Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; : 176745, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39383957

ABSTRACT

The Southern Ocean can sequester atmospheric CO2 through biological pumps, though its driving factors are debated. The Southern Ocean is nutrient-limited and modern productivity is regulated by natural iron fertilization from micronutrient influx through dust, regeneration, and Antarctic glaciers and sea ice melting (ice melt). While the long-term utilization of micronutrients through oceanic productivity is unknown. The productivity along the eastern Antarctic continental margin was low during the last glacial period, and gradual increase through the deglacial to Late Holocene, marked by distinct productivity peaks. The micronutrients also varied in a similar pattern, as minimal glacial influx and increase towards the Holocene may cause productivity peaks. Therefore the enhanced productivity and micronutrient influx periods are considered as the iron fertilization periods. The increase in productivity peaks declined during this period is declined within ~1.5 kyr, mostly due to the Ekman transport and sea ice formation. Along with ice melt, The independent weathering pattern that responds with glacial- interglacial ice volume changes suggest the source of micronutrients are other than terrigenous. Variations in the shelf interaction of ACC can influence the water column nutrient stock significantly, while its utilization occurs during minimal Albedo periods with ice (low sea ice and glaciers) released micronutrients periods. Therefore, enhanced natural iron fertilization periods are implicated as are considered as low sea ice minimum periods, at ~7.5 kyr BP, ~5.5 kyr BP, ~4 kyr BP, ~ 2.5 kyr BP, and ~0.5 kyr BP, likely formed due to the mutual effects of atmospheric and oceanographic factors mostly driven by the high amplitude regional temperature variability during the mid to late Holocene.

2.
Mar Environ Res ; 192: 106220, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832282

ABSTRACT

Polar regions are warming faster than the world average and are profoundly affected by changes in the spatio-temporal dynamics of sea ice, with largely unknown repercussions on the functioning of marine ecosystems. Here, we investigated the impacts of interannual sea-ice variability on coastal benthic communities in Antarctica, focusing on a close-to-pristine area (Adélie Land). We investigated shell growth of the circum-Antarctic bivalve Laternula elliptica, considered a key species in these soft bottom benthic communities. Chondrophores of live-collected clams were prepared using standard sclerochronological methods to study the interannual variability of shell growth from 1996 to 2015. Our results show that the master chronology varied with sea-ice dynamics. When sea ice breaks up too early, sympagic algae do not have time to accumulate sufficiently high biomass, thus strongly limiting the energy input to the benthos. This negatively affects the physiological performance of L. elliptica, thereby altering their population dynamics and hence the functioning of these soft-bottom ecosystems.


Subject(s)
Bivalvia , Ecosystem , Animals , Antarctic Regions , Ice Cover , Bivalvia/physiology , Biomass
3.
Front Microbiol ; 14: 1323148, 2023.
Article in English | MEDLINE | ID: mdl-38249463

ABSTRACT

The Antarctic terrestrial environment harbors a diverse community of microorganisms, which have adapted to the extreme conditions. The aim of this study was to describe the composition of microbial communities in a diverse range of terrestrial environments (various biocrusts and soils, sands from ephemeral wetlands, biofilms, endolithic and hypolithic communities) in East Antarctica using both molecular and morphological approaches. Amplicon sequencing of the 16S rRNA gene revealed the dominance of Chloroflexi, Cyanobacteria and Firmicutes, while sequencing of the 18S rRNA gene showed the prevalence of Alveolata, Chloroplastida, Metazoa, and Rhizaria. This study also provided a comprehensive assessment of the microphototrophic community revealing a diversity of cyanobacteria and eukaryotic microalgae in various Antarctic terrestrial samples. Filamentous cyanobacteria belonging to the orders Oscillatoriales and Pseudanabaenales dominated prokaryotic community, while members of Trebouxiophyceae were the most abundant representatives of eukaryotes. In addition, the co-occurrence analysis showed a prevalence of positive correlations with bacterial taxa frequently co-occurring together.

4.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916238

ABSTRACT

Trace heavy metals Cd, Pb, and Cu were determined (by square wave anodic stripping voltammetry) in aerosol samples collected at Dome C (the Italo-French Station Concordia), a remote site of the Central East Antarctic plateau, for which no data are available until now. During the Austral Summer 2005-2006, three PM10 high-volume impactors were installed in two locations nearby of Concordia station: the first one very close and downwind of the station (about 50 m north), the other two (very close to each other) in a 'distant' site, upwind of the station and close to the astrophysics tent (not used in that expedition) at ~800 m south of Station Concordia. For each sample, the availability of the mass of the aerosol collected (obtained by differential weighing carried out on site), in addition to the volume of the filtered air, allowed us to express results both in terms of metal mass fractions in the aerosol and in the usual way of metal atmospheric concentrations. Metal contents increased in the order Cd < Pb < Cu with the following ranges of values: Cd 1.0-8.4 µg g-1 (0.09-3.1 pg m-3), Pb 96-470 µg g-1 (12-62 pg m-3), and Cu 0.17-20 mg g-1 (0.027-2.4 ng m-3). From the metal temporal profiles obtained we estimated the following background values for the area of Dome C, expressed both in mass fractions and in atmospheric concentrations: Cd 1.2 ± 0.2 µg g-1 (0.24 ± 0.13 pg m-3), Pb (here fixed as upper limit) 113 ± 13 µg g-1 (21 ± 8 pg m-3), and Cu 0.91 ± 0.48 mg g-1 (0.12 ± 0.07 ng m-3). The highest values were observed in the first part of the season, and particularly for the site close to the station, possibly related to sample contamination linked to intense activity at the Concordia station connected with the beginning of the expedition, including aircraft arrivals/departures. Increments of up to 10 times (and even 20 times for Cu) were recorded with respect to the background values. The metal excesses of the contaminated over background samples were found approximately, except for Cu, in the same proportion of the metal contents of the special Antarctic blend (SAB) diesel fuel, which is used almost exclusively at Concordia Station. The effect of the wind direction was also observed. Thus in the intermediate period of the campaign, when the wind direction reversed for several days with respect to the prevailing one, Cd and Pb metal contents decreased at the sampling point installed close to the station, now upwind of Concordia station, and increased at the 'clean' site astrophysics tent, turned downwind at the main station. No simple and easily interpretable effect of the wind direction was observed for Cu, which suggests that some other extemporaneous and not clearly identified factor may have intervened in this case. These results suggest that the human impact at Dome C influences mainly the zone very close to the station, but also the area in the neighborhood, including the supposed clean site of the astrophysics tent (about 800 m far from the station), when the wind direction reverses with respect to the prevailing one, leaving the site downwind of the station Concordia. Since no other data are reported for the Dome C area, our results are compared with literature data referred to the South Pole Station (the only other plateau site for which data are available) and several other coastal Antarctic sites, observing that our results (excluding Cu) are the lowest ever observed for Antarctic aerosol.

5.
J Hazard Mater ; 412: 125263, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33548780

ABSTRACT

A comprehensive study was presented on the ecological risk, distribution, and quantitative source apportionment of heavy metals in the selected lacustrine systems of Schirmacher Hills using various environmental indices and methods. A total of 25 sediment samples from 16 lakes were collected around scientific research stations and analyzed for metals. Geochemical approaches and ecological risk assessment methods were implemented to characterize and evaluate the contamination level and associated risk in the lacustrine systems. Moreover, statistical techniques and a positive matrix factorization (PMF) model were indorsed to understand metals' association and apportion their probable sources. Results revealed that most of the heavy metals (mean concentration in ppm) such as Al (77,504.09), Cd (1.36), Co (29.52), Cr (102.75), Cu (65.19), Fe (57,632.87), Mn (679.05), Ni (49.13), Pb (10.11), and Zn (253.78) are originated from natural weathering of source rocks (78.53%) followed by human-induced actions/ station activities coupled with atmospheric deposition (21.47%). Environmental risk assessment (ERA) techniques suggest that the lakes in the study area are under minimal to moderate enrichment/ contamination category and experienced minimal to adverse biological effects where metal toxicity risk is minimal.

6.
Sensors (Basel) ; 21(3)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498699

ABSTRACT

Accurate short-term small-area meteorological forecasts are essential to ensure the safety of operations and equipment operations in the Antarctic interior. This study proposes a deep learning-based multi-input neural network model to address this problem. The newly proposed model is predicted by combining a stacked autoencoder and a long- and short-term memory network. The self-stacking autoencoder maximises the features and removes redundancy from the target weather station's sensor data and extracts temporal features from the sensor data using a long- and short-term memory network. The proposed new model evaluates the prediction performance and generalisation capability at four observation sites at different East Antarctic latitudes (including the Antarctic maximum and the coastal region). The performance of five deep learning networks is compared through five evaluation metrics, and the optimal form of input combination is discussed. The results show that the prediction capability of the model outperforms the other models. It provides a new method for short-term meteorological prediction in a small inland Antarctic region.

7.
Mar Pollut Bull ; 154: 111130, 2020 May.
Article in English | MEDLINE | ID: mdl-32319937

ABSTRACT

The durability of plastics in the marine environment has led to concerns regarding the pervasiveness of this debris in remote polar habitats. Microplastic (MP) enrichment in East Antarctic sea ice was measured in one ice core sampled from coastal land-fast sea ice. The core was processed and filtered material was analyzed using micro Fourier-Transform Infrared (µFTIR) spectroscopy. 96 MP particles were identified, averaging 11.71 particles L-1. The most common MP polymers (polyethylene, polypropylene, and polyamide) were consistent with those most frequently represented in the majority of marine MP studies. Sea-ice MP concentrations were positively related with chlorophyll a, suggesting living biomass could assist in incorporating MPs in sea ice. Our preliminary results indicate that sea ice has the potential to serve as a reservoir for MP debris in the Southern Ocean, which may have consequences for Southern Ocean food webs and biogeochemistry.


Subject(s)
Plastics , Water Pollutants, Chemical/analysis , Antarctic Regions , Chlorophyll A , Environmental Monitoring , Ice Cover , Microplastics
8.
Chemosphere ; 251: 126399, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32163783

ABSTRACT

In this study, a shallow ice core (12.5 m, called LGB) was drilled at the Lambert Glacial Basin, East Antarctica. The major ion and metal elements were measured at 5-6 cm resolution in this shallow core, which covered the period 1990-2017. Therefore, an annual-resolution record of iron (Fe) concentrations and fluxes were reconstructed in this shallow ice core. Although the Fe data is comparable to previous results, our results emphasized that much more dissolved Fe (DFe) from the Cerro Hudson volcanic event (August 1991) was transported to the East Antarctic ice sheet, in comparison with the Pinatubo volcanic event (June 1991). The aeolian dust may be the primary DFe source during 1990-2017. In particular, the DFe variations may be affected by the biomass burning emissions in two periods (1990-1998 and 2014-2017). While total dissolved Fe (TDFe) variations were controlled by the climatic conditions since 2000 because of the temperature (δ18O) decreasing at East Antarctica. These Fe data will be useful to assess the modern bioavailable Fe release for the Antarctica ice sheet.


Subject(s)
Environmental Monitoring , Ice Cover/chemistry , Iron/analysis , Antarctic Regions , Biomass , Dust/analysis , Iron/chemistry , Metals , Temperature
9.
Sci Total Environ ; 709: 134496, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31874340

ABSTRACT

Penguin colonies in Antarctica offer an ideal "natural laboratory" to investigate ecosystem function and the nitrogen (N) cycle. This study assessed the spatial distribution of penguin-derived N from guano and quantitatively assessed its impact on plant N utilization strategies in Victoria Land, Ross Sea region, Antarctica. Soil, moss, and aquatic microbial mats were collected inside and outside an active Adélie penguin (Pygoscelis adeliae) colony and analyzed for δ15N of total and inorganic nitrogen (NH4+-N and NO3--N). The soil total nitrogen (TN), NH4+-N, and NO3--N concentrations, as well as their δ15N values were significantly higher in guano-impacted areas than those in guano-free areas, verifying that guano is an important N source at and near penguin colonies. However, even far from the penguin colonies, soil δ15N values resembled those in penguin colonies, suggesting strong spatial impacts of penguin-derived N. The moss impacted by guano was more enriched in δ15N than in guano-free areas. The δ15N values of NH4+-N and NO3--N in soils covered with moss revealed that the moss might prefer inorganic N in the absence of guano, while the dissolved organic N would become an important source for moss growing on ornithogenic soils. Aquatic microbial mat samples near penguin colonies were 15N-enriched, but 15N-depleted at upland sites.


Subject(s)
Spheniscidae , Animals , Antarctic Regions , Ecosystem , Nitrogen Cycle , Soil
10.
Ecotoxicology ; 28(5): 589-596, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31044329

ABSTRACT

Anthropogenic activity in East Antarctica has increased since the last 2-3 decades because of various scientific expeditions. Additionally, global pollution due to various newly introduced pollutants like pesticides is on use since the past century and many factors contribute to contamination even in Antarctica. During thirty fourth Indian Scientific Expedition to Antarctica (ISEA) in austral summer of 2014-2015, fifteen lake water samples were collected from five different lakes at Broknes peninsula, Larsemann Hills, East Antarctica. Persistent Organic Pollutants (POPs) residue levels found in lake water samples varied from 10.33-70.00 pg/mL in five different lakes. Presence of p,p'-DDT was detected in all different lakes but high concentration found in P4 lake water. After study confirms that Broknes peninsula in the Larsemann Hills area, East Antarctica has a trace amount of POPs which is an alarming situation and needs to be investigated further to maintain the pristine environment in Antarctica. The presence of POPs may be attributed to orographic effects, migratory birds, biomagnification and anthropogenic sources. In the future, new emerging pollutants must be analyzed like microplastics, phthalate, Paraxanthene etc.


Subject(s)
Environmental Monitoring , Lakes/analysis , Water Pollutants, Chemical/analysis , Antarctic Regions
11.
Sci Total Environ ; 675: 380-389, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31030144

ABSTRACT

Iron concentrations in the Southern Ocean are thought to act as a driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). This study presents the concentrations of bioavailable Fe (dissolved Fe (DFe) and total dissolved Fe (TDFe)), major ions (Na+, K+, Mg2+, Ca2+, Cl-,NO3-,SO42- and methanesulfonic acid (MSA)), heavy metal elements (Sr, Pb, V, Ti and Cd), and rare earth elements (REEs; specifically, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) and the oxygen and hydrogen isotopic compositions (δ18O and δD) from a series of surface snow samples collected during from January 22 to February 5, 2017 along a traverse from Zhongshan Station to Dome A in East Antarctica. The results reflect the Antarctic surface snow Fe and the other trace element concentrations on the East Antarctica ice sheet. In particular, the DFe and TDFe concentrations were measured using inductively coupled plasma sector field mass spectrometry (SF-ICP-MS). The concentration patterns of DFe and TDFe show three different stages along this transect. First, there is an abrupt decrease with distance inland from the coast and then a slight decreasing trend with increasing elevation. The maximum concentrations were observed at distances of 450-600 km from the coast, indicating that there are different potential sources and/or transporting air masses. The variations show that the sources and processes that deliver bioavailable Fe differ along this transect. These data are useful for assessing bioavailable Fe release from the Antarctic ice sheet.

12.
Zoological Lett ; 5: 4, 2019.
Article in English | MEDLINE | ID: mdl-30656062

ABSTRACT

BACKGROUND: Sea spiders (Pycnogonida) are an abundant faunal element of the Southern Ocean (SO). Several recent phylogeographical studies focused on the remarkably diverse SO pycnogonid fauna, resulting in the identification of new species in previously ill-defined species complexes, insights into their genetic population substructures, and hypotheses on glacial refugia and recolonization events after the last ice age. However, knowledge on the life history of many SO pycnogonids is fragmentary, and early ontogenetic stages often remain poorly documented. This impedes assessing the impact of different developmental pathways on pycnogonid dispersal and distributions and also hinders pycnogonid-wide comparison of developmental features from a phylogenetic-evolutionary angle. RESULTS: Using scanning electron microscopy (SEM) and fluorescent nuclear staining, we studied embryonic stages and postembryonic instars of three SO representatives of the taxon Pallenopsidae (Pallenopsis villosa, P. hodgsoni, P. vanhoeffeni), the development of which being largely unknown. The eggs are large and yolk-rich, and the hatching stage is an advanced lecithotrophic instar that stays attached to the father for additional molts. The first free-living instar is deduced to possess at least three functional walking leg pairs. Despite gross morphological similarities between the congeners, each instar can be reliably assigned to a species based on body size, shape of ocular tubercle and proboscis, structure of the attachment gland processes, and seta patterns on cheliphore and walking legs. CONCLUSIONS: We encourage combination of SEM with fluorescent markers in developmental studies on ethanol-preserved and/or long term-stored pycnogonid material, as this reveals internal differentiation processes in addition to external morphology. Using this approach, we describe the first known cases of pallenopsid development with epimorphic tendencies, which stand in contrast to the small hatching larvae in other Pallenopsidae. Evaluation against current phylogenetic hypotheses indicates multiple gains of epimorphic development within Pycnogonida. Further, we suggest that the type of development may impact pycnogonid distribution ranges, since free-living larvae potentially have a better dispersal capability than lecithotrophic attaching instars. Finally, we discuss the bearing of pycnogonid cheliphore development on the evolution of the raptorial first limb pair in Chelicerata and support a multi-articled adult limb as the plesiomorphic state of the chelicerate crown group, arising ontogenetically via postembryonic segmentation of a three-articled embryonic limb.

13.
Mar Environ Res ; 142: 7-20, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30253918

ABSTRACT

Eastward transport in the Southern Ocean is concentrated in jets associated with fronts in the Antarctic Circumpolar Current (ACC), whereas flow along the Antarctic continental slope is strongly westward in the Antarctic Slope Current (ASC). The dominant mesopelagic fish endemic to the Southern Ocean, Electrona antarctica (Günther, 1878), has been linked to Circumpolar Deep Water (CDW) transported by the ACC, and a modified version of CDW associated with the ASC. In conjunction with a regional-scale hydrographic survey south of the Kerguelen Plateau, we sampled fish from the ACC and ASC across Princess Elizabeth Trough off East Antarctica, and examined their otolith chemistry. Material laid down in the nucleus during early life showed heterogeneity, arguing against a single homogeneous population. Instead, it suggested exposure to different environments after hatching, consistent with separate transport pathways along the ACC and ASC. Despite clear differences between stations documented in the survey, material laid down along the edge did not show heterogeneity, suggesting instead exposure to similar environments. Seasonal movement northward by ASC fish into the ACC may explain both these results, and potential physical mechanisms include circulation in the Australian-Antarctic Gyre; northward movement of slope waters along the eastern margin of Princess Elizabeth Trough; and seasonal extension of sea-ice into the ACC. Such meridional movement would expose fish to zonal flow, eastward in the ACC during winter and westward in the ASC during summer, promoting regional retention as well as creating opportunities for mixing with fish transported along the ACC.


Subject(s)
Fishes , Otolithic Membrane/chemistry , Water Movements , Animals , Antarctic Regions , Environment , Seasons
14.
Front Microbiol ; 8: 1534, 2017.
Article in English | MEDLINE | ID: mdl-28848537

ABSTRACT

Glacial forelands are extremely sensitive to temperature changes and are therefore appropriate places to explore the development of microbial communities in response to climate-driven deglaciation. In this study, we investigated the bacterial communities that developed at the initial stage of deglaciation using space-for-time substitution in the foreland of an ice sheet in Larsemann Hills. A series of soil samples across the glacial foreland were deeply sequenced with 16S rRNA gene amplicon sequencing to determine the bacterial community, including both abundant bacteria, which contribute more to geobiochemistry, and rare bacteria, which serve as a seed bank for diversity. Our results show that abundant bacterial communities were more sensitive to changing conditions in the early stages of deglaciation than rare community members. Moreover, among the environmental parameters tested, which included total organic carbon, pH, and moisture of the soils, ice thickness was the most influential factor affecting the community structure of abundant bacteria. These results show the different effects of abundant and rare bacteria on community shifts and highlight ice thickness as the primary factor affecting the bacterial community in the early stages of deglaciation. The response of microbial community to climate change can be predicted with more certainty in this polar region.

15.
Front Microbiol ; 8: 1347, 2017.
Article in English | MEDLINE | ID: mdl-28824553

ABSTRACT

In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1), middle (U2), and inner (U3) decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI) values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance.

16.
Chemosphere ; 176: 273-287, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28273535

ABSTRACT

In this work we present the isotopic, chemical and dust stratigraphies of two snow pits sampled in 2013/14 at GV7 (coastal East Antarctica: 70°41' S - 158°51' E, 1950 m a.s.l.). A large number of chemical species are measured aiming to study their potentiality as environmental changes markers. Seasonal cluster backward trajectories analysis was performed and compared with chemical marker stratigraphies. Sea spray aerosol is delivered to the sampling site together with snow precipitation especially in autumn-winter by air masses arising from Western Pacific Ocean sector. Dust show maximum concentration in spring when the air masses arising from Ross Sea sector mobilize mineral dust from ice-free areas of the Transantarctic mountains. The clear seasonal pattern of sulfur oxidized compounds allows the dating of the snow-pit and the calculation of the mean accumulation rate, which is 242 ± 71 mm w.e. for the period 2008-2013. Methanesulfonic acid and NO3- do not show any concentration decreasing trend as depth increases, also considering a 12 m firn core record. Therefore these two compounds are not affected by post-depositional processes at this site and can be considered reliable markers for past environmental changes reconstruction. The rBC snow-pit record shows the highest values in summer 2012 likely related to large biomass burning even occurred in Australia in this summer. The undisturbed accumulation rate for this site is demonstrated by the agreement between the chemical stratigraphies and the annual accumulation rate of the two snow-pits analysed in Italian and Korean laboratories.


Subject(s)
Dust/analysis , Environmental Monitoring/methods , Ice Cover/chemistry , Snow/chemistry , Aerosols , Antarctic Regions , Australia , Oxygen Isotopes/analysis , Pacific Ocean , Seasons , Sulfur Compounds/analysis
17.
Sci Adv ; 2(12): e1601610, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28028540

ABSTRACT

Mass loss from the West Antarctic ice shelves and glaciers has been linked to basal melt by ocean heat flux. The Totten Ice Shelf in East Antarctica, which buttresses a marine-based ice sheet with a volume equivalent to at least 3.5 m of global sea-level rise, also experiences rapid basal melt, but the role of ocean forcing was not known because of a lack of observations near the ice shelf. Observations from the Totten calving front confirm that (0.22 ± 0.07) × 106 m3 s-1 of warm water enters the cavity through a newly discovered deep channel. The ocean heat transport into the cavity is sufficient to support the large basal melt rates inferred from glaciological observations. Change in ocean heat flux is a plausible physical mechanism to explain past and projected changes in this sector of the East Antarctic Ice Sheet and its contribution to sea level.

18.
Sci Total Environ ; 553: 466-473, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26930318

ABSTRACT

Ornithogenic sediments are rich in toxic As (arsenic) compounds, posing a potential threat to local ecosystems. Here we analyzed the distribution of As speciation in three ornithogenic sediment profiles (MB6, BI and CC) collected from the Ross Sea region, East Antarctica. The distributions of total As and total P (phosphorus) concentrations were highly consistent in all three profiles, indicating that guano input is a major factor controlling total As distribution in the ornithogenic sediments. The As found in MB6 and CC is principally As(V) (arsenate), in BI As(III) (arsenite) predominates, but the As in fresh guano is largely composed of DMA (dimethylarsinate). The significant difference of As species between fresh guano and ornithogenic sediment samples may be related to diagenetic processes after deposition by seabirds. Based on analysis of the sedimentary environment in the studied sediments, we found that the redox conditions have an obvious influence on the As speciation distribution. Moreover, the distributions of As(III) and chlorophyll a in the MB6 and BI profiles are highly consistent, demonstrating that aquatic algae abundance may also influence the distribution patterns of As speciation in the ornithogenic sediments.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Antarctic Regions , Geologic Sediments/chemistry
19.
Springerplus ; 4: 582, 2015.
Article in English | MEDLINE | ID: mdl-26543717

ABSTRACT

The Larsemann Hills is an ice-free area of approximately 50 km(2), located halfway between the Vestfold Hills and the Amery Ice Shelf on the south-eastern coast of Prydz Bay, Princess Elizabeth Land, East Antarctica (69º30'S, 76º19'58″E). The ice-free area consists of two major peninsulas (Stornes and Broknes), four minor peninsulas, and approximately 130 islands. The Larsemann Hills area contains more than 150 lakes at different Islands and Peninsulas. Nine lake water samples were collected in a gamma sterilized bottles and were kept in an ice pack to prevent any changes in the microbial flora of the samples during the transportation. The water samples were transported to the lab in vertical position maintaining the temperature 1-4 °C with ice pack enveloped conditions. Samples were studied for Psychrophilic bacterial count, Pseudomonas spp., Staphylococcus aureus, Salmonella and Total MPN Coliform per 100 ml. Psychrophillic counts were found in the range of 12 cfu to 1.6 × 10(2) cfu in all the samples. MPN Coliform per 100 ml was found to be absent in all the samples. No growth and characteristics colonies observed when tested for Salmonella and S.aureus. Pseudomonas sp. was found in ST-2 lake water sample as characteristics colonies (Optimum Growth) were observed on selective media at 22 and 25 °C. Further several biochemical tests were also performed to confirm the presence of this Potential Psychrophilic Pseudomonas sp. for its further application in Science and Technology.

20.
Sci Total Environ ; 538: 644-53, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26322729

ABSTRACT

To evaluate mobility of toxic elements and their potential ecological risk caused by seabird biovectors, the fractionation distributions of arsenic (As), mercury (Hg) and cadmium (Cd) were investigated in three ornithogenic sediment profiles from the Ross Sea region, East Antarctica. The results show residual As holds a dominant position, and Hg mainly derives from residual, organic matter-bound and humic acid-bound fractions, indicating weak mobility of As and Hg. However, exchangeable Cd occupies a considerable proportion in studied samples, suggesting Cd has strong mobility. The preliminary evaluation of Sediment Quality Guidelines (SGQs) shows adverse biological effects may occur occasionally for As and Cd, and rarely for Hg. Using Risk Assessment Code (RAC), the ecological risk is assessed at moderate, low and very high for As, Hg and Cd pollution, respectively. Organic matter derived from guano is the main factor controlling the mobility of Hg and Cd through adsorption and complexation.


Subject(s)
Arsenic/analysis , Cadmium/analysis , Environmental Monitoring , Geologic Sediments/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Antarctic Regions , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL