Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
J Biol Chem ; 300(2): 105609, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159851

ABSTRACT

A superfamily of proteins called cysteine transmembrane is widely distributed across eukaryotes. These small proteins are characterized by the presence of a conserved motif at the C-terminal region, rich in cysteines, that has been annotated as a transmembrane domain. Orthologs of these proteins have been involved in resistance to pathogens and metal detoxification. The yeast members of the family are YBR016W, YDL012C, YDR034W-B, and YDR210W. Here, we begin the characterization of these proteins at the molecular level and show that Ybr016w, Ydr034w-b, and Ydr210w are palmitoylated proteins. Protein S-acylation or palmitoylation, is a posttranslational modification that consists of the addition of long-chain fatty acids to cysteine residues. We provide evidence that Ybr016w, Ydr210w, and Ydr034w-b are localized to the plasma membrane and exhibit varying degrees of polarity toward the daughter cell, which is dependent on endocytosis and recycling. We suggest the names CPP1, CPP2, and CPP3 (C terminally palmitoylated protein) for YBR016W, YDR210W, and YDR034W-B, respectively. We show that palmitoylation is responsible for the binding of these proteins to the membrane indicating that the cysteine transmembrane on these proteins is not a transmembrane domain. We propose renaming the C-terminal cysteine-rich domain as cysteine-rich palmitoylated domain. Loss of the palmitoyltransferase Erf2 leads to partial degradation of Ybr016w (Cpp1), whereas in the absence of the palmitoyltransferase Akr1, members of this family are completely degraded. For Cpp1, we show that this degradation occurs via the proteasome in an Rsp5-dependent manner, but is not exclusively due to a lack of Cpp1 palmitoylation.


Subject(s)
Cysteine , Lipoylation , Saccharomyces cerevisiae Proteins , Cysteine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Protein Binding , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proteolysis , DNA Mutational Analysis , Protein Domains
2.
Int J Mol Sci ; 24(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36835560

ABSTRACT

Teak (Tectona grandis) is one of the most important wood sources, and it is cultivated in tropical regions with a significant market around the world. Abiotic stresses are an increasingly common and worrying environmental phenomenon because it causes production losses in both agriculture and forestry. Plants adapt to these stress conditions by activation or repression of specific genes, and they synthesize numerous stress proteins to maintain their cellular function. For example, APETALA2/ethylene response factor (AP2/ERF) was found to be involved in stress signal transduction. A search in the teak transcriptome database identified an AP2/ERF gene named TgERF1 with a key AP2/ERF domain. We then verified that the TgERF1 expression is rapidly induced by Polyethylene Glycol (PEG), NaCl, and exogenous phytohormone treatments, suggesting a potential role in drought and salt stress tolerance in teak. The full-length coding sequence of TgERF1 gene was isolated from teak young stems, characterized, cloned, and constitutively overexpressed in tobacco plants. In transgenic tobacco plants, the overexpressed TgERF1 protein was localized exclusively in the cell nucleus, as expected for a transcription factor. Furthermore, functional characterization of TgERF1 provided evidence that TgERF1 is a promising candidate gene to be used as selective marker on plant breeding intending to improve plant stress tolerance.


Subject(s)
Nicotiana , Transcription Factors , Transcription Factors/metabolism , Nicotiana/genetics , Droughts , Gene Expression Regulation, Plant , Plant Breeding , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Salt Tolerance/genetics , Plant Proteins/genetics , Phylogeny
3.
Front Plant Sci ; 13: 908682, 2022.
Article in English | MEDLINE | ID: mdl-36186018

ABSTRACT

APETALA2/ethylene response factors (AP2/ERFs) transcription factors (TFs) have greatly expanded in land plants compared to algae. In angiosperms, AP2/ERFs play important regulatory functions in plant defenses against pathogens and abiotic stress by controlling the expression of target genes. In the moss Physcomitrium patens, a high number of members of the ERF family are induced during pathogen infection, suggesting that they are important regulators in bryophyte immunity. In the current study, we analyzed a P. patens pathogen-inducible ERF family member designated as PpERF24. Orthologs of PpERF24 were only found in other mosses, while they were absent in the bryophytes Marchantia polymorpha and Anthoceros agrestis, the vascular plant Selaginella moellendorffii, and angiosperms. We show that PpERF24 belongs to a moss-specific clade with distinctive amino acids features in the AP2 domain that binds to the DNA. Interestingly, all P. patens members of the PpERF24 subclade are induced by fungal pathogens. The function of PpERF24 during plant immunity was assessed by an overexpression approach and transcriptomic analysis. Overexpressing lines showed increased defenses to infection by the fungal pathogens Botrytis cinerea and Colletotrichum gloeosporioides evidenced by reduced cellular damage and fungal biomass compared to wild-type plants. Transcriptomic and RT-qPCR analysis revealed that PpERF24 positively regulates the expression levels of defense genes involved in transcriptional regulation, phenylpropanoid and jasmonate pathways, oxidative burst and pathogenesis-related (PR) genes. These findings give novel insights into potential mechanism by which PpERF24 increases plant defenses against several pathogens by regulating important players in plant immunity.

4.
Rice (N Y) ; 12(1): 94, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31853825

ABSTRACT

BACKGROUND: Rice grain production is susceptible to a changing environment that imposes both biotic and abiotic stress conditions. Cold episodes are becoming more frequent in the last years and directly affect rice yield in areas with a temperate climate. Rice is particularly susceptible to cold stress during the reproductive phase, especially in anthers during post-meiotic stages which, in turn, affect pollen production. However, a number of rice cultivars with a certain degree of tolerance to cold have been described, which may represent a good breeding resource for improvement of susceptible commercial varieties. Plants experiencing cold stress activate a molecular response in order to reprogram many metabolic pathways to face these hostile conditions. RESULTS: Here we performed RNA-seq analysis using cold-stressed post-meiotic anther samples from a cold-tolerant, Erythroceros Hokkaido (ERY), and a cold-susceptible commercial cultivar Sant'Andrea (S.AND). Both cultivars displayed an early common molecular response to cold, although the changes in expression levels are much more drastic in the tolerant one. Comparing our datasets, obtained after one-night cold stress, with other similar genome-wide studies showed very few common deregulated genes, suggesting that molecular responses in cold-stressed anthers strongly depend on conditions and the duration of the cold treatments. Cold-tolerant ERY exhibits specific molecular responses related to ethylene metabolism, which appears to be activated after cold stress. On the other hand, S.AND cold-treated plants showed a general downregulation of photosystem I and II genes, supporting a role of photosynthesis and chloroplasts in cold responses in anthers, which has remained elusive. CONCLUSIONS: Our study revealed that a number of ethylene-related transcription factors, as putative master regulators of cold responses, were upregulated in ERY providing promising candidates to confer tolerance to susceptible cultivars. Our results also suggest that the photosynthesis machinery might be a good target to improve cold tolerance in anthers. In summary, our study provides valuable candidates for further analysis and molecular breeding for cold-tolerant rice cultivars.

5.
Braz J Microbiol ; 50(3): 593-601, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31250404

ABSTRACT

Arbuscular mycorrhizal (AM) fungi show high promiscuity in terms of host. Effector proteins expressed by AM fungi are found important in establishing interaction with host. However, the mechanistic underlying host-specific interactions of the fungi remain unknown. The present study aimed (i) to identify effectors encoded by Rhizophagus proliferus and (ii) to understand molecular specificity encoded in effectors for interaction with specific plant species. The effectors predicted from the whole genome sequence were annotated by homology search in NCBI non-redundant protein, Interproscan, and pathogen-host interaction (PHI) databases. In total, 416 small secreted peptides (SSPs) were predicted, which were effector peptides with presence of nuclear localization signal, small cysteine-rich, and repeat-containing proteins domains. Similar to the functionally validated SP7 effectors in Rhizophagus irregularis, two proteins (RP8598 and RP23081) were identified in R. proliferus. To understand whether interaction between SP7 and the plant target protein, ERF19, is specific in nature, we examined protein-peptide interaction using in silico molecular docking. Pairwise interaction of RP8598 and RP23081 with the ethylene-responsive factors (ERF19) coded by five different plant species (Lotus japonicus, Solanum lycopersicum, Ocimum tenuiflorum, Medicago truncatula, Diospyros kaki) was investigated. Prediction of high-quality interaction of SP7 effector with ERF19 protein expressed only by specific plant species was observed in in silico molecular docking, which may reiterate the role of effectors in host specificity. The outcomes from our study indicated that sequence precision encoded in the effector peptides of AM fungi and immunomodulatory proteins of host may regulate host specificity in these fungi.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Glomeromycota/physiology , Plants/microbiology , Fungal Proteins/genetics , Glomeromycota/chemistry , Glomeromycota/genetics , Host Specificity , Host-Pathogen Interactions , Molecular Docking Simulation , Mycorrhizae/chemistry , Mycorrhizae/genetics , Mycorrhizae/physiology , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/chemistry , Plants/genetics , Plants/metabolism , Protein Domains
6.
J Exp Bot ; 68(3): 673-685, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28204526

ABSTRACT

The transcription factor superfamily, APETALA2/ethylene response factor, is involved in plant growth and development, as well as in environmental stress responses. Here, an uncharacterized gene of this family, AtERF019, was studied in Arabidopsis thaliana under abiotic stress situations. Arabidopsis plants overexpressing AtERF019 showed a delay in flowering time of 7 days and a delay in senescence of 2 weeks when comparison with wild type plants. These plants also showed increased tolerance to water deficiency that could be explained by a lower transpiration rate, owing to their smaller stomata aperture and lower cuticle and cell wall permeability. Furthermore, using a bottom-up proteomic approach, proteins produced in response to stress, namely branched-chain-amino-acid aminotransferase 3 (BCAT3) and the zinc finger transcription factor oxidative stress 2, were only identified in plants overexpressing AtERF019. Additionally, a BCAT3 mutant was more sensitive to water-deficit stress than wild type plants. Predicted gene targets of AtERF019 were oxidative stress 2 and genes related to cell wall metabolism. These data suggest that AtERF019 could play a primary role in plant growth and development that causes an increased tolerance to water deprivation, so strengthening their chances of reproductive success.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , DNA-Binding Proteins/physiology , Droughts , Gene Expression , Transcription Factors/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , Proteomics , Stress, Physiological , Transcription Factors/genetics
7.
Mol Biol Evol ; 33(7): 1818-32, 2016 07.
Article in English | MEDLINE | ID: mdl-27030733

