ABSTRACT
In the highlands of Bolivia, native Festuca species are an important source of feed for animals due to their high tolerance to low temperatures and drought. Using simple sequence repeat (SSR) markers developed from expressed sequence tags (ESTs), the genetic diversity of 43 populations of Festuca species from Oruro, La Paz, Potosi and Cochabamba departments was evaluated for the purpose of providing information for effective conservation and breeding. In total, 64 alleles were detected across the 43 populations. SSR locus NFA 142 (with 12 alleles) had the highest number of detected alleles, while locus FES 13 (with eight alleles) had the highest polymorphism information content (PIC) at 0.55. Based on Nei's genetic distance between populations, the unweighted pair group method with arithmetic mean (UPGMA) cluster analysis revealed two major clusters, each consisting of populations from the four departments. However, the analysis of molecular variance (AMOVA) revealed that only 5% of the total variation separated these two groups, indicating low genetic differentiation between the populations. It was also found that there was a low but significant differentiation (0.08%) between the population groups of the four departments (p = 0.01). The newly developed EST-SSR markers are highly valuable for evaluating the genetic diversity of Bolivian fescues and other related species.
Subject(s)
Festuca , Genetic Variation , Animals , Genetic Variation/genetics , Festuca/genetics , Bolivia , Plant Breeding , Microsatellite Repeats/geneticsABSTRACT
The Chilean hazelnut (Gevuina avellana Mol., Proteaceae) is a native tree of Chile and Argentina of edible fruit-type nut. We applied two approaches to contribute to the development of strategies for mitigation of the effects of climate change and anthropic activities in G. avellana. It corresponds to the first report where both tools are integrated, the MaxEnt model to predict the current and future potential distribution coupled with High-Resolution Melting Analysis (HRM) to assess its genetic diversity and understand how the species would respond to these changes. Two global climate models: CNRM-CM6-1 and MIROC-ES2L for four Shared Socioeconomic Pathways: 126, 245, 370, and 585 (2021−2040; 2061−2080) were evaluated. The annual mean temperature (43.7%) and water steam (23.4%) were the key factors for the distribution current of G. avellana (AUC = 0.953). The future prediction model shows to the year 2040 those habitat range decreases at 50% (AUC = 0.918). The genetic structure was investigated in seven natural populations using eight EST-SSR markers, showing a percentage of polymorphic loci between 18.69 and 55.14% and low genetic differentiation between populations (Fst = 0.052; p < 0.001). According to the discriminant analysis of principal components (DAPC) we identified 10 genetic populations. We conclude that high-priority areas for protection correspond to Los Avellanos and Punta de Águila populations due to their greater genetic diversity and allelic richness.
ABSTRACT
We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f = - 0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.
ABSTRACT
Aiming at accelerating the application of molecular markers in the genetic improvement of quails, six EST-SSR markers were successfully developed using a bioinformatics method. Polymorphisms of three quail populations (Chinese yellow quail, China black quail and Korean quail) were detected. The results showed that there were 2-6 alleles in six EST-SSR markers. Mean polymorphism information contents of Chinese yellow quails, Chinese black quails and Korean quails were determined as 0.5451, 0.4962 and 0.4937, respectively. Average heterozygosity valuesof 0.6134, 0.5759 and 0.5613 were calculated. Among the six EST-SSR markers, three were highly polymorphic, and the other three were moderately polymorphic. The newly-developed six EST-SSR markers may be used to determine the genetic diversity of quails. The six EST-SSR markers identified were related to carbohydrate metabolism and melanin synthesis, but their specific mechanisms need to be further analyzed.(AU)
Subject(s)
Animals , Coturnix/genetics , Biomarkers/analysis , Computational Biology/instrumentation , Computational Biology/methods , Melanins/analysis , Carbohydrates/analysis , Poultry/genetics , Genetic VariationABSTRACT
Aiming at accelerating the application of molecular markers in the genetic improvement of quails, six EST-SSR markers were successfully developed using a bioinformatics method. Polymorphisms of three quail populations (Chinese yellow quail, China black quail and Korean quail) were detected. The results showed that there were 2-6 alleles in six EST-SSR markers. Mean polymorphism information contents of Chinese yellow quails, Chinese black quails and Korean quails were determined as 0.5451, 0.4962 and 0.4937, respectively. Average heterozygosity valuesof 0.6134, 0.5759 and 0.5613 were calculated. Among the six EST-SSR markers, three were highly polymorphic, and the other three were moderately polymorphic. The newly-developed six EST-SSR markers may be used to determine the genetic diversity of quails. The six EST-SSR markers identified were related to carbohydrate metabolism and melanin synthesis, but their specific mechanisms need to be further analyzed.
Subject(s)
Animals , Computational Biology/instrumentation , Computational Biology/methods , Biomarkers/analysis , Coturnix/genetics , Poultry/genetics , Carbohydrates/analysis , Melanins/analysis , Genetic VariationABSTRACT
Identifying the genetic basis of speciation is critical for understanding the evolutionary history of closely related wild species. Recently diverged species facilitate the study of speciation because many genetic and morphological characteristics are still shared by the organisms under study. The Petunia genus grows in South American grasslands and comprises both recently diverged wild species and commercial species. In this work, we analysed two closely related species: Petunia exserta, which has a narrow endemic range and grows exclusively in rocky shelters, and Petunia axillaris, which is widely distributed and comprises three allopatric subspecies. Petunia axillaris ssp. axillaris and P. exserta occur in sympatry, and putative hybrids between them have been identified. Here, we analysed 14 expressed sequence tag-simple sequence repeats (EST-SSRs) in 126 wild individuals and 13 putative morphological hybrids with the goals of identifying differentially encoded alleles to characterize their natural genetic diversity, establishing a genetic profile for each taxon and to verify the presence of hybridization signal. Overall, 143 alleles were identified and all taxa contained private alleles. Four major groups were identified in clustering analyses, which indicated that there are genetic distinctions among the groups. The markers evaluated here will be useful in evolutionary studies involving these species and may help categorize individuals by species, thus enabling the identification of hybrids between both their putative taxa. The individuals with intermediate morphology presented private alleles of their both putative parental species, although they showed a level of genetic mixing that was comparable with some of the individuals with typical P. exserta morphology. The EST-SSR markers scattered throughout the Petunia genome are very efficient tools for characterizing the genetic diversity in wild taxa of this genus and aid in identifying interspecific hybrids based on the presence of private alleles. These properties indicate that these markers will be helpful tools in evolutionary studies.
ABSTRACT
In order to saturate a sunflower genetic map and facilitate marker-assisted selection (MAS) breeding for stress response, it is necessary to enhance map saturation with molecular markers localized in linkage groups associated to genomic regions involved in these traits. This work describes the identification and characterization of 1,134 simple sequence repeat (SSR) containing expressed sequence tags (EST) from unigenes available databases. Twelve of these functional markers as well as 41 public SSR markers were successfully localized in linkage groups, thus contributing to the saturation of specific regions on a reference genetic-linkage-map derived from recombinant inbred lines (RIL) mapping population from the cross between PAC2 x RHA266 lines. The enriched map includes 547 markers (231 SSR, 9 EST-SSR, 3 insertions/deletions (InDel) and 304 amplified fragment length polymorphisms (AFLP) distributed in 17 linkage groups (LG), spanning genetic size to 1,942.3 cM and improving its mean density to 3.6 cM per locus. As consequence, no gaps longer than 13.2 cM remain uncovered throughout the entire map, which increases the feasibility of detecting genes or traits of agronomic importance in sunflower.
Subject(s)
Chromosome Mapping , Helianthus/genetics , DNA, Plant/genetics , Agriculture , Amplified Fragment Length Polymorphism Analysis , Breeding , Genetic Linkage , Genetic Markers , INDEL Mutation , Microsatellite Repeats , Polymerase Chain Reaction , Polymorphism, GeneticABSTRACT
Making use of the gene resources of wild type peanuts is a way to increase the genetic diversity of the cultivars. Marker assisted selection (MAS) could shorten the process of inter-specific hybridization and provide a possible way to remove the undesirable traits. However, the limited number of molecular markers available in peanut retarded its MAS process. We started a peanut ESTs (Expressed Sequence Tags) project aiming at cloning genes with agronomic importance and developing molecular markers. In this study we found 610 ESTs that contained one or more SSRs from 12,000 peanut ESTs. The most abundant SSRs in peanut are trinucleotides (66.3 percent) SSRs and followed by dinucleotide (28.8 percent) SSRs. AG/TC (10.7 percent) repeat was the most abundant and followed by CT/GA (9.0 percent), CTT/GAA (7.4 percent), and AAG/TTC (7.3 percent) repeats. Ninety-four SSR containing ESTs were randomly selected for primer design and synthesis, of which 33 pairs could generate good amplification and were used for polymorphism assessment. Results showed that polymorphism was very low in cultivars, while high level of polymorphism was revealed in wild type peanuts.