Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cancers (Basel) ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39061144

ABSTRACT

Prostate cancer (PCa) is the second leading cause of male cancer deaths in the UK and the fifth worldwide. The presence of distant PCa metastasis can reduce the 5-year survival rate from 100% to approximately 30%. Enolase 2 (ENO2), a crucial glycolytic enzyme in cancer metabolism, is associated with the metastasis of multiple cancers and is also used as a marker for neuroendocrine tumours. However, its role in PCa metastasis remains unclear. In this study, we systematically reviewed the current literature to determine the association between ENO2 and metastatic PCa. Medline, Web of Science, and PubMed were searched for eligible studies. The search yielded five studies assessing ENO2 expression in PCa patients or cell lines. The three human studies suggested that ENO2 expression is correlated with late-stage, aggressive PCa, including castrate-resistant PCa (CRPC), metastatic CRPC, and neuroendocrine PCa (NEPC). This was further supported by two in vitro studies indicating that ENO2 expression can be regulated by the tumour microenvironment, such as androgen deprived conditions and the presence of bone-forming osteoblasts. Therefore, ENO2 may functionally contribute to PCa metastasis, possibly due to the unique metabolic features of PCa, which are glycolysis dependent only at the advanced metastatic stage.

2.
Angew Chem Int Ed Engl ; 63(37): e202407667, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38923372

ABSTRACT

Electrocatalytic nitrite reduction (eNO2RR) is a promising alternative route to produce ammonia (NH3). Until now, several molecular catalysts have shown capability to homogeneously reduce nitrite to NH3, while taking advantage of added secondary-sphere functionalities to direct catalytic performance. Yet, realizing such control over heterogeneous electrocatalytic surfaces remains a challenge. Herein, we demonstrate that heterogenization of a Fe-porphyrin molecular catalyst within a 2D Metal-Organic Framework (MOF), allows efficient eNO2RR to NH3. On top of that, installation of pendant proton relaying moieties proximal to the catalytic site, resulted in significant improvement in catalytic activity and selectivity. Notably, systematic manipulation of NH3 faradaic efficiency (up to 90 %) and partial current (5-fold increase) was achieved by varying the proton relay-to-catalyst molar ratio. Electrochemical and spectroscopic analysis show that the proton relays simultaneously aid in generating and stabilizing of reactive Fe-bound NO intermediate. Thus, this concept offers new molecular tools to tune heterogeneous electrocatalytic systems.

3.
J Biochem Mol Toxicol ; 38(7): e23752, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923759

ABSTRACT

Oral squamous cell carcinoma (OSCC) requires an in-depth exploration of its molecular mechanisms. The Warburg effect, along with the oncogenes enolase 2 (ENO2) and homeobox C6 (HOXC6), plays a central role in cancer. However, the specific interaction between ENO2 and HOXC6 in driving the Warburg effect and OSCC progression remains poorly understood. Through differential gene expression analysis in head and neck squamous cell carcinomas using Gene Expression Profiling Interactive Analysis, we identified upregulated ENO2 in OSCC. Silencing ENO2 in OSCC cells revealed its involvement in migration, invasion, and aerobic glycolysis of OSCC cells. Further exploration of ENO2's regulatory network identified HOXC6 as a potential transcriptional regulator. Subsequently, HOXC6 was silenced in OSCC cells, and expressions of ENO2 were assessed to validate its relationship with ENO2. Chromatin Immunoprecipitation and luciferase assays were utilized to investigate the direct transcriptional activation of ENO2 by HOXC6. A rescue assay co-overexpressing ENO2 and silencing HOXC6 in OSCC cells affirmed HOXC6's role in ENO2-associated glycolysis. High ENO2 expression in OSCC was validated through quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry analyses, which correlated with poor patient survival. Functional assays demonstrated that ENO2 silencing inhibited glycolysis and attenuated the aggressiveness of OSCC cells. In vivo studies confirmed the oncogenic role of ENO2 in OSCC growth. Notably, HOXC6 exhibited a positive correlation with ENO2 expression in clinical samples. Mechanistically, HOXC6 was identified as a direct transcriptional activator of ENO2, orchestrating the Warburg effect in OSCC cells. This study reveals the intricate link between HOXC6-mediated ENO2 transcriptional activation and the Warburg effect in OSCC, offering a potential therapeutic target for treating OSCC patients.


Subject(s)
Homeodomain Proteins , Mouth Neoplasms , Phosphopyruvate Hydratase , Transcriptional Activation , Animals , Female , Humans , Male , Mice , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , Glycolysis , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mice, Nude , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Warburg Effect, Oncologic
4.
Cancer Sci ; 115(8): 2659-2672, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38710213

ABSTRACT

Circular RNAs (circRNAs) have emerged as crucial regulators in tumor progression, yet their specific role in hepatocellular carcinoma (HCC) remains largely uncharacterized. In this study, we utilized high-transcriptome sequencing to identify the upregulation of circESYT2 (hsa_circ_002142) in HCC tissues. Functional experiments carried out in vivo and in vitro revealed that circESYT2 played a significant role in maintaining the growth and metastatic behaviors of HCC. Through integrative analysis, we identified enolase 2 (ENO2) as a potential target regulated by circESYT2 through the competitive endogenous RNA sponge mechanism. Additional gain- or loss-of-function experiments indicated that overexpression of circESYT2 led to a tumor-promoting effect, which could be reversed by transfection of microRNA-665 (miR-665) mimic or ENO2 knockdown in HCC cells. Furthermore, the direct interaction between miR-665 and circESYT2 and between miR-665 and ENO2 was confirmed using RNA immunoprecipitation, FISH, RNA pull-down, and dual-luciferase reporter assays, highlighting the involvement of the circESYT2/miR-665/ENO2 axis in promoting HCC progression. These findings shed light on the molecular characteristics of circESYT2 in HCC tissues and suggest its potential as a biomarker or therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , Phosphopyruvate Hydratase , RNA, Circular , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice, Nude , MicroRNAs/genetics , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , RNA, Circular/genetics , Up-Regulation/genetics , Synaptotagmins/genetics
5.
BMC Cancer ; 24(1): 573, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724951

ABSTRACT

BACKGROUND: Microsatellite instability-high (MSI-H) has emerged as a significant biological characteristic of colorectal cancer (CRC). Studies reported that MSI-H CRC generally had a better prognosis than microsatellite stable (MSS)/microsatellite instability-low (MSI-L) CRC, but some MSI-H CRC patients exhibited distinctive molecular characteristics and experienced a less favorable prognosis. In this study, our objective was to explore the metabolic transcript-related subtypes of MSI-H CRC and identify a biomarker for predicting survival outcomes. METHODS: Single-cell RNA sequencing (scRNA-seq) data of MSI-H CRC patients were obtained from the Gene Expression Omnibus (GEO) database. By utilizing the copy number variation (CNV) score, a malignant cell subpopulation was identified at the single-cell level. The metabolic landscape of various cell types was examined using metabolic pathway gene sets. Subsequently, functional experiments were conducted to investigate the biological significance of the hub gene in MSI-H CRC. Finally, the predictive potential of the hub gene was assessed using a nomogram. RESULTS: This study revealed a malignant tumor cell subpopulation from the single-cell RNA sequencing (scRNA-seq) data. MSI-H CRC was clustered into two subtypes based on the expression profiles of metabolism-related genes, and ENO2 was identified as a hub gene. Functional experiments with ENO2 knockdown and overexpression demonstrated its role in promoting CRC cell migration, invasion, glycolysis, and epithelial-mesenchymal transition (EMT) in vitro. High expression of ENO2 in MSI-H CRC patients was associated with worse clinical outcomes, including increased tumor invasion depth (p = 0.007) and greater likelihood of perineural invasion (p = 0.015). Furthermore, the nomogram and calibration curves based on ENO2 showed potential prognosis predictive performance. CONCLUSION: Our findings suggest that ENO2 serves as a novel prognostic biomarker and is associated with the progression of MSI-H CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Disease Progression , Microsatellite Instability , Phosphopyruvate Hydratase , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Prognosis , Female , Male , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Middle Aged , Nomograms , Single-Cell Analysis , DNA Copy Number Variations
6.
Bull Exp Biol Med ; 176(5): 612-616, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730106

ABSTRACT

We experimentally demonstrated that chronic social stress during the development of a depression-like state enhances lung metastasis and modifies the expression of many carcinogenesis- and apoptosis-related genes in the hypothalamus of mice, including genes involved in lung cancer pathogenesis in humans. Analysis of the expression of genes encoding the major clinical markers of lung cancer in the hypothalamus of mice with depression-like behavior revealed increased expression of the Eno2 gene encoding neuron-specific enolase, a blood marker of lung cancer progression in humans. It was shown that the expression of this gene in the hypothalamus correlated with the expression of many carcinogenesis- and apoptosis-related genes. The discovered phenomenon may have a fundamental significance and requires further studies.


Subject(s)
Biomarkers, Tumor , Depression , Hypothalamus , Lung Neoplasms , Phosphopyruvate Hydratase , Animals , Male , Mice , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis , Depression/genetics , Depression/metabolism , Depression/pathology , Gene Expression Regulation, Neoplastic , Hypothalamus/metabolism , Hypothalamus/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Phosphopyruvate Hydratase/analysis , Phosphopyruvate Hydratase/genetics , Stress, Psychological/genetics , Stress, Psychological/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
7.
Gland Surg ; 13(2): 209-224, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38455357

ABSTRACT

Background: Anoikis presents a significant barrier in the metastasis of cancer. As the most aggressive type of thyroid cancer, anaplastic thyroid cancer (ATC) exhibits a high risk of metastasis and is characterized by high mortality. Therefore, investigating the molecular mechanisms of anoikis resistance in ATC is important for devising therapeutic targets in clinical research. Methods: Differentially Expressed Genes were screened in ATC cells under attached and detached culture conditions with RNA-seq. Investigate the impact of enolase 2 (ENO2) on apoptosis and spheroid formation by gain and loss of function. Changes of reactive oxygen species (ROS), glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) were detected to assess redox balance. The transcriptional regulatory role of signal transducer and activator of transcription 1 (STAT1) on ENO2 was validated through Dual-Luciferase Reporter Gene Assay. Explore the impact of ENO2 expression on the formation of lung metastases in nude mice. Results: We found that the glycolysis process was activated in detached ATC cells. Several genes in the glycolysis process, particularly ENO2, a member of the enolase superfamily was upregulated in ATC cells cultured in suspension. The upregulation of ENO2 enabled the maintenance of redox balance by supplying GSH and NADPH, thereby preventing cells from undergoing anoikis. In terms of mechanism, the expression of STAT1 was enhanced in anoikis resistance cells, which in turn positively regulated the expression of ENO2. In vivo, ENO2-suppressed ATC cells resulted in a significantly lower rate of lung colonization compared to control ATC cells. Conclusions: Stable expression of ENO2 and the maintenance of redox balance played a pivotal role in facilitating anoikis resistance of ATC.

8.
Int J Biol Sci ; 20(3): 848-863, 2024.
Article in English | MEDLINE | ID: mdl-38250157

ABSTRACT

Macrophages can be polarized into functional classically activated (M1) or alternatively activated (M2) phenotype. Tumor-associated macrophages (TAMs) mainly exhibit M2 phenotype. Previous works determined that up-regulation of enolase 2 (ENO2) in diffuse large B-cell lymphoma (DLBCL) cells can promote macrophages to an M2-like phenotype, thereby consequently promoting the progression of DLBCL. Exosomes are a subset of extracellular vesicles, carrying various bioactive molecules, mediate signals transduction and regulate immune cells. In our study, we investigated the role and related mechanisms of DLBCL-derived exosomal ENO2 in regulating macrophage polarization during DLBCL progression via bioinformatics analysis and a series of experiments. The results of bioinformatics analysis indicated that high expression of ENO2 was positively correlated with DLBCL progression and macrophages M2/M1 ratio. ENO2 protein levels were increased in the exosomes of the sera of DLBCL patients and DLBCL cells. Moreover, the DLBCL-derived exosomes were assimilated by macrophages and then regulated macrophage polarization. The results of in vitro and in vivo experiments showed that DLBCL-derived exosomal ENO2 modulated macrophages polarization (increased M2 phenotype and decreased M1 phenotype), thereby promoting DLBCL proliferation, migration, and invasion. We then revealed that the modulation of macrophages polarization by DLBCL-derived exosomal ENO2 depended on glycolysis and was promoted through GSK3ß/ß-catenin/c-Myc signaling pathway. These findings suggested that DLBCL-derived exosomal ENO2 accelerated glycolysis via GSK3ß/ß-catenin/c-Myc signaling pathway to ultimately promote macrophages to an M2-like phenotype, which can promote the proliferation, migration and invasion of DLBCL, suggesting that exosomal ENO2 may be a promising therapeutic target and prognostic biomarker for DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Phosphopyruvate Hydratase , Tumor-Associated Macrophages , Humans , beta Catenin , Catenins , Glycogen Synthase Kinase 3 beta , Glycolysis , Proto-Oncogene Proteins c-myc , Signal Transduction
9.
Mol Ther Oncolytics ; 31: 100750, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38075246

ABSTRACT

Aerobic glycolysis is a hallmark property of cancer metabolism. Enolase is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate into phosphoenolpyruvate. In mammals, enolases exist in three isoforms, encoded by the genes ENO1, ENO2, and ENO3. The altered expression of enolases is a common occurrence in various types of cancer. Although most published studies on enolases have predominantly focused on the role of ENO1 in cancer, ENO2 and ENO3 have recently emerged as crucial regulatory molecules in cancer development. Significant progress has been made in understanding their multifaceted roles in oncogenesis. In this comprehensive review, we provide an overview of the structure, subcellular localization, diagnostic and prognostic significance, biological functions, and molecular mechanisms of ENO2 and ENO3 in cancer progression. The importance of enolase in cancer development makes it a novel therapeutic target for clinical applications. Furthermore, we discuss anticancer agents designed to target enolases and summarize their anticancer efficacy in both in vitro and in vivo studies.

10.
J Zhejiang Univ Sci B ; 24(3): 221-231, 2023 Mar 15.
Article in English, Chinese | MEDLINE | ID: mdl-36915998

ABSTRACT

Metabolic reprogramming is a common phenomenon in cancer, with aerobic glycolysis being one of its important characteristics. Hypoxia-inducible factor-1α (HIF1Α) is thought to play an important role in aerobic glycolysis. Meanwhile, naringin is a natural flavanone glycoside derived from grapefruits and many other citrus fruits. In this work, we identified glycolytic genes related to HIF1Α by analyzing the colon cancer database. The analysis of extracellular acidification rate and cell function verified the regulatory effects of HIF1Α overexpression on glycolysis, and the proliferation and migration of colon cancer cells. Moreover, naringin was used as an inhibitor of colon cancer cells to illustrate its effect on HIF1Α function. The results showed that the HIF1Α and enolase 2 (ENO2) levels in colon cancer tissues were highly correlated, and their high expression indicated a poor prognosis for colon cancer patients. Mechanistically, HIF1Α directly binds to the DNA promoter region and upregulates the transcription of ENO2; ectopic expression of ENO2 increased aerobic glycolysis in colon cancer cells. Most importantly, we found that the appropriate concentration of naringin inhibited the transcriptional activity of HIF1Α, which in turn decreased aerobic glycolysis in colon cancer cells. Generally, naringin reduces glycolysis in colon cancer cells by reducing the transcriptional activity of HIF1Α and the proliferation and invasion of colon cancer cells. This study helps to elucidate the relationship between colon cancer progression and glucose metabolism, and demonstrates the efficacy of naringin in the treatment of colon cancer.


Subject(s)
Colonic Neoplasms , Flavanones , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Colonic Neoplasms/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phosphopyruvate Hydratase/metabolism , Flavanones/pharmacology , Cell Line, Tumor , Databases, Genetic , Cell Proliferation/drug effects , Transfection , Warburg Effect, Oncologic
11.
J Exp Clin Cancer Res ; 42(1): 69, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36945054

ABSTRACT

BACKGROUND: Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS: 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS: We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS: Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.


Subject(s)
Breast Neoplasms , Multiomics , Female , Humans , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Glucose , Lactates , Nutrients , Spheroids, Cellular , Tumor Microenvironment
12.
Biomark Res ; 11(1): 14, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36721240

ABSTRACT

BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive, lethal, lysosomal disease characterized by progressive cerebellar ataxia and cognitive impairment. Although the NPC1 phenotype is heterogeneous with variable age of onset, classical NPC1 is a pediatric disorder. Currently there are no therapies approved by the FDA and therapeutics trials for NPC1 are complicated by disease rarity, heterogeneity, and the relatively slow rate of neurological decline. Thus, identification of disease relevant biomarkers is necessary to provide tools that can support drug development efforts for this devastating neurological disease. METHODS: Proximal extension assays (O-link® Explore 1536) were used to compare cerebrospinal fluid (CSF) samples from individuals with NPC1 enrolled in a natural history study and non-NPC1 comparison samples. Relative expression levels of 1467 proteins were determined, and candidate protein biomarkers were identified by evaluating fold-change and adjusted Kruskal-Wallis test p-values. Selected proteins were orthogonally confirmed using ELISA. To gain insight into disease progression and severity we evaluated the altered protein expression with respect to clinically relevant phenotypic aspects: NPC Neurological Severity Score (NPC1 NSS), Annual Severity Increment Score (ASIS) and age of neurological onset. RESULTS: This study identified multiple proteins with altered levels in CSF from individuals with NPC1 compared to non-NPC1 samples. These included proteins previously shown to be elevated in NPC1 (NEFL, MAPT, CHIT1, CALB1) and additional proteins confirmed by orthogonal assays (PARK7, CALB2/calretinin, CHI3L1/YKL-40, MIF, CCL18 and ENO2). Correlations with clinically relevant phenotypic parameters demonstrated moderate negative (p = 0.0210, r = -0.41) and possible moderate positive (p = 0.0631, r = 0.33) correlation of CSF CALB2 levels with age of neurological onset and ASIS, respectively. CSF CHI3L1 levels showed a moderate positive (p = 0.0183, r = 0.40) correlation with the concurrent NPC1 NSS. A strong negative correlation (p = 0.0016, r = -0.648) was observed between CSF CCL18 and age of neurological onset for childhood/adolescent cases. CSF CCL18 levels also showed a strong positive correlation (p = 0.0017, r = 0.61) with ASIS. CONCLUSION: Our study identified and validated multiple proteins in CSF from individuals with NPC1 that are candidates for further investigation in a larger cohort. These analytes may prove to be useful as supportive data in therapeutic trials. TRIAL REGISTRATIONS: NCT00344331, NCT00001721, NCT02931682.

13.
J Exp Clin Cancer Res ; 42(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36588153

ABSTRACT

BACKGROUND: Enolase 2 (ENO2) is a crucial glycolytic enzyme in cancer metabolic process and acts as a "moonlighting" protein to play various functions in diverse cellular processes unrelated to glycolysis. ENO2 is highly expressed in head and neck squamous cell carcinoma (HNSCC) tissues relative to normal tissues; however, its impact and underlying regulatory mechanisms in HNSCC malignancy remain unclear. METHODS: Molecular alterations were examined by bioinformatics, qRT-PCR, western blotting, immunofluorescence, immunohistochemistry, immunoprecipitation, and ChIP-PCR assays. Metabolic changes were assessed by intracellular levels of ATP and glucose. Animal study was used to evaluate the therapeutic efficacy of the ENO inhibitor. RESULTS: ENO2 is required for HNSCC cell proliferation and glycolysis, which, surprisingly, is partially achieved by controlling PKM2 protein stability and its nuclear translocation. Mechanistically, loss of ENO2 expression promotes PKM2 protein degradation via the ubiquitin-proteasome pathway and prevents the switch of cytoplasmic PKM2 to the nucleus by inactivating AKT signaling, leading to a blockade in PKM2-mediated glycolytic flux and CCND1-associated cell cycle progression. In addition, treatment with the ENO inhibitor AP-III-a4 significantly induces HNSCC remission in a preclinical mouse model. CONCLUSION: Our work elucidates the signaling basis underlying ENO2-dependent HNSCC development, providing evidence to establish a novel ENO2-targeted therapy for treating HNSCC.


Subject(s)
Head and Neck Neoplasms , Phosphopyruvate Hydratase , Pyruvate Kinase , Animals , Mice , Cell Line, Tumor , Glycolysis , Head and Neck Neoplasms/genetics , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/genetics , Pyruvate Kinase/metabolism
14.
Psychol Med ; 53(4): 1479-1488, 2023 03.
Article in English | MEDLINE | ID: mdl-35387700

ABSTRACT

BACKGROUND: Both neurodegenerative and neurodevelopmental abnormalities have been suggested to be part of the etiopathology of severe mental illness (SMI). Neuron-specific enolase (NSE), mainly located in the neuronal cytoplasm, may indicate the process as it is upregulated after neuronal injury while a switch from non-neuronal enolase to NSE occurs during neuronal maturation. METHODS: We included 1132 adult patients with SMI [schizophrenia (SZ) or bipolar spectrum disorders], 903 adult healthy controls (HC), 32 adolescent patients with SMI and 67 adolescent HC. Plasma NSE concentrations were measured by enzyme immunoassay. For 842 adults and 85 adolescents, we used total grey matter volume (TGMV) based on T1-weighted magnetic resonance images processed in FreeSurfer v6.0. We explored NSE case-control differences in adults and adolescents separately. To investigate whether putative case-control differences in NSE were TGMV-dependent we controlled for TGMV. RESULTS: We found significantly lower NSE concentrations in both adult (p < 0.001) and adolescent patients with SMI (p = 0.007) compared to HC. The results remained significant after controlling for TGMV. Among adults, both patients with SZ spectrum (p < 0.001) and bipolar spectrum disorders (p = 0.005) had lower NSE than HC. In both patient subgroups, lower NSE levels were associated with increased symptom severity. Among adults (p < 0.001) and adolescents (p = 0.040), females had lower NSE concentrations than males. CONCLUSION: We found lower NSE concentrations in adult and adolescent patients with SMI compared to HC. The results suggest the lack of progressive neuronal injury, and may reflect abnormal neuronal maturation. This provides further support of a neurodevelopmental rather than a neurodegenerative mechanism in SMI.


Subject(s)
Bipolar Disorder , Mental Disorders , Schizophrenia , Male , Female , Humans , Adult , Adolescent , Neurons , Phosphopyruvate Hydratase
15.
Article in English | WPRIM (Western Pacific) | ID: wpr-971482

ABSTRACT

Metabolic reprogramming is a common phenomenon in cancer, with aerobic glycolysis being one of its important characteristics. Hypoxia-inducible factor-1α (HIF1Α) is thought to play an important role in aerobic glycolysis. Meanwhile, naringin is a natural flavanone glycoside derived from grapefruits and many other citrus fruits. In this work, we identified glycolytic genes related to HIF1Α by analyzing the colon cancer database. The analysis of extracellular acidification rate and cell function verified the regulatory effects of HIF1Α overexpression on glycolysis, and the proliferation and migration of colon cancer cells. Moreover, naringin was used as an inhibitor of colon cancer cells to illustrate its effect on HIF1Α function. The results showed that the HIF1Α and enolase 2 (ENO2) levels in colon cancer tissues were highly correlated, and their high expression indicated a poor prognosis for colon cancer patients. Mechanistically, HIF1Α directly binds to the DNA promoter region and upregulates the transcription of ENO2; ectopic expression of ENO2 increased aerobic glycolysis in colon cancer cells. Most importantly, we found that the appropriate concentration of naringin inhibited the transcriptional activity of HIF1Α, which in turn decreased aerobic glycolysis in colon cancer cells. Generally, naringin reduces glycolysis in colon cancer cells by reducing the transcriptional activity of HIF1Α and the proliferation and invasion of colon cancer cells. This study helps to elucidate the relationship between colon cancer progression and glucose metabolism, and demonstrates the efficacy of naringin in the treatment of colon cancer.


Subject(s)
Humans , Glycolysis , Colonic Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phosphopyruvate Hydratase/metabolism , Flavanones/pharmacology , Cell Line, Tumor , Databases, Genetic , Cell Proliferation/drug effects , Transfection , Warburg Effect, Oncologic
16.
Front Plant Sci ; 13: 1035750, 2022.
Article in English | MEDLINE | ID: mdl-36340336

ABSTRACT

Seed germination is critical for plant survival and agricultural production and is affected by many cues, including internal factors and external environmental conditions. As a key enzyme in glycolysis, enolase 2 (ENO2) also plays a vital role in plant growth and abiotic stress responses. In our research, we found that the seed germination rate was lower in the AtENO2 mutation (eno2- ) than in the wild type (WT) under salt stress in Arabidopsis thaliana, while there was no significant difference under normal conditions. However, the mechanisms by which AtENO2 regulates seed germination under salt stress remain limited. In the current study, transcriptome and proteome analyses were used to compare eno2- and the WT under normal and salt stress conditions at the germination stage. There were 417 and 4442 differentially expressed genes (DEGs) identified by transcriptome, and 302 and 1929 differentially expressed proteins (DEPs) qualified by proteome under normal and salt stress conditions, respectively. The combined analysis found abundant DEGs and DEPs related to stresses and hydrogen peroxide removal were highly down-regulated in eno2- . In addition, several DEGs and DEPs encoding phytohormone transduction pathways were identified, and the DEGs and DEPs related to ABA signaling were relatively greatly up-regulated in eno2- . Moreover, we constructed an interactive network and further identified GAPA1 and GAPB that could interact with AtENO2, which may explain the function of AtENO2 under salt stress during seed germination. Together, our results reveal that under salt stress, AtENO2 mainly affects the expression of genes and proteins related to the phytohormone signal transduction pathways, stress response factors, and reactive oxygen species (ROS), and then affects seed germination. Our study lays the foundation for further exploration of the molecular function of AtENO2 under salt stress at the seed germination stage in Arabidopsis thaliana.

17.
Cells ; 11(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35954207

ABSTRACT

The glycolytic enzyme enolase 2 (ENO2) is dysregulated in many types of cancer. However, the roles and detailed molecular mechanism of ENO2 in colorectal cancer (CRC) metastasis remain unclear. Here, we performed a comprehensive analysis of ENO2 expression in 184 local CRC samples and samples from the TCGA and GEO databases and found that ENO2 upregulation in CRC samples was negatively associated with prognosis. By knocking down and overexpressing ENO2, we found that ENO2 promoted CRC cell migration and invasion, which is dependent on its interaction with the long noncoding RNA (lncRNA) CYTOR, but did not depend on glycolysis regulation. Furthermore, CYTOR mediated ENO2 binding to large tumor suppressor 1 (LATS1) and competitively inhibited the phosphorylation of Yes-associated protein 1 (YAP1), which ultimately triggered epithelial-mesenchymal transition (EMT). Collectively, these findings highlight the molecular mechanism of the ENO2-CYTOR interaction, and ENO2 could be considered a potential therapeutic target for CRC.


Subject(s)
Colorectal Neoplasms , RNA, Long Noncoding , Cell Line, Tumor , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplastic Processes , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , YAP-Signaling Proteins
18.
Cell Mol Neurobiol ; 42(7): 2305-2319, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34037901

ABSTRACT

Defects in the activity of the proteasome or its regulators are linked to several pathologies, including neurodegenerative diseases. We hypothesize that proteasome heterogeneity and its selective partners vary across brain regions and have a significant impact on proteasomal catalytic activities. Using neuronal cell cultures and brain tissues obtained from mice, we compared proteasomal activities from two distinct brain regions affected in neurodegenerative diseases, the striatum and the hippocampus. The results indicated that proteasome activities and their responses to proteasome inhibitors are determined by their subcellular localizations and their brain regions. Using an iodixanol gradient fractionation method, proteasome complexes were isolated, followed by proteomic analysis for proteasomal interaction partners. Proteomic results revealed brain region-specific non-proteasomal partners, including gamma-enolase (ENO2). ENO2 showed more association to proteasome complexes purified from the striatum than to those from the hippocampus. These results highlight a potential key role for non-proteasomal partners of proteasomes regarding the diverse activities of the proteasome complex recorded in several brain regions.


Subject(s)
Proteasome Endopeptidase Complex , Proteomics , Animals , Brain , Mice , Neurons , Phosphopyruvate Hydratase
19.
J Cell Mol Med ; 25(17): 8127-8139, 2021 09.
Article in English | MEDLINE | ID: mdl-34350711

ABSTRACT

Pre-eclampsia (PE) is the leading cause of maternal death; however, the causative molecular basis remains largely unknown. Recent studies have revealed the important role microRNAs (miRNAs) play in PE. We aimed to explore the effects of let-7d on trophoblast proliferation, migration, invasion and apoptosis in PE and its underlying mechanism. Placental tissues were collected from PE patients and healthy pregnant women, and it was found that let-7d expression was increased, while KDM3A and ENO2 expression was decreased in PE tissues and cells. Bioinformatics analysis indicated the interaction among let-7d, KDM3A and ENO2, confirmed by dual luciferase reporter gene assay; ChIP experiment identified methylated modification to ENO2 by KDM3A. With gain- and loss-function method, silencing of let-7d increased KDM3A expression and enhanced the binding between KDM3A and ENO2. Furthermore, overexpression of let-7d suppressed cell proliferation, migration and invasion of trophoblasts, and induced apoptosis of trophoblasts, while these capacities were restored upon additional treatment of overexpressed ENO2. PE rat models were established to explore the effects of let-7d and ENO2 on PE in vivo. The results established that the silencing of let-7d alleviated the tissue injury and PE-related symptoms when reducing urine protein, TUNEL-positive cells and increasing ENO2, and KDM3A expression in rats. Cumulatively, let-7d suppressed cell progression of trophoblasts, and induced apoptosis through the down-regulation of KDM3A to promote ENO2 methylation, thereby promoting progression of PE. Such an epigenetic network of let-7d, KDM3A and ENO2 in the pathogenesis of PE might provide novel insight into targeted therapy against this disorder.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/metabolism , MicroRNAs/physiology , Phosphopyruvate Hydratase/metabolism , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , Animals , Cell Movement , Cell Proliferation , Female , Humans , Pregnancy , Rats , Rats, Sprague-Dawley , Trophoblasts/pathology
20.
Front Oncol ; 11: 653200, 2021.
Article in English | MEDLINE | ID: mdl-34094943

ABSTRACT

Dysregulated glycolysis is one of the mechanisms employed by cancer cells to facilitate growth and metastasis. Here we aimed to characterize the PPFIA4 gene, as a glycolysis-related oncogene in promoting the proliferation and migration of colon cancer cells. Using bioinformatical tools including The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA), we found that PPFIA4 expression and methylation levels were higher in colon cancer tissues of different stages than in normal tissues. Higher PPFIA4 level was also positively correlated with poorer survival of patients. PPFIA4 upregulation also correlated with poor prognosis and higher clinical stages of colon cancer patients. Colon cancer cell viability, migration and migration were enhanced after PPFIA4 overexpression. EMT markers and glycolysis were upregulated after PPFIA4 overexpression. PPFIA4 expression was found to be positively correlated with PFKFB3 and ENO2 levels, while knockdown of PFKFB3 and ENO2 reduced cell proliferation, migration, invasion and glycolysis. PPFIA4 upregulation is a potential biomarker in colon cancer which promotes proliferation, migration, invasion and glycolysis. The upregulation of PFKFB3/ENO2 signaling by PPFIA4 is a potential mechanism underlying the oncogenic effects of PPFIA4.

SELECTION OF CITATIONS
SEARCH DETAIL