ABSTRACT

Gene duplication is a fundamental source of functional evolutionary change and has been associated with organismal diversification and the acquisition of novel features. The APETALA2/ETHYLENE RESPONSIVE ELEMENT-BINDING FACTOR (AP2/ERF) genes are exclusive to vascular plants and have been classified into the AP2-like and ERF-like clades. The AP2-like clade includes the AINTEGUMENTA (ANT) and the euAPETALA2 (euAP2) genes, both regulated by miR172 Arabidopsis has two paralogs in the euAP2 clade, namely APETALA2 (AP2) and TARGET OF EAT3 (TOE3) that control flowering time, meristem determinacy, sepal and petal identity and fruit development. euAP2 genes are likely functionally divergent outside Brassicaceae, as they control fruit development in tomato, and regulate inflorescence meristematic activity in maize. We studied the evolution and expression patterns of euAP2/TOE3 genes to assess large scale and local duplications and evaluate protein motifs likely related with functional changes across seed plants. We sampled euAP2/TOE3 genes from vascular plants and have found three major duplications and a few taxon-specific duplications. Here, we report conserved and new motifs across euAP2/TOE3 proteins and conclude that proteins predating the Brassicaceae duplication are more similar to AP2 than TOE3. Expression data show a shift from restricted expression in leaves, carpels, and fruits in non-core eudicots and asterids to a broader expression of euAP2 genes in leaves, all floral organs and fruits in rosids. Altogether, our data show a functional trend where the canonical A-function (sepal and petal identity) is exclusive to Brassicaceae and it is likely not maintained outside of rosids.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Homeodomain Proteins/genetics , Nuclear Proteins/genetics , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Evolution , Conserved Sequence , Evolution, Molecular , Flowers/genetics , Gene Duplication , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Genes, Plant , Homeodomain Proteins/metabolism , Meristem/genetics , Meristem/metabolism , MicroRNAs/genetics , Nuclear Proteins/metabolism , Phylogeny , Seeds/genetics , Seeds/metabolism , Sequence Analysis, DNA/methods
8.
Genet Mol Biol ; 34(4): 624-33, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22215967

ABSTRACT

Members of the ERF transcription-factor family participate in a number of biological processes, viz., responses to hormones, adaptation to biotic and abiotic stress, metabolism regulation, beneficial symbiotic interactions, cell differentiation and developmental processes. So far, no tissue-expression profile of any cucumber ERF protein has been reported in detail. Recent completion of the cucumber full-genome sequence has come to facilitate, not only genome-wide analysis of ERF family members in cucumbers themselves, but also a comparative analysis with those in Arabidopsis and rice. In this study, 103 hypothetical ERF family genes in the cucumber genome were identified, phylogenetic analysis indicating their classification into 10 groups, designated I to X. Motif analysis further indicated that most of the conserved motifs outside the AP2/ERF domain, are selectively distributed among the specific clades in the phylogenetic tree. From chromosomal localization and genome distribution analysis, it appears that tandem-duplication may have contributed to CsERF gene expansion. Intron/exon structure analysis indicated that a few CsERFs still conserved the former intron-position patterns existent in the common ancestor of monocots and eudicots. Expression analysis revealed the widespread distribution of the cucumber ERF gene family within plant tissues, thereby implying the probability of their performing various roles therein. Furthermore, members of some groups presented mutually similar expression patterns that might be related to their phylogenetic groups.

9.
Genet. mol. biol ; Genet. mol. biol;34(4): 624-634, 2011. ilus, tab
Article in English | LILACS | ID: lil-605934

ABSTRACT

Members of the ERF transcription-factor family participate in a number of biological processes, viz., responses to hormones, adaptation to biotic and abiotic stress, metabolism regulation, beneficial symbiotic interactions, cell differentiation and developmental processes. So far, no tissue-expression profile of any cucumber ERF protein has been reported in detail. Recent completion of the cucumber full-genome sequence has come to facilitate, not only genome-wide analysis of ERF family members in cucumbers themselves, but also a comparative analysis with those in Arabidopsis and rice. In this study, 103 hypothetical ERF family genes in the cucumber genome were identified, phylogenetic analysis indicating their classification into 10 groups, designated I to X. Motif analysis further indicated that most of the conserved motifs outside the AP2/ERF domain, are selectively distributed among the specific clades in the phylogenetic tree. From chromosomal localization and genome distribution analysis, it appears that tandem-duplication may have contributed to CsERF gene expansion. Intron/exon structure analysis indicated that a few CsERFs still conserved the former intron-position patterns existent in the common ancestor of monocots and eudicots. Expression analysis revealed the widespread distribution of the cucumber ERF gene family within plant tissues, thereby implying the probability of their performing various roles therein. Furthermore, members of some groups presented mutually similar expression patterns that might be related to their phylogenetic groups.


Subject(s)
Cucumis sativus/genetics , Transcription Factors , Genome , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL