Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 639
Filter
1.
Int Immunopharmacol ; 140: 112834, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116495

ABSTRACT

BACKGROUND: Atherosclerotic (AS) plaques require a dense necrotic core and a robust fibrous cap to maintain stability. While previous studies have indicated that the traditional Chinese medicine Huang Lian Jie Du Decoction (HLJDD) possesses the capability to stabilize AS plaques, the underlying mechanisms remain obscure. This study aims to delve deeper into the potential mechanisms by which HLJDD improves AS through an integrated research strategy. METHODS: Leveraging an AS model in ApoE-/- mice exposed to a high-fat diet (HFD), we scrutinized the therapeutic effects of HLJDD using microscopic observations, oil red O staining, HE staining and Masson staining. Employing comprehensive techniques of network pharmacology, bioinformatics, and molecular docking, we elucidated the mechanism by which HLJDD stabilizes AS plaques. In vitro experiments, utilizing ox-LDL-induced macrophages and apoptotic vascular smooth muscle cells (VSMCs), assessed the impact of HLJDD on efferocytosis and the role of SLC2A1. RESULTS: In vivo experiments showcased the efficacy of HLJDD in reducing the quantity of aortic plaques, diminishing lipid deposition, and enhancing plaque stability in AS mice. Employing network pharmacology and machine learning, we pinpointed SLC2A1 as a crucial regulatory target. Molecular docking further validated the binding of HLJDD components with SLC2A1. The experiments demonstrated a dose-dependent upregulation in SLC2A1 expression by HLJDD, amplifying efferocytosis. Importantly, this effect was reversed by the SLC2A1 inhibitor STF-31, highlighting the pivotal role of SLC2A1 as a target. CONCLUSION: The HLJDD can modulate macrophage efferocytosis by enhancing the expression levels of SLC2A1, thereby improving the stability of atherosclerotic plaques.

2.
FASEB J ; 38(15): e23857, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39114953

ABSTRACT

Atherosclerotic plaque formation is largely attributed to the impaired efferocytosis, which is known to be associated with the pathologic upregulation of cluster of differentiation 47 (CD47), a key antiphagocytic molecule. By gene expression omnibus (GEO) datasets analysis, we identified that four miRNAs are aberrantly downregulated in atherosclerosis, coronary artery disease, and obesity. Of them, hsa-miR-299-3p (miR-299-3p) was predicted to target the 3'UTR of human CD47 mRNA by bioinformatics analysis. Further, we demonstrated that miR-299-3p negatively regulates CD47 expression by binding to the target sequence "CCCACAU" in the 3'UTR of CD47 mRNA through luciferase reporter assay and site-directed mutagenesis. Additionally, we found that miR-299-3p was downregulated by ~32% in foam cells in response to oxidized low-density lipoprotein (ox-LDL) stimulation, thus upregulating CD47 and contributing to the impaired efferocytosis. Whereas, restoration of miR-299-3p reversed the ox-LDL-induced upregulation of CD47, thereby facilitating efferocytosis. In high-fat diet (HFD) fed ApoE-/- mice, we discovered that miR-299-3p was downregulated thus leading to upregulation of CD47 in abdominal aorta. Conversely, miR-299-3p restoration potently suppressed HFD-induced upregulation of CD47 and promoted phagocytosis of foam cells by macrophages in atherosclerotic plaques, thereby reducing necrotic core, increasing plaque stability, and mitigating atherosclerosis. Conclusively, we identify miR-299-3p as a negative regulator of CD47, and reveal a molecular mechanism whereby the ox-LDL-induced downregulation of miR-299-3p leads to the upregulation of CD47 in foam cells thus contributing to the impaired efferocytosis in atherosclerosis, and propose miR-299-3p can potentially serve as an inhibitor of CD47 to promote efferocytosis and ameliorate atherosclerosis.


Subject(s)
Atherosclerosis , CD47 Antigen , Efferocytosis , MicroRNAs , Animals , Humans , Mice , 3' Untranslated Regions , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Diet, High-Fat/adverse effects , Foam Cells/metabolism , Foam Cells/pathology , Lipoproteins, LDL/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism
3.
BMC Med Genomics ; 17(1): 198, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107816

ABSTRACT

The impact of efferocytosis-related genes (ERGs) on the diagnosis of colorectal cancer (CRC) remains unclear. In this study, efferocytosis-associated biomarkers for the diagnosis of CRC were identified by integrating data from transcriptome sequencing and public databases. Finally, the expression of biomarkers was validated by real-time quantitative polymerase chain reaction (RT-qPCR). Our study may provide a reference for CRC diagnosis. BACKGROUND: It has been shown that some efferocytosis related genes (ERGs) are associated with the development of cancer. However, it is still uncertain how ERGs may influence the diagnosis of colorectal cancer (CRC). METHODS: In our study, the CRC cohorts were gained from transcriptome sequencing and the gene expression omnibus (GEO) database (GSE71187). Efferocytosis related biomarkers with diagnostic utility for CRC were identified through combining differentially expressed analysis, machine learning algorithms, and receiver operating characteristic (ROC) analysis. Then, infiltration abundance of immune cells between CRC and control was evaluated. The regulatory networks (including mRNA-miRNA-lncRNA and miRNA/transcription factors (TF)-mRNA networks) were created. Finally, the expression of biomarkers was validated via real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: There were 3 biomarkers (ELMO3, P2RY12, and PDK4) related diagnosis for CRC patients gained. ELMO3 was highly expressed in CRC group, while P2RY12 and PDK4 was lowly expressed. Besides, the infiltrating abundance of 3 immune cells between CRC and control groups was significantly differential, namely activated CD4 memory T cells, macrophages M0, and resting mast cells. We then constructed a mRNA-miRNA-lncRNA network containing 3 mRNAs, 33 miRNAs, and 22 lncRNAs, and a miRNA/TF-mRNA network including 3 mRNAs, 33 miRNAs, and 7 TFs. Additionally, RT-qPCR results revealed that the expression trends of all biomarkers were consistent with the transcriptome sequencing data and GSE71187. CONCLUSION: Taken together, this study provides three efferocytosis related biomarkers (ELMO3, P2RY12, and PDK4) for diagnosis of CRC, providing a scientific reference for further studies of CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Efferocytosis , Humans , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Efferocytosis/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs/genetics , Transcriptome
4.
Adv Sci (Weinh) ; : e2402529, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101239

ABSTRACT

Treatment strategies for hard tissue defects aim to establish a mineralized microenvironment that facilitates tissue remodeling. As a mineralized tissue, cementum shares a similar structure with bone and exhibits an excellent capacity to resist resorption under compression. Macrophages are crucial for mineralized remodeling; however, their functional alterations in the microenvironment of cementum remain poorly understood. Therefore, this study explores the mechanisms by which cementum resists resorption under compression and the regulatory roles of cementoblasts in macrophage functions. As a result, extracellular vesicles from compression-loaded cementoblasts (Comp-EVs) promote macrophage M2 polarization and enhance the clearance of apoptotic cells (efferocytosis) by 2- to 3-fold. Local injection of Comp-EVs relieves cementum destruction in mouse root resorption model by activating the tissue repair function of macrophages. Moreover, Comp-EV-loaded hydrogels achieve significant bone healing in calvarial bone defect. Unexpectedly, under compression, EV secretion in cementoblasts is reduced by half. RNA-Seq analysis and verification reveal that Rab35 expression decreases by 60% under compression, thereby hampering the release of EVs. Rab35 overexpression is proposed as a modification of cementoblasts to boost the yield of Comp-EVs. Collectively, Comp-EVs activate the repair function of macrophages, which will be a potential therapeutic strategy for hard tissue repair and regeneration.

5.
bioRxiv ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39131348

ABSTRACT

T-cell Immunoglobulin and Mucin (TIM)-family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and virus infection. Here we show that rhesus macaque TIM1 (rhTIM1) and mouse TIM1 (mTIM1) bind PS but not PE and that their inability to bind PE makes them less efficient than hTIM1. We also show that alteration of only two residues of mTIM1 or rhTIM1 enables them to bind both PE and PS, and that these PE-binding variants are more efficient at phagocytosis and mediating viral entry. Further, we demonstrate that the mucin domain also contributes to the binding of the virions and apoptotic cells, although it does not directly bind phospholipid. Interestingly, contribution of the hTIM1 mucin domain is more pronounced in the presence of a PE-binding head domain. These results demonstrate that rhTIM1 and mTIM1 are inherently less functional than hTIM1, owing to their inability to bind PE and their less functional mucin domains. They also imply that mouse and macaque models underestimate the activity of hTIM1.

6.
J Drug Target ; : 1-17, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39099434

ABSTRACT

Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.

7.
Front Immunol ; 15: 1386658, 2024.
Article in English | MEDLINE | ID: mdl-39104537

ABSTRACT

Alcohol ingestion is a widespread habituation that evolved along with a growing population, altering physiological conditions through immunomodulatory function. There is much research that has reported that consumption of alcohol at low and heavy levels causes different biological impacts, including cellular injury, leading to systemic dysfunction and increased inflammatory markers. In the fate of professional phagocytic cells, efferocytosis is an inevitable mechanism activated by the apoptotic cells, thus eliminating them and preventing the accumulation of cell corpses/debris in the microenvironment. Subsequently, it promotes the tissue repair mechanism and maintains cellular homeostasis. Unfortunately, defective efferocytosis is widely found in several inflammatory and age-related diseases such as atherosclerosis, autoimmune diseases, lung injury, fatty liver disease, and neurodegenerative diseases. Alcohol abuse is one of the factors that provoke an immune response that increases the rate of morbidity and mortality in parallel in systemic disease patients. Information regarding the emergence of immunomodulation during alcoholic pathogenesis and its association with efferocytosis impairment remain elusive. Hence, here in this review, we discussed the mechanism of efferocytosis, the role of defective efferocytosis in inflammatory diseases, and the role of alcohol on efferocytosis impairment.


Subject(s)
Alcoholic Intoxication , Efferocytosis , Animals , Humans , Alcoholic Intoxication/immunology , Alcoholic Intoxication/metabolism , Apoptosis , Efferocytosis/immunology , Ethanol , Inflammation/immunology , Macrophages/immunology , Macrophages/metabolism , Phagocytes/immunology , Phagocytes/metabolism
8.
J Neuroinflammation ; 21(1): 170, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997746

ABSTRACT

Ischemia-induced retinopathy is a hallmark finding of common visual disorders including diabetic retinopathy (DR) and central retinal artery and vein occlusions. Treatments for ischemic retinopathies fail to improve clinical outcomes and the design of new therapies will depend on understanding the underlying disease mechanisms. Histone deacetylases (HDACs) are an enzyme class that removes acetyl groups from histone and non-histone proteins, thereby regulating gene expression and protein function. HDACs have been implicated in retinal neurovascular injury in preclinical studies in which nonspecific HDAC inhibitors mitigated retinal injury. Histone deacetylase 3 (HDAC3) is a class I histone deacetylase isoform that plays a central role in the macrophage inflammatory response. We recently reported that myeloid cells upregulate HDAC3 in a mouse model of retinal ischemia-reperfusion (IR) injury. However, whether this cellular event is an essential contributor to retinal IR injury is unknown. In this study, we explored the role of myeloid HDAC3 in ischemia-induced retinal neurovascular injury by subjecting myeloid-specific HDAC3 knockout (M-HDAC3 KO) and floxed control mice to retinal IR. The M-HDAC3 KO mice were protected from retinal IR injury as shown by the preservation of inner retinal neurons, vascular integrity, and retinal thickness. Electroretinography confirmed that this neurovascular protection translated to improved retinal function. The retinas of M-HDAC3 KO mice also showed less proliferation and infiltration of myeloid cells after injury. Interestingly, myeloid cells lacking HDAC3 more avidly engulfed apoptotic cells in vitro and after retinal IR injury in vivo compared to wild-type myeloid cells, suggesting that HDAC3 hinders the reparative phagocytosis of dead cells, a process known as efferocytosis. Further mechanistic studies indicated that although HDAC3 KO macrophages upregulate the reparative enzyme arginase 1 (A1) that enhances efferocytosis, the inhibitory effect of HDAC3 on efferocytosis is not solely dependent on A1. Finally, treatment of wild-type mice with the HDAC3 inhibitor RGFP966 ameliorated the retinal neurodegeneration and thinning caused by IR injury. Collectively, our data show that HDAC3 deletion enhances macrophage-mediated efferocytosis and protects against retinal IR injury, suggesting that inhibiting myeloid HDAC3 holds promise as a novel therapeutic strategy for preserving retinal integrity after ischemic insult.


Subject(s)
Histone Deacetylases , Mice, Inbred C57BL , Mice, Knockout , Animals , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Mice , Myeloid Cells/metabolism , Phagocytosis/drug effects , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Diseases/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Retina/metabolism , Retina/pathology , Efferocytosis
9.
Autoimmun Rev ; 23(6): 103578, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004157

ABSTRACT

Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.

10.
Tissue Cell ; 90: 102476, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39047550

ABSTRACT

BACKGROUND: Defective clearance of apoptotic and foam cells achieved by arterial macrophage efferocytosis propels the progression of inflammatory atherosclerosis, but related molecular mechanisms in this process remain unclear. Herein, this study is engineered to probe into the mechanism of peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC1α) on atherosclerosis. METHODS: The PGC1α/NLR family pyrin domain containing 3 (NLRP3)/peroxisome proliferator activated receptor alpha (PPARα) axis in oxidized low-density lipoprotein (ox-LDL)-induced RAW264.7 cells was verified using Western blot. Inflammatory response, NLRP3 activation, efferocytotic efficiency and lipid uptake of the ox-LDL-stimulated cells overexpressing PGC1α or/and silencing PPARα were detected by enzyme-linked immunosorbent assay, immunofluorescence, tracing of apoptotic Jurkat cells and Oil red O staining. RESULTS: PGC1α and PPARα levels were decreased, but NLRP3 level was increased in ox-LDL-stimulated RAW264.7 cells (P<0.001). PGC1α overexpression repressed the levels of IL-1ß, IL-6 and TNF-α, NLRP3 expression or activation and foam cell formation (P<0.05), but enhanced efferocytosis as well as expressions of AXL, MERTK and TYRO3 in ox-LDL-stimulated cells (P<0.001). PGC1α overexpression increased PPARα expression. However, PPARα silencing reversed the effects of PGC1α overexpression on protecting macrophages against ox-LDL-induced inflammation, efferocytotic impairment and foam cell formation (P<0.05). CONCLUSION: Overexpression PGC1α decreased NLRP3 activation to promoted the expression of PPARα, which alleviated the impairment of macrophage efferocytosis and inhibited the development of atherosclerosis development.

11.
Biomed Pharmacother ; 177: 117112, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39018869

ABSTRACT

Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.


Subject(s)
Atherosclerosis , Iron Overload , Oxidative Stress , Oxidative Stress/drug effects , Humans , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Iron Overload/drug therapy , Iron Overload/metabolism , Animals , Reactive Oxygen Species/metabolism , Ferroptosis/drug effects , Iron/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Medicine, Chinese Traditional/methods , Macrophages/drug effects , Macrophages/metabolism
12.
J Integr Neurosci ; 23(7): 140, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39082291

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) impairs hippocampal microglial efferocytosis, causing cognitive deficits. Previous research found that milk fat globule epidermal growth factor 8 protein (MFGE8) stimulates efferocytosis, reducing hippocampal inflammation in SAE rats. In this study, we explore MFGE8's role in alleviating cognitive impairment and its impact on neural activity using functional magnetic resonance imaging (fMRI). METHODS: Sixty male Sprague Dawley rats were divided into four groups: Sham, cecal ligation and puncture (CLP), CLP+MFGE8, and CLP+MFGE8+CGT (Cilengitide). After CLP, CLP+MFGE8 rats received intracerebroventricular MFGE8 (3.3 µg), while CLP+MFGE8+CGT rats received intraperitoneal Cilengitide (10 mg/kg). We assessed cognitive function with the Morris water maze and open field test over five days. Eight days post-surgery, rats underwent T2-weighted magnetic resonance imaging (MRI) and resting state (rs)-fMRI scans. Brain tissues were collected for western blot, hematoxylin-eosin (HE) staining, and immunofluorescence. Statistical analysis employed one-way analysis of variance (ANOVA) followed by Tukey's post-test for multiple comparisons. RESULTS: MFGE8 improved neurobehavioral performance in open field task (OFT) and morris water maze (MWM) tests. fMRI indicated a significant reduction in abnormal neural activity in the right hippocampal CA1, CA3, and dentate gyrus of SAE rats following MFGE8 treatment. Voxel-based morphometry (VBM) analysis revealed decreased high-signal areas in the hippocampus, along with reduced hippocampal volume due to alleviated neural edema. Western blot analysis demonstrated that MFGE8 enhanced ras-related C3 botulinum toxin substrate 1 (Rac1) and microtubule-associated protein 1A/1B-light chain 3 (LC3) expression in the rat hippocampus, while CGT reduced these protein levels. Behavioral experiments and fMRI results confirmed that CGT reversed the cognitive effects of MFGE8 by inhibiting microglial αVß3/αVß5 integrin receptors. CONCLUSIONS: Our findings show that MFGE8 reduced amplitude of low-frequency fluctuations (ALFF) values in the right hippocampal CA1, CA3, and the dentate gyrus, mitigating abnormal neural activity and decreasing hippocampal volume. This led to an improvement in cognitive dysfunction in SAE rats. These results suggest that MFGE8 enhances microglial efferocytosis by activating αVß3 and αVß5 integrin receptors on microglial surfaces, ultimately improving cognitive function in SAE rats.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Sepsis-Associated Encephalopathy , Animals , Male , Rats , Antigens, Surface/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/diagnostic imaging , Milk Proteins/pharmacology , Milk Proteins/administration & dosage , Rats, Sprague-Dawley
13.
Mol Biotechnol ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085562

ABSTRACT

This study aimed to explore the key efferocytosis-related genes in diabetic retinopathy (DR) and their regulatory mechanisms. Public DR-related gene expression datasets, GSE160306 (training) and GSE60436 (validation), were downloaded. Differentially expressed efferocytosis-related genes (DEERGs) were analyzed using differential expression analysis and weighted gene co-expression network analysis. Functional enrichment analysis was conducted. Moreover, efferocytosis-related signature genes were identified using machine learning analysis, and their expression levels and diagnostic value were analyzed. Furthermore, nomograms were constructed; immune cell infiltration was analyzed; and gene set enrichment analysis, transcriptional regulation analysis, and small-molecule drug (SMD) prediction of efferocytosis-related signature genes were performed. In total, 36 DEERGs were identified in DR, and were markedly enriched in multiple functions, such as visual system development. Through further machine learning analysis, two efferocytosis-related signature genes, Ferritin Light Chain (FTL) and Fc Gamma Binding Protein (FCGBP), were identified, and were found to be upregulated in DR samples and showed high diagnostic performance for DR. A nomogram constructed using FTL and FCGBP accurately predicted the risk of DR. Moreover, the level of infiltration of immature B cells was positively correlated with FTL and FCGBP expression levels. Multiple transcription factors (TFs), such as CCCTC-Binding Factor (CTCF) and KLF Transcription Factor 9 (KLF9), were found to interact with both FTL and FCGBP. In addition, FTL can be targeted by miRNAs, such as miR-22-3p, and FCGBP can be targeted by miR-7973. In addition, both FTL and FCGBP can be targeted by SMDs, such as bisphenol A. Key efferocytosis-related genes, such as FTL and FCGBP, may promote DR development. Detecting or targeting FTL and FCGBP may aid in the prevention, diagnosis, and treatment of DR.

14.
Sci Rep ; 14(1): 17232, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060563

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has become the first major chronic liver disease in developed countries. 10-20% of NAFLD patients will progress to non-alcoholic steatohepatitis (NASH), and up to 25% of NASH patients may develop cirrhosis within 10 years. Therefore, it is critical to find key targets that may treat this disease. Here, we identified C5aR1 as a highly-expressed gene in NASH mouse model through analyzing Gene Expression Omnibus (GEO) database and confirmed its higher expression in livers of NASH patients than that of NAFL patients. Meanwhile, we verified its positive correlation with patients' serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. In vivo and in vitro experiments revealed that knocking down C5aR1 in liver significantly reduced liver weight ratio and serum ALT and AST levels and attenuated inflammatory cell infiltration and cell apoptosis in the liver of NASH mice as well as enhanced the efferocytotic ability of liver macrophages, suggesting that C5aR1 may play a crucial role in the efferocytosis of liver macrophages. Furthermore, we also found that the expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3), caspase-1, IL-1ß and other inflammation-related factors in the liver were significantly reduced. Our work demonstrates a potential mechanism of how C5aR1 deficiency protects against diet-induced NASH by coordinating the regulation of inflammatory factors and affecting hepatic macrophage efferocytosis.


Subject(s)
Liver , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Phagocytosis , Receptor, Anaphylatoxin C5a , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Mice , Macrophages/metabolism , Humans , Liver/metabolism , Liver/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Male , Disease Models, Animal , Mice, Inbred C57BL , Apoptosis , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , Efferocytosis
15.
medRxiv ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39040187

ABSTRACT

Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell-type and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of IPF and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWAS, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.

16.
FASEB J ; 38(14): e23807, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38989570

ABSTRACT

Specialized proresolving mediators (SPMs) promote local macrophage efferocytosis but excess leukocytes early in inflammation require additional leukocyte clearance mechanism for resolution. Here, neutrophil clearance mechanisms from localized acute inflammation were investigated in mouse dorsal air pouches. 15-HEPE (15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid) levels were increased in the exudates. Activated human neutrophils converted 15-HEPE to lipoxin A5 (5S,6R,15S-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), 15-epi-lipoxin A5 (5S,6R,15R-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), and resolvin E4 (RvE4; 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid). Exogenous 15-epi-lipoxin A5, 15-epi-lipoxin A4 and a structural lipoxin mimetic significantly decreased exudate neutrophils and increased local tissue macrophage efferocytosis, with comparison to naproxen. 15-epi-lipoxin A5 also cleared exudate neutrophils faster than the apparent local capacity for stimulated macrophage efferocytosis, so the fate of exudate neutrophils was tracked with CD45.1 variant neutrophils. 15-epi-lipoxin A5 augmented the exit of adoptively transferred neutrophils from the pouch exudate to the spleen, and significantly increased splenic SIRPa+ and MARCO+ macrophage efferocytosis. Together, these findings demonstrate new systemic resolution mechanisms for 15-epi-lipoxin A5 and RvE4 in localized tissue inflammation, which distally engage the spleen to activate macrophage efferocytosis for the clearance of tissue exudate neutrophils.


Subject(s)
Lipoxins , Macrophages , Neutrophils , Spleen , Animals , Neutrophils/metabolism , Neutrophils/drug effects , Macrophages/metabolism , Mice , Humans , Lipoxins/metabolism , Lipoxins/pharmacology , Spleen/metabolism , Spleen/cytology , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/metabolism , Mice, Inbred C57BL , Phagocytosis , Male , Inflammation/metabolism , Heptanoic Acids
17.
Clin Immunol ; 265: 110301, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944364

ABSTRACT

Septic cardiomyopathy (SCM) is characterized by an abnormal inflammatory response and increased mortality. The role of efferocytosis in SCM is not well understood. We used integrated multi-omics analysis to explore the clinical and genetic roles of efferocytosis in SCM. We identified six module genes (ATP11C, CD36, CEBPB, MAPK3, MAPKAPK2, PECAM1) strongly associated with SCM, leading to an accurate predictive model. Subgroups defined by EFFscore exhibited distinct clinical features and immune infiltration levels. Survival analysis showed that the C1 subtype with a lower EFFscore had better survival outcomes. scRNA-seq analysis of peripheral blood mononuclear cells (PBMCs) from sepsis patients identified four genes (CEBPB, CD36, PECAM1, MAPKAPK2) associated with high EFFscores, highlighting their role in SCM. Molecular docking confirmed interactions between diagnostic genes and tamibarotene. Experimental validation supported our computational results. In conclusion, our study identifies a novel efferocytosis-related SCM subtype and diagnostic biomarkers, offering new insights for clinical diagnosis and therapy.


Subject(s)
Biomarkers , Cardiomyopathies , Machine Learning , Phagocytosis , Sepsis , Humans , Cardiomyopathies/genetics , Cardiomyopathies/diagnosis , Prognosis , Male , Sepsis/genetics , Sepsis/diagnosis , Phagocytosis/genetics , Female , Middle Aged , Leukocytes, Mononuclear/metabolism , Aged , Molecular Docking Simulation , Efferocytosis , Multiomics
18.
Ageing Res Rev ; 99: 102352, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857706

ABSTRACT

The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.


Subject(s)
Hypertension , Inflammation , Humans , Hypertension/drug therapy , Hypertension/immunology , Inflammation/drug therapy , Inflammation/immunology , Animals , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/pharmacology
19.
Autophagy ; : 1-21, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38873925

ABSTRACT

Thoracic aortic dissection (TAD) is a severe disease, characterized by numerous apoptotic vascular smooth muscle cells (VSMCs). EDIL3/Del-1 is a secreted protein involved in macrophage efferocytosis in acute inflammation. Here, we aimed to investigate whether EDIL3 promoted the internalization and degradation of apoptotic VSMCs during TAD. The levels of EDIL3 were decreased in the serum and aortic tissue from TAD mice. Global edil3 knockout (edil3-/-) mice and edil3-/- bone marrow chimeric mice exhibited a considerable exacerbation in ß-aminopropionitrile monofumarate (BAPN)-induced TAD, accompanied with increased apoptotic VSMCs accumulating in the damaged aortic tissue. Two types of phagocytes, RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were used for in vitro efferocytosis assay. edil3-deficient phagocytes exhibited inefficient internalization and degradation of apoptotic VSMCs. Instead, EDIL3 promoted the internalization phase through interacting with phosphatidylserine (PtdSer) on apoptotic VSMCs and binding to the macrophage ITGAV/αv-ITGB3/ß3 integrin. In addition, EDIL3 accelerated the degradation phase through activating LC3-associated phagocytosis (LAP). Mechanically, following the engulfment, EDIL3 enhanced the activity of SMPD1/acid sphingomyelinase in the phagosome through blocking ITGAV-ITGB3 integrin, which facilitates phagosomal reactive oxygen species (ROS) production by NAPDH oxidase CYBB/NOX2. Furthermore, exogenous EDIL3 supplementation alleviated BAPN-induced TAD and promoted apoptotic cell clearance. EDIL3 may be a novel factor for the prevention and treatment of TAD.Abbreviations: BAPN: ß-aminopropionitrile monofumarate; BMDM: bone marrow-derived macrophage; C12FDG: 5-dodecanoylaminofluorescein-di-ß-D-galactopyranoside; CTRL: control; CYBB/NOX2: cytochrome b-245, beta polypeptide; DCFH-DA: 2',7'-dichlorofluorescin diacetate; EDIL3/Del-1: EGF-like repeats and discoidin I-like domains 3; EdU: 5-ethynyl-2'-deoxyuridine; EVG: elastic van Gieson; H&E: hematoxylin and eosin; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAC: N-acetylcysteine; PtdSer: phosphatidylserine; rEDIL3: recombinant EDIL3; ROS: reactive oxygen species; SMPD1: sphingomyelin phosphodiesterase 1; TAD: thoracic aortic dissection; TEM: transmission electron microscopy; VSMC: vascular smooth muscle cell; WT: wild-type.

20.
Eur Heart J ; 45(29): 2660-2673, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-38865332

ABSTRACT

BACKGROUND AND AIMS: Extracellular vesicles (EVs) secreted by cardiosphere-derived cells exert immunomodulatory effects through the transmission of small non-coding RNAs. METHODS: The mechanism and role of yREX3, a small Y RNA abundant in EVs in myocardial injury, was investigated. RESULTS: yREX3 attenuates cardiac ischaemic injury by selective DNA methylation. Synthetic yREX3 encapsulated in lipid nanoparticles triggers broad transcriptomic changes in macrophages, localizes to the nucleus, and mediates epigenetic silencing of protein interacting with C kinase-1 (Pick1) through methylation of upstream CpG sites. Moreover, yREX3 interacts with polypyrimidine tract binding protein 3 (PTBP3) to methylate the Pick1 gene locus in a DNA methyltransferase-dependent manner. Suppression of Pick1 in macrophages potentiates Smad3 signalling and enhances efferocytosis, minimizing heart necrosis in rats with myocardial infarction. Adoptive transfer of Pick1-deficient macrophages recapitulates the cardioprotective effects of yREX3 in vivo. CONCLUSIONS: These findings highlight the role of a small Y RNA mined from EVs with a novel gene-methylating mechanism.


Subject(s)
Extracellular Vesicles , Macrophages , Extracellular Vesicles/metabolism , Macrophages/metabolism , Animals , Humans , DNA Methylation , Carrier Proteins/metabolism , Carrier Proteins/genetics , Myocardial Infarction/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Rats , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL