the present study, we employed human brain microvascular endothelial cells (hBMECs) and astrocytes derived from human progenitors to establish a physiologically relevant BBB model. We used this model to investigate the effects of ZIKV envelope (E) protein on properties of cells comprising the BBB. E protein is the principal viral protein involved in interaction with host cell surface receptors, facilitating the viral entry. Our findings show that the presence of ZIKV E protein leads to activation of both hBMECs and astrocytes. In hBMECs, we observed a decrease in the expression of crucial endothelial junction proteins such as ZO-1, Occludin and VE-Cadherin, which are vital in establishment and maintenance of the BBB. Consequently, the ZIKV E protein induced changes in BBB integrity and permeability. We also found upregulation of genes involved in leukocyte recruitment along with increased proinflammatory chemokines and cytokines upon exposure to E protein. Additionally, the E protein also led to astrogliosis, evident from the elevated expression of GFAP and Vimentin. Both cell types comprising the BBB exhibited inflammatory response upon exposure to E protein which may influence viral access into the central nervous system (CNS) and subsequent infection of other CNS cells. Overall, our study provides valuable insights into the transient changes that occur at the site of BBB upon ZIKV infection.

14.
Genes (Basel) ; 14(7)2023 06 22.
Article in English | MEDLINE | ID: mdl-37510221

ABSTRACT

The Duck Tembusu virus (DTMUV), a pathogenic flavivirus, has been causing significant economic losses in the Chinese poultry industry since 2010. This virus can severely decrease egg production and inhibit the growth of laying ducks and ducklings. While many vaccines have been developed to prevent DTMUV infection, fresh outbreaks continue to occur, as few effective vaccines are available. The E glycoprotein of DTMUV is the primary target for inducing protective immunity in the natural host. Therefore, we conducted an investigation and successfully developed a recombinant baculovirus containing the DTMUV E gene. Ducklings were then vaccinated with the purified protein derived from this virus as a potential vaccine candidate. Our findings demonstrated that the E glycoprotein of DTMUV was highly expressed in Sf9 cells. The vaccination of ducklings with the recombinant baculovirus Bac-E resulted in the induction of strong humoral and cellular immune responses. Most significantly, we observed that the vaccine provided 100% protective immunity against lethal challenges with the DTMUV YY5 strain.


Subject(s)
Flavivirus Infections , Flavivirus , Viral Vaccines , Animals , Ducks , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Baculoviridae/genetics , Antibodies, Viral , Viral Vaccines/genetics , Flavivirus/genetics , Glycoproteins , Transcription Factors
15.
Biochim Biophys Acta Biomembr ; 1865(7): 184198, 2023 10.
Article in English | MEDLINE | ID: mdl-37437754

ABSTRACT

Flaviviruses encompass many important human pathogens, including Dengue, Zika, West Nile, Yellow fever, Japanese encephalitis, and Tick-borne encephalitis viruses as well as several emerging viruses that affect millions of people worldwide. They enter cells by endocytosis, fusing their membrane with the late endosomal one in a pH-dependent manner, so membrane fusion is one of the main targets for obtaining new antiviral inhibitors. The envelope E protein, a class II membrane fusion protein, is responsible for fusion and contains different domains involved in the fusion mechanism, including the fusion peptide. However, other segments, apart from the fusion peptide, have been implicated in the mechanism of membrane fusion, in particular a segment containing a His residue supposed to act as a specific pH sensor. We have used atomistic molecular dynamics to study the binding of the envelope E protein segment containing the conserved His residue in its three different tautomer forms with a complex membrane mimicking the late-endosomal one. We show that this His-containing segment is capable of spontaneous membrane binding, preferentially binds electronegatively charged phospholipids and does not bind cholesterol. Since Flaviviruses have caused epidemics in the past, continue to do so and will undoubtedly continue to do so, this specific segment could characterise a new target that would allow finding effective antiviral molecules against DENV virus in particular and Flaviviruses in general.


Subject(s)
Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Humans , Viral Envelope/metabolism , Viral Envelope Proteins/chemistry , Flavivirus/chemistry , Flavivirus/metabolism , Zika Virus/metabolism , Peptides , Antiviral Agents , Phospholipids
16.
Virol J ; 20(1): 142, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37422646

ABSTRACT

BACKGROUND: SARS-CoV-2 has caused a worldwide pandemic since December 2019 and the search for pharmaceutical targets against COVID-19 remains an important challenge. Here, we studied the envelope protein E of SARS-CoV and SARS-CoV-2, a highly conserved 75-76 amino acid viroporin that is crucial for virus assembly and release. E protein channels were recombinantly expressed in HEK293 cells, a membrane-directing signal peptide ensured transfer to the plasma membrane. METHODS: Viroporin channel activity of both E proteins was investigated using patch-clamp electrophysiology in combination with a cell viability assay. We verified inhibition by classical viroporin inhibitors amantadine, rimantadine and 5-(N,N-hexamethylene)-amiloride, and tested four ivermectin derivatives. RESULTS: Classical inhibitors showed potent activity in patch-clamp recordings and viability assays. In contrast, ivermectin and milbemycin inhibited the E channel in patch-clamp recordings but displayed only moderate activity on the E protein in the cell viability assay, which is also sensitive to general cytotoxic activity of the tested compounds. Nemadectin and ivermectin aglycon were inactive. All ivermectin derivatives were cytotoxic at concentrations > 5 µM, i.e. below the level required for E protein inhibition. CONCLUSIONS: This study demonstrates direct inhibition of the SARS-CoV-2 E protein by classical viroporin inhibitors. Ivermectin and milbemycin inhibit the E protein channel but their cytotoxicity argues against clinical application.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Viroporin Proteins , SARS-CoV-2 , Cell Survival , HEK293 Cells , Ivermectin/pharmacology
17.
Virus Res ; 334: 199181, 2023 09.
Article in English | MEDLINE | ID: mdl-37495116

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) has seriously affected the viability of swine industries worldwide, and effective measures to control PRRSV are urgently required. Understanding the mechanisms of action of antiviral proteins is crucial for developing antiviral strategies. Interferon-induced bone marrow stromal cell antigen 2 (BST2) can inhibit the replication of various viruses via different pathways. However, little is known about the effects of BST2 on PRRSV. Therefore, this study aimed to evaluate whether the interferon-induced BST2 can inhibit PRRSV replication. We used western blotting and RT-qPCR techniques to analyze the effect of BST2 overexpression and knockdown on PRRSV replication. Overexpression of BST2 inhibited the replication of PRRSV, whereas knockdown of BST2 by small interfering RNA promoted PRRSV replication. Additionally, the expression of BST2 was upregulated during the early phase of PRRSV infection in porcine alveolar macrophages. Analysis of PRRSV proteins showed that BST2 restricted the expression of several non-structural viral proteins. BST2 downregulated the expression of Nsp12 through a proteasome-dependent pathway and downregulated the expression and transcription of E protein. These findings demonstrate the potential of BST2 as a critical regulator of PRRSV replication.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , Viral Proteins , Virus Replication , Antiviral Agents/pharmacology , Interferons , Porcine Reproductive and Respiratory Syndrome/genetics , Macrophages, Alveolar , Viral Nonstructural Proteins/metabolism
18.
J Gen Virol ; 104(7)2023 07.
Article in English | MEDLINE | ID: mdl-37436433

ABSTRACT

Mosquito-borne dengue disease is caused by the dengue virus serotype-1 to serotype-4. The contemporary dengue outbreaks in the southwestern Indian ocean coincided with the widespread of dengue virus serotype 2 genotype II (Cosmopolitan), including epidemic viral strains DES-14 and RUN-18 isolated in Dar es Salaam (Tanzania) in 2014 and La Reunion Island (France) in 2018, respectively. Heterodimeric interaction between prM (intracellular precursor of surface structural M protein) and envelope E proteins is required during the initial stage of dengue virus assembly. Amino acid 127 of DES-14 prM protein (equivalent to M36) has been identified as an infrequent valine whereas RUN-18 has a common isoleucine. In the present study, we examined the effect of M-I36V mutation on the expression of a recombinant RUN-18 E protein co-expressed with prM in human epithelial A549 cells. The M ectodomain of dengue virus serotype 2 embeds a pro-apoptotic peptide referred as D2AMP. The impact of M-I36V mutation on the death-promoting capability of D2AMP was assessed in A549 cells. We showed that valine at position M36 affects expression of recombinant RUN-18 E protein and potentiates apoptosis-inducing activity of D2AMP. We propose that the nature of M residue 36 influences the virological characteristics of dengue 2 M and E proteins belonging to genotype II that contributes to global dengue burden.


Subject(s)
Dengue Virus , Dengue , Animals , Humans , Dengue Virus/genetics , Serogroup , Tanzania/epidemiology , Genotype
19.
Cells ; 12(11)2023 05 25.
Article in English | MEDLINE | ID: mdl-37296595

ABSTRACT

Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Cricetulus , Cell Membrane , CHO Cells
20.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-37259408

ABSTRACT

BACKGROUND: At present, about half of the world's population is at risk of being infected with dengue virus (DENV). However, there are no specific drugs to prevent or treat DENV infection. Glycyrrhizae Radix et Rhizome, a well-known traditional Chinese medicine, performs multiple pharmacological activities, including exerting antiviral effects. The aim of this study was to investigate the anti-DENV effects of n-butanol extract from Glycyrrhizae Radix et Rhizome (GRE). METHODS: Compounds analysis of GRE was conducted via ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The antiviral activities of GRE were determined by the CCK-8 assay, plaque assay, qRT-PCR, Western blotting, and the immunofluorescence assay. The DENV-infected suckling mice model was constructed to explore the antiviral effects of GRE in vivo. RESULTS: Four components in GRE were analyzed by UHPLC-MS/MS, including glycyrrhizic acid, glycyrrhetnic acid, liquiritigenin, and isoliquiritigenin. GRE inhibited the attachment process of the virus replication cycle and reduced the expression of the E protein in cell models. In the in vivo study, GRE significantly relieved clinical symptoms and prolong survival duration. GRE also significantly decreased viremia, reduced the viral load in multiple organs, and inhibited the release of pro-inflammatory cytokines in DENV-infected suckling mice. CONCLUSIONS: GRE exhibited significant inhibitory activities in the adsorption stage of the DENV-2 replication cycle by targeting the envelope protein. Thus, GRE might be a promising candidate for the treatment of DENV infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...