Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Genet Genomic Med ; 12(5): e2451, 2024 May.
Article in English | MEDLINE | ID: mdl-38760995

ABSTRACT

BACKGROUND: Ellis-van Creveld syndrome (EvCS) is a chondroectodermal dysplasia caused by germline pathogenic variants in ciliary complex subunit 1 and 2 genes (EVC, EVC2) on chromosome 4p16.2. This disease has a broad phenotype, and there are few described phenotype-genotype correlations. METHODS: Ethical Compliance: Written informed consent was obtained from the parents. Here, we report a genetically confirmed Mexican patient with EvCS having two inherited pathogenic variants in trans in EVC2: c.[1195C>T];[2161delC]. RESULTS: This patient allowed a genotypic-phenotypic comparison with another Mexican subject who presented a more attenuated phenotype; furthermore, our patient also presented cleft palate, a rarely reported feature. CONCLUSION: Our case shows the importance of comparing functional hemizygosity between patient's phenotypes when they share a variant, and our case also supports the association of alterations in the palate as part of the EvCS phenotype.


Subject(s)
Cleft Palate , Ellis-Van Creveld Syndrome , Phenotype , Humans , Cleft Palate/genetics , Cleft Palate/pathology , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/pathology , Mexico , Male , Female , Intercellular Signaling Peptides and Proteins
2.
Genes (Basel) ; 14(4)2023 04 09.
Article in English | MEDLINE | ID: mdl-37107645

ABSTRACT

BACKGROUND: Ellis-van Creveld syndrome (EvCS) is an autosomal recessive ciliopathy with a disproportionate short stature, polydactyly, dystrophic nails, oral defects, and cardiac anomalies. It is caused by pathogenic variants in the EVC or EVC2 genes. To obtain further insight into the genetics of EvCS, we identified the genetic defect for the EVC2 gene in two Mexican patients. METHODS: Two Mexican families were enrolled in this study. Exome sequencing was applied in the probands to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in the parents. Finally, a prediction of the three-dimensional structure of the mutant proteins was made. RESULTS: One patient has a compound heterozygous EVC2 mutation: a novel heterozygous variant c.519_519 + 1delinsT inherited from her mother, and a heterozygous variant c.2161delC (p.L721fs) inherited from her father. The second patient has a previously reported compound heterozygous EVC2 mutation: nonsense mutation c.645G > A (p.W215*) in exon 5 inherited from her mother, and c.273dup (p.K92fs) in exon 2 inherited from her father. In both cases, the diagnostic was Ellis-van Creveld syndrome. Three-dimensional modeling of the EVC2 protein showed that truncated proteins are produced in both patients due to the generation of premature stop codons. CONCLUSION: The identified novel heterozygous EVC2 variants, c.2161delC and c.519_519 + 1delinsT, were responsible for the Ellis-van Creveld syndrome in one of the Mexican patients. In the second Mexican patient, we identified a compound heterozygous variant, c.645G > A and c.273dup, responsible for EvCS. The findings in this study extend the EVC2 mutation spectrum and may provide new insights into the EVC2 causation and diagnosis with implications for genetic counseling and clinical management.


Subject(s)
Ellis-Van Creveld Syndrome , Membrane Proteins , Humans , Female , Membrane Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/diagnosis , Pedigree , Mutation , Codon, Nonsense
SELECTION OF CITATIONS
SEARCH DETAIL