Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters











Publication year range
1.
Food Chem X ; 23: 101623, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39100245

ABSTRACT

Beer fish is characterized by its distinctive spicy flavor and strong beer aroma. Currently, there is a lack of comprehensive research analyzing the changes in taste and volatile compounds that occur during the processing of beer fish. Thus, this study used HS-GC-IMS, electronic tongue, and electronic nose to investigate the changes in flavor components during various processing stages of beer fish. The obtained results were subsequently analyzed using multivariate statistical analysis. The results showed that the final beer fish product (SF) had the greatest amount of free amino acids (888.28 mg/100 g), with alanine, glutamic acid, and glycine contributing to the taste of SF. The inosine monophosphate (IMP) content of beer fish meat varied noticeably depending on processing stages, with deep-fried fish (FF) having the greatest IMP content (61.93 mg/100 g), followed by the final product (SF) and ultrasonic-cured fish (UF). A total of 67 volatiles were detected by GC-IMS, mainly consisting of aldehydes, ketones, and alcohols, of which aldehydes accounted for >37%, which had a great influence on the volatile flavor of beer fish. The flavor components' composition varied noticeably depending on the stage of processing. PLS-DA model screened 35 volatile flavor components (VIP > 1) as markers; the most significant differences were 1-propanethiol, isoamyl alcohol, ethanol, and eucalyptol. Ultrasonic processing, frying, and soaking sauce can significantly improve the formation of flavor compounds, resulting in a notable enhancement of the final beer fish's umami taste and overall flavor quality.

2.
AAPS PharmSciTech ; 25(6): 169, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043992

ABSTRACT

Motion sickness also known as kinetosis is a condition in which there exists a disagreement between visually perceived movement and the vestibular system's sense of movement. Nausea, vomiting, dizziness, fatigue, and headache are the most common symptoms of motion sickness. This study mainly focuses on the taste masking of Promethazine Hydrochloride (PMZ) by inclusion complexation method, its formulation development in the chewing gum form by using directly compressible gum base HIG® and its quality and performance testing. Different molar ratios (1:1, 1:2, 1:3 and 1:4) of PMZ-cyclodextrin complexes were prepared by using ß-Cyclodextrin (ß-CD) as a taste masking agent. These complexes were evaluated for FTIR, DSC, % Entrapment Efficiency, % drug yield, and taste evaluation by E-Tongue. The optimized ratio was further evaluated by sophisticated analytical techniques such as Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). A central composite design (CCD) (3 ^2) was utilized to examine the effects of independent variables (amount of gum-X1 and amount of plasticizer-X2) on dependent variables (%CDRY1 and hardness Y2). The prepared gums were evaluated for drug content, organoleptic properties, in-vitro dissolution testing by fabricated disintegration apparatus, texture analysis, etc. The optimization statistics showed that on decreasing the amount of gum, in- vitro drug release increases and hardness decreases. The optimized batch MCG-2 of Promethazine MCG showed 92.34 ± 0.92% of drug release, whereas for marketed formulation (Phenergan®-25 mg) drug release value was 86.19 ± 1.88%. Results provided evidence that PMZ MCGs could be a better alternative to conventional tablet formulations with improved drug release, palatability and texture.


Subject(s)
Antiemetics , Chewing Gum , Promethazine , Taste , beta-Cyclodextrins , Promethazine/chemistry , Promethazine/administration & dosage , beta-Cyclodextrins/chemistry , Taste/drug effects , Antiemetics/administration & dosage , Antiemetics/chemistry , Chemistry, Pharmaceutical/methods , Drug Liberation , X-Ray Diffraction/methods , Solubility , Drug Compounding/methods , Humans , Motion Sickness/prevention & control
3.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063045

ABSTRACT

Persimmon fruits are brightly colored and nutritious and are fruits that contain large amounts of sugar, vitamins, mineral elements, and phenolic substances. The aim of this study was to explore the differences in fruit-sugar components of different persimmon germplasms and their relationships with phenotypic and flavor indices through the determination of phenotypes and sugar components and through electronic-tongue indices, which provided the basis and inspiration for the selection of different sugar-accumulating types of persimmon fruits and the selection of high-sugar persimmon varieties. Our results showed that persimmon germplasm fruit-sugar components were dominated by sucrose, glucose and fructose and that the remaining sugar components were more diverse but less distributed among the various germplasm types. Based on the proportion of each sugar component in the fruit, persimmon germplasms can be categorized into sucrose-accumulating and reduced-sugar-accumulation types. Sucrose-accumulating types are dominated by sucrose, galactose, fucose and inositol, while reduced-sugar-accumulation types are dominated by glucose, fructose, mannose-6-phosphate, and xylose. The content of sugar components in the germplasm persimmon of fruits of different types and maturity periods of also differed, with significant differences in sugar components between PCNA (pollination-constant non-astringent) and PCA (pollination-constant astringent) fruits. Cluster analysis classified 81 persimmon germplasms into three clusters, including cluster I-A, with low glucose and fructose content, and cluster I-B, with medium glucose, fructose, and sucrose contents. Cluster II was high in sucrose and fructose. Cluster III had high contents of glucose and fructose and low contents of sucrose and inositol.


Subject(s)
Diospyros , Fruit , Diospyros/genetics , Fruit/metabolism , Fruit/chemistry , Taste , Sugars/metabolism , Sugars/analysis , Sucrose/metabolism , Sucrose/analysis , Phenotype
4.
Food Chem X ; 23: 101519, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38933990

ABSTRACT

In the present study, the comprehensive quality of Congou black tea (CBT) including aroma, taste, and liquid color was investigated by a combination of gas chromatography electronic nose (GC-E-Nose), electronic tongue (E-tongue), and electronic eye (E-eye). An excellent discrimination of different quality grades of CBT was accomplished through the fusion of GC-E-Nose, E-tongue, and E-eye combined with orthogonal partial least squares discriminant analysis, with parameters of R2Y = 0.803 and Q2 = 0.740. Moreover, the quantitative evaluation of CBT quality was successfully achieved by partial least squares regression analysis, with the absolute error within 1.39 point, and the relative error within 1.62%. Additionally, 12 key variables were screened out by stepwise multiple linear regression analysis, which significantly contributed to the comprehensive quality score of CBT. Our results suggest that the fusion of multiple intelligent sensory technologies offers great potential and practicability in the quality evaluation of black tea.

5.
Food Chem X ; 22: 101419, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38756475

ABSTRACT

A comprehensive study of the overall flavor and taste profile of different radishes is lacking. This study systematically compared the volatile profile of six radish varieties using HS-GC-IMS and their correlation with the E-nose analysis. Organic acids and amino acids were quantified, and their association with the E-tongues analysis was explored. A total of 73 volatile compounds were identified, with diallyl sulfide and dimethyl disulfide being the primary sulfides responsible for the unpleasant flavor in radish. Compared to other varieties, cherry radishes boast a significantly higher concentration of allyl isothiocyanate, which likely contributes to their characteristic radish flavor. Moreover, oxalic acid was identified as the most abundant organic acid in radish, accounting for over 97% of its content, followed by malic acid and succinic acid. In conclusion, the distinct flavor and taste characteristics of different radish varieties partially explain their suitability for diverse culinary preferences.

6.
Food Res Int ; 187: 114353, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763640

ABSTRACT

The food industry has grown with the demands for new products and their authentication, which has not been accompanied by the area of analysis and quality control, thus requiring novel process analytical technologies for food processes. An electronic tongue (e-tongue) is a multisensor system that can characterize complex liquids in a fast and simple way. Here, we tested the efficacy of an impedimetric microfluidic e-tongue setup - comprised by four interdigitated electrodes (IDE) on a printed circuit board (PCB), with four pairs of digits each, being one bare sensor and three coated with different ultrathin nanostructured films with different electrical properties - in the analysis of fresh and industrialized coconut water. Principal Component Analysis (PCA) was applied to observe sample differences, and Partial Least Squares Regression (PLSR) was used to predict sample physicochemical parameters. Linear Discriminant Analysis (LDA) and Partial Least Square - Discriminant Analysis (PLS-DA) were compared to classify samples based on data from the e-tongue device. Results indicate the potential application of the microfluidic e-tongue in the identification of coconut water composition and determination of physicochemical attributes, allowing for classification of samples according to soluble solid content (SSC) and total titratable acidity (TTA) with over 90% accuracy. It was also demonstrated that the microfluidic setup has potential application in the food industry for quality assessment of complex liquid samples.


Subject(s)
Cocos , Dielectric Spectroscopy , Principal Component Analysis , Cocos/chemistry , Least-Squares Analysis , Dielectric Spectroscopy/methods , Discriminant Analysis , Water/chemistry , Food Analysis/methods , Microfluidics/methods , Microfluidics/instrumentation , Electronic Nose
7.
Food Chem ; 450: 139150, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38688226

ABSTRACT

This study aimed to investigate taste substances of shrimp heads stored at 20 °C, 4 °C, -3 °C, and - 18 °C, and the correlation between taste substances and 25 key volatile substances. Notably, samples stored at 20 °C showed significant changes in bitter amino acids and hypoxanthine, and quickly deteriorated. Samples stored at 4 °C for 14 d or - 3 °C for 30 d facilitated the development of umami amino acids, sweet amino acids, and IMP. Furthermore, samples stored at -18 °C for 30 d demonstrated no significant changes in taste profile. Changes in taste substances through quantitative analysis were consistent with changes in taste profile through e-tongue analysis. Based on the results of O2PLS (VIP > 1), Cys, Arg, Glu, Ser, Val, Ala, Ile, ADP, and IMP were correlated with 25 key volatile substances. This study provides fundamental data for the storage, transportation, and value-added utilization of shrimp heads.


Subject(s)
Amino Acids , Penaeidae , Shellfish , Taste , Temperature , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Penaeidae/chemistry , Amino Acids/chemistry , Amino Acids/analysis , Shellfish/analysis , Food Storage
8.
Food Sci Nutr ; 12(4): 2736-2746, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628170

ABSTRACT

Previous research has suggested that the impact of smoke affected wines require human evaluation due to in-mouth changes in perception, perhaps associated with saliva. Smoke affected wines (n = 36) from three major wine growing regions in the US were sourced from commercial wineries. A subset of these wines (n = 7) were evaluated by a consumer panel (n = 57) and electronic tongue (e-tongue) to determine the influence of saliva in the sensory profile. Consumers assessed the wines for aroma and other sensory attributes, before and after individual saliva addition. Pooled saliva from consumers was used to treat all wines obtained (n = 36) and then analyzed using the e-tongue. Results showed that saliva did not significantly alter the overall aroma, other than fruity or woody aroma liking by consumers (p > .05). However, the presence of saliva significantly lowered overall liking in both red and white wines that were affected by smoke (p ≤ .05). Consumers rated the subset of smoke affected wines below the "might purchase" category, indicating these wines were not considered acceptable by consumers. When individual pairs of smoke affected wines (before and after saliva additions) were assessed using the e-tongue, the device was able to differentiate the pairs, validating potential usefulness to discern wine changes, though the discrimination indices were moderate to low (68.8% to 11.9%). Based on these data, in human ratings of the aroma and appearance of smoked affected wines, saliva decreased overall liking, and this was somewhat distinguishable by e-tongue analysis.

9.
Food Res Int ; 184: 114257, 2024 May.
Article in English | MEDLINE | ID: mdl-38609235

ABSTRACT

High-temperature Daqu (HTD) is the starter for producing sauce-flavor Baijiu, with different-colored Daqu (white, yellow, and black) reflecting variations in fermentation chamber conditions, chemical reactions, and associated microbiota. Understanding the relationship between Daqu characteristics and flavor/taste is challenging yet vital for improving Baijiu fermentation. This study utilized metagenomic sequencing, physicochemical analysis, and electronic sensory evaluation to compare three different-colored HTD and their roles in fermentation. Fungi and bacteria dominated the HTD-associated microbiota, with fungi increasing as the fermentation temperature rose. The major fungal genera were Aspergillus (40.17%) and Kroppenstedtia (21.16%), with Aspergillus chevalieri (25.65%) and Kroppenstedtia eburnean (21.07%) as prevalent species. Microbial communities, functionality, and physicochemical properties, particularly taste and flavor, were color-specific in HTD. Interestingly, the microbial communities in different-colored HTDs demonstrated robust functional complementarity. White Daqu exhibited non-significantly higher α-diversity compared to the other two Daqu. It played a crucial role in breaking down substrates such as starch, proteins, hyaluronic acid, and glucan, contributing to flavor precursor synthesis. Yellow Daqu, which experienced intermediate temperature and humidity, demonstrated good esterification capacity and a milder taste profile. Black Daqu efficiently broke down raw materials, especially complex polysaccharides, but had inferior flavor and taste. Notably, large within-group variations in physicochemical quality and microbial composition were observed, highlighting limitations in color-based HTD quality assessment. Water content in HTD was associated with Daqu flavor, implicating its crucial role. This study revealed the complementary roles of the three HTD types in sauce-flavor Baijiu fermentation, providing valuable insights for product enhancement.


Subject(s)
Metagenome , Microbiota , Temperature , Cluster Analysis , Electronics
10.
Foods ; 13(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611329

ABSTRACT

Bee pollen, derived from various plant sources, is renowned for its nutritional and bioactive properties, aroma, and taste. This study examined the bee pollen with the highest yield in China obtained from four plant species, namely Brassica campestris (Bc), Nelumbo nucifera (Nn), Camellia japonica (Cj), and Fagopyrum esculentum (Fe), using fast e-nose and e-tongue technology to analyze their flavor chemistry. Results showed substantial differences in scent profiles among the varieties, with distinct odor compounds identified for each, including n-butanol, decanal, and ethanol, in Bc, Nn, and Cj, respectively. The primary odorants in Fe consist of E-2-hexen-1-ol and (Z)-3-hexen-1-ol. Additionally, e-tongue analysis revealed seven distinct tastes in bee pollen samples: AHS, PKS, CTS, NMS, CPS, ANS, and SCS, with variations in intensity across each taste. The study also found correlations between taste components and specific odor compounds, providing insights for enhancing product quality control in bee pollen processing.

11.
J Food Sci Technol ; 61(6): 1126-1137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38562596

ABSTRACT

Herein, a novel voltammetry taste sensor array (VTSA) using pencil graphite electrode, screen-printed electrode, and glassy carbon electrode was used to identify heavy metals (HM) including Cad, Pb, Sn and Ni in soybean and rapeseed oils. HMs were added to edible oils at three concentrations of 0.05, 0.1 and 0.25 ppm, and then, the output of the device was classified using a chemometric classification method. According to the principal component analysis results, PG electrode explains 96% and 81% of the variance between the data in rapeseed and soybean edible oils, respectively. Additionally, the SP electrode explains 91% of the variance between the data in rapeseed and soybean oils. Moreover, the GC electrode explains 100% and 99% of the variance between the data in rapeseed and soybean edible oils, respectively. K-nearest neighbor exhibited high capability in classifying HMs in edible oils. In addition, partial least squares in the combine of VTSA shows a predict 99% in rapeseed oil. The best electrode for soybean edible oil was GC.

12.
Food Chem ; 446: 138886, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38422641

ABSTRACT

Pickled radish is a traditional fermented food with a unique flavor after long-term preservation. This study analyzed the organoleptic and chemical characteristics of pickled radish from different years to investigate quality changes during pickling. The results showed that the sourness, saltiness, and aftertaste-bitterness increased after pickling, and bitterness and astringency decreased. The levels of free amino acids, soluble sugars, total phenols, and total flavonoids initially decreased during pickling but increased with prolonged pickling. The diversity of organic acids also increased over time. Through non-targeted metabolomics analysis, 349 differential metabolites causing metabolic changes were identified to affect the quality formation of pickled radish mainly through amino acid metabolism, phenylpropane biosynthesis and lipid metabolism. Correlation analysis showed that L*, soluble sugars, lactic acid, and acetic acid were strongly associated with taste quality. These findings provide a theoretical basis for standardizing and scaling up traditional pickled radish production.


Subject(s)
Brassicaceae , Raphanus , Electronic Nose , Metabolomics/methods , Sugars
13.
Food Chem ; 445: 138737, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38350199

ABSTRACT

This study investigated the effects of subcritical water (SW) temperatures on the hydrolysis pattern and characteristics of hydrolysates prepared with strong rice (SR) and floury rice (FR). The characteristics of the hydrolysates were generally dependent on the rice cultivar in the SW temperature range of 150-250 °C, while the cultivar dependence was diminished at temperatures greater than 300 °C. Based on brix and reducing sugar content, an optimal production of rice hydrolysates was obtained at a SW temperature range of 200-250 °C. However, thermal conversion of sugar into acids, 5-hydroxymethylfurfural (HMF) and furfural was manifested at 250 °C. The rice hydrolysates prepared at 250 âˆ¼ 300 °C had the highest antioxidant activity with strong umami intensity, but they suppressed the growth of prebiotics. Therefore, the present study demonstrated that controlling the SW temperature is crucial to improve rice hydrolysis efficiency and to regulate the physiological activity of the hydrolysates.


Subject(s)
Oryza , Hydrolysis , Temperature , Water , Carbohydrates , Antioxidants , Flour , Sugars
14.
Sensors (Basel) ; 24(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257570

ABSTRACT

Currently, it is necessary to maintain the quality of aquifers and water bodies, which means the need for sensors that detect molecules as emerging pollutants (EPs) at low concentrations in aqueous complex solutions. In this work, an electronic tongue (e-tongue) prototype was developed to detect 17ß-estradiol in tap water. To achieve such a prototype, an array of sensors was prepared. Each sensor consists of a solid support with interdigitated electrodes without or with thin films prepared with graphene oxide, nanotubes, and other polyelectrolytes molecules adsorbed on them. To collect data from each sensor, impedance spectroscopy was used to analyze the electrical characteristics of samples of estrogen solutions with different concentrations. To analyze the collected data from the sensors, principal components analysis (PCA) method was used to create a three-dimensional plane using the calculated principal components, namely PC1 and PC2, and the estrogen concentration values. Then, damped least squares (DLS) was used to find the optimal values for the hyperplane calibration, as the sensitivity of this e-tongue was not represented by a straight line but by a surface. For the collected data, from nanotubes and graphene oxide sensors, a calibration curve for concentration given by the 10PC1×0.492-PC2×0.14-14.5 surface was achieved. This e-tongue presented a detection limit of 10-16 M of 17ß-estradiol in tap water.


Subject(s)
Graphite , Nanotubes, Carbon , Polyelectrolytes , Estradiol , Estrogens , Tongue , Water
15.
Food Chem X ; 21: 101119, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38282827

ABSTRACT

This study investigated the effects of roasting conditions on the physicochemical, taste, and volatile and odor-active compound (OAC) profiles of Coffea arabica L. At 150 ℃, roasting increased chlorogenic acid, total flavonoids, and caffeine concentrations. However, umami and sourness sensor decreased during the roasting process. At 210 ℃ roasting, total flavonoid and caffeine concentrations increased during the roasting process. Aldehydes, ketones, and sulfur-containing compounds dramatically increased during the roasting at 210 ℃ for 20 and 30 min in E-nose analysis. Pyrazines were mainly generated during the roasting at 210 ℃ for 20 and 30 min, and pyrazines showed the highest concentrations among all OACs in GC-olfactometry (GC-O) analysis. E-tongue data showed the separation of beans by roasting temperature. However, the E-nose and GC-O data showed the separation of beans by both roasting temperature and time via multivariate analysis. We identified similar results and patterns in the E-nose and GC-O analyses.

16.
Food Chem X ; 20: 100886, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144837

ABSTRACT

Loquat fruits are among the most popular Chinese fruits because of their unique taste and aroma. The quality profiles of these fruits during 18 days of shelf-life at 20 °C were elucidated by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), E-nose, and E-tongue. During shelf-life period, the properties and variations of 43 (20 aldehydes, 7 esters, 6 ketones, 1 alcohol, and 1 furan) volatile flavored compounds were determined by GC-IMS, which showed that the contents of methyl 3-methyl butanoate, ethyl acetate, and dimethyl ketone gradually decrease with prolonged shelf-life time, while (E)-2-heptenal, heptanal, (E)-2-pentenal, 1-penten-3-one 3-pentanone and 2-pentylfuran increase. The PCA based on the signal intensity of GC-IMS and E-nose, revealed that loquat fruits are well distinguished at different shelf-life times. The taste profile alternates as the storage time increases, along with higher pH, and lower amounts of total soluble solids, vitamin C, and total phenolics. The visual plots of GC-IMS, E-nose, and E-tongue had good consistency, and they characterized the aroma characteristics of loquat fruits well during different shelf-life periods. The findings of this research provide a useful understanding of the flavors of loquat fruits during their prolonged shelf-life, and a potential research basis for advancements in the loquat industry.

17.
Food Res Int ; 174(Pt 2): 113679, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981371

ABSTRACT

The present study aimed to examine the impact of lactic acid bacteria- fermented feed (FF) on the taste and quality of duck meat, in addition to elucidating the potential metabolomic mechanism at play. The findings revealed that ducks fed with FF exhibited elevated pH levels and reduced cooking loss in their meat when compared to the control group. In addition, the sensory evaluation and e-tongue analysis revealed that the tenderness, juiciness, umami, richness, saltiness, and sweetness of duck meat were all enhanced by feeding FF. Moreover, an examination of the metabolome using 1H nuclear magnetic resonance (1H NMR) identified the principal differential metabolites that exhibited a correlation with taste, which included 2-aminoadipate, glucose, glycine, N-acetylcysteine, niacinamide, proline, and threonine. Furthermore, the differential metabolites that exhibited the greatest enrichment in duck meat could be primarily traced to glutathione metabolism, glycine, serine and threonine metabolism, taurine and hypotaurine metabolism. The potential factors contributing to the effect of FF and basic commercial duck feed (CF) were found to be primarily regulated via the aforementioned metabolic pathways. The study, therefore, offers a viable approach for enhancing the taste and quality of duck meat.


Subject(s)
Ducks , Taste , Animals , Ducks/metabolism , Meat/analysis , Glycine , Threonine/metabolism
18.
ACS Appl Mater Interfaces ; 15(39): 46041-46053, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37747959

ABSTRACT

The electronic tongue (E-tongue) system has emerged as a significant innovation, aiming to replicate the complexity of human taste perception. In spite of the advancements in E-tongue technologies, two primary challenges remain to be addressed. First, evaluating the actual taste is complex due to interactions between taste and substances, such as synergistic and suppressive effects. Second, ensuring reliable outcomes in dynamic conditions, particularly when faced with high deviation error data, presents a significant challenge. The present study introduces a bioinspired artificial E-tongue system that mimics the gustatory system by integrating multiple arrays of taste sensors to emulate taste buds in the human tongue and incorporating a customized deep-learning algorithm for taste interpretation. The developed E-tongue system is capable of detecting four distinct tastes in a single drop of dietary compounds, such as saltiness, sourness, astringency, and sweetness, demonstrating notable reversibility and selectivity. The taste profiles of six different wines are obtained by the E-tongue system and demonstrated similarities in taste trends between the E-tongue system and user reviews from online, although some disparities still exist. To mitigate these disparities, a prototype-based classifier with soft voting is devised and implemented for the artificial E-tongue system. The artificial E-tongue system achieved a high classification accuracy of ∼95% in distinguishing among six different wines and ∼90% accuracy even in an environment where more than 1/3 of the data contained errors. Moreover, by harnessing the capabilities of deep learning technology, a recommendation system was demonstrated to enhance the user experience.

19.
Molecules ; 28(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570854

ABSTRACT

This study examined the flavor profiles of fermented Ciba chili, comparing samples with Sichuan pepper (HJ) to those without Sichuan pepper (CK), using three analytical techniques: E-tongue, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results obtained from the E-tongue and E-nose exhibited a clear difference in taste and flavor between CK and HJ. In detail, CK mainly exhibited a sour flavor profile, whereas HJ displayed an intricate and rich flavor. The HS-GC-IMS results identified a total of 60 compounds in the samples, with terpenes, alcohols, and esters being the primary volatile flavor compounds. Additionally, Zanthoxylum was found to significantly enhance the concentration of these compounds in fermented Ciba chili. Through robust principal component analysis (rPCA), 17 distinct flavor compounds were selected. Correlation analysis revealed that most terpenes exhibited positive correlations with LY2/LG, LY2/gCT1, LY2/Gct, LY2/G, LY2/Gh, and terpenes were found in higher concentrations in HJ. This study contributes a theoretical basis and provides data support for optimizing the fermentation process and elucidating the underlying mechanism of characteristic aroma formation in Ciba chili after fermentation.

20.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513381

ABSTRACT

Pet owners think of their animals as part of their family, which further promotes the growth of the pet food market, encouraging pet owners to select nutritious, palatable, and high-quality foods for pets. Therefore, the evaluation of taste and volatile compounds in pet foods is essential to improve palatability. In this study, the sensory characteristics of taste and odor compounds in 10 commercially available dry dog foods were investigated using electronic tongue (E-tongue), electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O). Dry dog foods were separated based on the sensory properties of taste and volatile compounds through the multivariate analysis of integrated results of the E-tongue and E-nose. A total of 67 odor active compounds were detected through GC-MS and GC-O, and octanal, nonanal, 2-pentyl furan, heptanal, and benzaldehyde were identified as key odor compounds which may have positive effects on food intake. The multivariate analysis was used to classify samples based on key odor compounds. Volatile compounds responsible for aroma properties of samples were evaluated using GC-O and multivariate analysis in this present study for the first time. These results are expected to provide fundamental data for sensory evaluation in producing new dog foods with improved palatability.


Subject(s)
Smell , Volatile Organic Compounds , Dogs , Animals , Gas Chromatography-Mass Spectrometry/methods , Animal Feed/analysis , Taste , Volatile Organic Compounds/analysis , Odorants/analysis , Olfactometry/methods , Electronics , Electronic Nose
SELECTION OF CITATIONS
SEARCH DETAIL