Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
2.
Am J Obstet Gynecol MFM ; 5(2): 100798, 2023 02.
Article in English | MEDLINE | ID: mdl-36351529

ABSTRACT

BACKGROUND: The strength of uterine contraction is one of the decisive factors for labor progression and parturition. Clinicians usually encounter difficulties in early identification of inadequate contractions and in oxytocin treatment. Electromyography-an emerging technology for uterine contraction monitoring-can quantify the intensity of myoelectric activity of uterine contraction. Therefore, grading patients with different uterine contraction intensities by electromyography is of great significance to the clinical intensive management of uterine contraction and labor process. OBJECTIVE: This study aimed to quantify and grade electromyography activity during the latent phase of the first stage of labor and explore its relationship with oxytocin treatment and length of labor. STUDY DESIGN: We performed a retrospective cohort study to identify electromyography parameters as a predictor for oxytocin treatment and length of labor among a cohort of term singleton primipara (n=508) during the latent phase who delivered in Guangzhou between August 2018 and December 2021. The electromyography parameters were graded according to the quartile method, and the significance of grading and delivery outcome was explored. Univariate and multivariate logistic regression were used to determine the predictors of oxytocin treatment. RESULTS: Maternal gestational age (adjusted risk ratio, 1.2; 95% confidence interval, 1.0-1.5), root mean square (adjusted risk ratio, 0.01; 95% confidence interval, 0.004-0.03), and power (adjusted risk ratio, 0.02; 95% confidence interval, 0.01-0.05) were significant predictors of oxytocin argumentation. The low electromyography activity group had a longer first stage labor and total labor time and were more likely to use oxytocin. CONCLUSION: Electromyography parameters root mean square and power had high predictive values for later oxytocin treatment among patients with spontaneous labor. Patients with low-grade electromyography were more likely need oxytocin treatment. Electromyography grading is very important for its clinical promotion and use, and it could lead to more reliable analyses of oxytocin treatments and eventually to more effective interventions to prevent prolonged labor.


Subject(s)
Labor, Obstetric , Oxytocin , Pregnancy , Female , Humans , Electromyography/methods , Retrospective Studies , Uterine Contraction
3.
Comput Biol Med ; 151(Pt A): 106238, 2022 12.
Article in English | MEDLINE | ID: mdl-36343404

ABSTRACT

To improve the understanding of the underlying physiological processes that lead to preterm birth, and different term delivery modes, we quantitatively characterized and assessed the separability of the sets of early (23rd week) and later (31st week) recorded, preterm and term spontaneous, induced, cesarean, and induced-cesarean electrohysterogram (EHG) records using several of the most widely used non-linear features extracted from the EHG signals. Linearly modeled temporal trends of the means of the median frequencies (MFs), and of the means of the peak amplitudes (PAs) of the normalized power spectra of the EHG signals, along pregnancy (from early to later recorded records), derived from a variety of frequency bands, revealed that for the preterm group of records, in comparison to all other term delivery groups, the frequency spectrum of the frequency band B0L (0.08-0.3 Hz) shifts toward higher frequencies, and that the spectrum of the newly identified frequency band B0L' (0.125-0.575 Hz), which approximately matches the Fast Wave Low band, becomes stronger. The most promising features to separate between the later preterm group and all other later term delivery groups appear to be MF (p=1.1⋅10-5) in the band B0L of the horizontal signal S3, and PA (p=2.4⋅10-8) in the band B0L' (S3). Moreover, the PA in the band B0L' (S3) showed the highest power to individually separate between the later preterm group and any other later term delivery group. Furthermore, the results suggest that in preterm pregnancies the resting maternal heart rate decreases between the 23rd and 31st week of gestation.


Subject(s)
Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Electromyography/methods , Uterus/physiology
4.
Physiol Meas ; 43(8)2022 08 19.
Article in English | MEDLINE | ID: mdl-35896091

ABSTRACT

Objective.The slow wave (SW) of the electrohysterogram (EHG) may contain relevant information on the electrophysiological condition of the uterus throughout pregnancy and labor. Our aim was to assess differences in the SW as regards the imminence of labor and the directionality of uterine myoelectrical activity.Approach. The SW of the EHG was extracted from the signals of the Icelandic 16-electrode EHG database in the bandwidth [5, 30] mHz and its power, spectral content, complexity and synchronization between the horizontal (X) and vertical (Y) directions were characterized by the root mean square (RMS), dominant frequency (domF), sample entropy (SampEn) and maximum cross-correlation (CCmax) of the signals, respectively. Significant differences between parameters at time-to-delivery (TTD) ≤7 versus >7 days and between the horizontal versus vertical directions were assessed.Main results.The SW power significantly increased in both directions as labor approached (TTD ≤ 7d versus >7d (mean±SD):RMSx = 0.12 ± 0.10 versus 0.08 ± 0.06 mV;RMSy = 0.12 ± 0.09 versus 0.08 ± 0.05 mV), as well as the dominant frequency in the horizontal direction (domFx= 9.1 ± 1.3 versus 8.5 ± 1.2mHz) and the synchronization between both directions (CCmax= 0.44 ± 0.16 versus 0.36 ± 0.14). Furthermore, its complexity decreased in the vertical direction (SampEny= 6.13·10-2 ± 8.7·10-3versus 6.50·10-2 ± 8.3·10-3), suggesting a higher cell-to-cell electrical coupling. Whereas there were no differences between the SW features in both directions in the general population, statistically significant differences were obtained between them in individuals in many cases.Significance.Our results suggest that the SW of the EHG is related to bioelectrical events in the uterus and could provide objective information to clinicians in challenging obstetric scenarios.


Subject(s)
Labor, Obstetric , Uterine Monitoring , Adolescent , Electrodes , Electromyography/methods , Electrophysiological Phenomena , Female , Humans , Pregnancy , Uterine Contraction/physiology , Uterine Monitoring/methods , Uterus/physiology
5.
Comput Methods Programs Biomed ; 223: 106967, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35763875

ABSTRACT

BACKGROUND AND OBJECTIVE: The uterine electrohysterogram (EHG) contains important information about electrical signal propagation which may be useful to monitor and predict the progress of pregnancy towards parturition. Directed information processing has the potential to be of use in studying EHG recordings. However, so far, there is no directed information-based estimation scheme that has been applied to investigating the propagation of human EHG recordings. To realize this, the approach of directed information and its reliability and adaptability should be scientifically studied. METHODS: We demonstrated an estimation scheme of directed information to identify the spatiotemporal relationship between the recording channels of EHG signal and assess the algorithm reliability initially using simulated data. Further, a regional identification of information flow termination (RIIFT) approach was developed and applied for the first time to extant multichannel EHG signals to reveal the terminal zone of propagation of the electrical activity associated with uterine contraction. RIIFT operates by estimating the pairwise directed information between neighboring EHG channels and identifying the location where there is the strongest inward flow of information. The method was then applied to publicly-available experimental data obtained from pregnant women with the use of electrodes arranged in a 4-by-4 grid. RESULTS: Our results are consistent with the suggestions from the previous studies with the added identification of preferential sites of excitation termination - within the estimated area, the direction of surface action potential propagation towards the medial axis of uterus during contraction was discovered for 72.15% of the total cases, demonstrating that our RIIFT method is a potential tool to investigate EHG propagation for advancing our understanding human uterine excitability. CONCLUSIONS: We developed a new approach and applied it to multichannel human EHG recordings to investigate the electrical signal propagation involved in uterine contraction. This provides an important platform for future studies to fill knowledge gaps in the spatiotemporal patterns of electrical excitation of the human uterus.


Subject(s)
Uterine Contraction , Uterus , Algorithms , Electromyography/methods , Female , Humans , Monitoring, Physiologic/methods , Pregnancy , Reproducibility of Results
6.
Sensors (Basel) ; 22(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591042

ABSTRACT

Electrohysterogram (EHG) is a promising method for noninvasive monitoring of uterine electrical activity. The main purpose of this study was to characterize the multichannel EHG signals to distinguish between term delivery and preterm birth, as well as deliveries within and beyond 24 h. A total of 219 pregnant women were grouped in two ways: (1) term delivery (TD), threatened preterm labor (TPL) with the outcome of preterm birth (TPL_PB), and TPL with the outcome of term delivery (TPL_TD); (2) EHG recording time to delivery (TTD) ≤ 24 h and TTD > 24 h. Three bipolar EHG signals were analyzed for the 30 min recording. Six EHG features between multiple channels, including multivariate sample entropy, mutual information, correlation coefficient, coherence, direct partial Granger causality, and direct transfer entropy, were extracted to characterize the coupling and information flow between channels. Significant differences were found for these six features between TPL and TD, and between TTD ≤ 24 h and TTD > 24 h. No significant difference was found between TPL_PB and TPL_TD. The results indicated that EHG signals of TD were more regular and synchronized than TPL, and stronger coupling between multichannel EHG signals was exhibited as delivery approaches. In addition, EHG signals propagate downward for the majority of pregnant women regardless of different labors. In conclusion, the coupling and propagation features extracted from multichannel EHG signals could be used to differentiate term delivery and preterm birth and may predict delivery within and beyond 24 h.


Subject(s)
Labor, Obstetric , Obstetric Labor, Premature , Premature Birth , Electromyography/methods , Female , Humans , Infant, Newborn , Obstetric Labor, Premature/diagnosis , Pregnancy , Uterine Contraction
7.
Technol Health Care ; 30(S1): 235-242, 2022.
Article in English | MEDLINE | ID: mdl-35124600

ABSTRACT

BACKGROUND: As an essential indicator of labour and delivery, uterine contraction (UC) can be detected by manual palpation, external tocodynamometry and internal uterine pressure catheter. However, these methods are not applicable for long-term monitoring. OBJECTIVE: This paper aims to recognize UCs with electrohysterogram (EHG) and find the best electrode combination with fewer electrodes. METHODS: 112 EHG recordings were collected by our bespoke device in our study. Thirteen features were extracted from EHG segments of UC and non-UC. Four classifiers of the decision tree, support vector machine (SVM), artificial neural network, and convolutional neural network were established to identify UCs. The optimal classifier among them was determined by comparing their classification results. The optimal classifier was applied to evaluate all the possible electrode combinations with one to eight electrodes. RESULTS: The results showed that SVM achieved the best classification capability. With SVM, the combination of electrodes on the right part of the uterine fundus and around the uterine body's median axis achieved the overall best performance. CONCLUSIONS: The optimal electrode combination with fewer electrodes was confirmed to improve the clinical application for long-term monitoring of UCs.


Subject(s)
Uterine Contraction , Uterine Monitoring , Adolescent , Electrodes , Electromyography/methods , Female , Humans , Pregnancy , Uterine Monitoring/methods , Uterus
8.
Sensors (Basel) ; 22(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35214412

ABSTRACT

OBJECTIVE: The early prediction of preterm labor can significantly minimize premature delivery complications for both the mother and infant. The aim of this research is to propose an automatic algorithm for the prediction of preterm labor using a single electrohysterogram (EHG) signal. METHOD: The proposed method firstly employs empirical mode decomposition (EMD) to split the EHG signal into two intrinsic mode functions (IMFs), then extracts sample entropy (SampEn), the root mean square (RMS), and the mean Teager-Kaiser energy (MTKE) from each IMF to form the feature vector. Finally, the extracted features are fed to a k-nearest neighbors (kNN), support vector machine (SVM), and decision tree (DT) classifiers to predict whether the recorded EHG signal refers to the preterm case. MAIN RESULTS: The studied database consists of 262 term and 38 preterm delivery pregnancies, each with three EHG channels, recorded for 30 min. The SVM with a polynomial kernel achieved the best result, with an average sensitivity of 99.5%, a specificity of 99.7%, and an accuracy of 99.7%. This was followed by DT, with a mean sensitivity of 100%, a specificity of 98.4%, and an accuracy of 98.7%. SIGNIFICANCE: The main superiority of the proposed method over the state-of-the-art algorithms that studied the same database is the use of only a single EHG channel without using either synthetic data generation or feature ranking algorithms.


Subject(s)
Obstetric Labor, Premature , Premature Birth , Algorithms , Databases, Factual , Electromyography/methods , Female , Humans , Infant, Newborn , Obstetric Labor, Premature/diagnosis , Pregnancy , Signal Processing, Computer-Assisted
9.
Phys Eng Sci Med ; 44(4): 1151-1159, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34463948

ABSTRACT

Preterm birth anticipation is a crucial task that can reduce both the rate and the complications of preterm birth. Electrohysterogram (EHG) or uterine electromyogram (EMG) data have shown that they can provide useful information for preterm birth anticipation. Four distinct time-domain features (mean absolute value, average amplitude change, difference in absolute standard deviation value, and log detector) that are commonly applied to EMG signal processing were utilized and investigated in this study. A single channel of EHG data was decomposed into its constituent components (i.e., into intrinsic mode functions) by using empirical mode decomposition (EMD) before their time-domain features were extracted. The time-domain features of the intrinsic mode functions of the EHG data associated with preterm and term births were applied for preterm-term birth classification by using a support vector machine with a radial basis function. The preterm-term birth classifications were validated by using 10-fold cross validation. From the computational results, it was shown that excellent preterm-term birth classification can be achieved by using single-channel EHG data. The computational results further suggested that the best overall performance concerning preterm-term birth classification was obtained when thirteen (out of sixteen) EMD-based time-domain features were applied. The best accuracy, sensitivity, specificity, and [Formula: see text]-score achieved were 0.9382, 0.9130, 0.9634, and 0.9366, respectively.


Subject(s)
Premature Birth , Term Birth , Electromyography , Female , Humans , Infant, Newborn , Signal Processing, Computer-Assisted , Uterus
10.
Comput Biol Med ; 136: 104644, 2021 09.
Article in English | MEDLINE | ID: mdl-34271407

ABSTRACT

Preterm labor is the leading cause of neonatal morbidity and mortality in newborns and has attracted significant research attention from many scientific areas. The relationship between uterine contraction and the underlying electrical activities makes uterine electrohysterogram (EHG) a promising direction for detecting and predicting preterm births. However, due to the scarcity of EHG signals, especially those leading to preterm births, synthetic algorithms have been used to generate artificial samples of preterm birth type in order to eliminate bias in the prediction towards normal delivery, at the expense of reducing the feature effectiveness in automatic preterm detection based on machine learning. To address this problem, we quantify the effect of synthetic samples (balance coefficient) on the effectiveness of features and form a general performance metric by using several feature scores with relevant weights that describe their contributions to class segregation. In combination with the activation/inactivation functions that characterize the effect of the abundance of training samples on the accuracy of the prediction of preterm and normal birth delivery, we obtained an optimal sample balance coefficient that compromises the effect of synthetic samples in removing bias toward the majority group (i.e., normal delivery and the side effect of reducing the importance of features). A more realistic predictive accuracy was achieved through a series of numerical tests on the publicly available TPEHG database, therefore demonstrating the effectiveness of the proposed method.


Subject(s)
Premature Birth , Algorithms , Databases, Factual , Female , Humans , Infant, Newborn , Machine Learning , Pregnancy , Uterine Contraction
11.
Sensors (Basel) ; 21(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916679

ABSTRACT

Preterm birth is the leading cause of death in newborns and the survivors are prone to health complications. Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy. The current methods used in clinical practice to diagnose preterm labor, the Bishop score or cervical length, have high negative predictive values but not positive ones. In this work we analyzed the performance of computationally efficient classification algorithms, based on electrohysterographic recordings (EHG), such as random forest (RF), extreme learning machine (ELM) and K-nearest neighbors (KNN) for imminent labor (<7 days) prediction in women with TPL, using the 50th or 10th-90th percentiles of temporal, spectral and nonlinear EHG parameters with and without obstetric data inputs. Two criteria were assessed for the classifier design: F1-score and sensitivity. RFF1_2 and ELMF1_2 provided the highest F1-score values in the validation dataset, (88.17 ± 8.34% and 90.2 ± 4.43%) with the 50th percentile of EHG and obstetric inputs. ELMF1_2 outperformed RFF1_2 in sensitivity, being similar to those of ELMSens (sensitivity optimization). The 10th-90th percentiles did not provide a significant improvement over the 50th percentile. KNN performance was highly sensitive to the input dataset, with a high generalization capability.


Subject(s)
Labor, Obstetric , Obstetric Labor, Premature , Premature Birth , Algorithms , Female , Humans , Infant, Newborn , Obstetric Labor, Premature/diagnosis , Pregnancy , Premature Birth/diagnosis , Uterus
12.
Entropy (Basel) ; 22(7)2020 Jul 05.
Article in English | MEDLINE | ID: mdl-33286515

ABSTRACT

Electrohysterography (EHG) has been shown to provide relevant information on uterine activity and could be used for predicting preterm labor and identifying other maternal fetal risks. The extraction of high-quality robust features is a key factor in achieving satisfactory prediction systems from EHG. Temporal, spectral, and non-linear EHG parameters have been computed to characterize EHG signals, sometimes obtaining controversial results, especially for non-linear parameters. The goal of this work was to assess the performance of EHG parameters in identifying those robust enough for uterine electrophysiological characterization. EHG signals were picked up in different obstetric scenarios: antepartum, including women who delivered on term, labor, and post-partum. The results revealed that the 10th and 90th percentiles, for parameters with falling and rising trends as labor approaches, respectively, differentiate between these obstetric scenarios better than median analysis window values. Root-mean-square amplitude, spectral decile 3, and spectral moment ratio showed consistent tendencies for the different obstetric scenarios as well as non-linear parameters: Lempel-Ziv, sample entropy, spectral entropy, and SD1/SD2 when computed in the fast wave high bandwidth. These findings would make it possible to extract high quality and robust EHG features to improve computer-aided assessment tools for pregnancy, labor, and postpartum progress and identify maternal fetal risks.

13.
Comput Biol Med ; 123: 103897, 2020 08.
Article in English | MEDLINE | ID: mdl-32768044

ABSTRACT

The uterine electromyogram, also named Electrohysterogram (EHG), is a non-invasive technique that has been used for pregnancy and labour monitoring as well as for research work on uterine physiology. This technique is well established in this field. There is however a vast unexplored potential in the EHG that is currently the subject of interdisciplinary research work involving different scientific fields such as medicine, engineering, physics and mathematics. In this paper, an unsupervised clustering method is applied to a previously obtained set of frequency spectral representations of the respective EHG signal contractions that were previously automatically detected and delineated. An innovative approach using the complete spectrum projection is described, rather than a set of relevant points. The feasibility of the method is established despite the concerns of possible computational burden incurred by the processing of the whole spectrum. Given the unsupervised nature of this classification, a validation procedure was performed whereas the obtained clusters were labelled through the correlation with the common knowledge about the most relevant uterine contraction types, as described in the literature. As a result of this study, a spectral description of the Alvarez contractions was obtained where it was possible to breakdown these important events in two different types according to their spectrum. Spectral estimates of Braxton-Hicks contractions were also obtained and associated to one of the clusters. This led to a full spectral characterization of these uterine events.


Subject(s)
Uterine Contraction , Uterine Monitoring , Adolescent , Cluster Analysis , Electromyography , Female , Humans , Pregnancy , Uterus/diagnostic imaging
14.
Sensors (Basel) ; 20(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397177

ABSTRACT

Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy and entails high costs for health systems. Currently, no reliable labor proximity prediction techniques are available for clinical use. Regular checks by uterine electrohysterogram (EHG) for predicting preterm labor have been widely studied. The aim of the present study was to assess the feasibility of predicting labor with a 7- and 14-day time horizon in TPL women, who may be under tocolytic treatment, using EHG and/or obstetric data. Based on 140 EHG recordings, artificial neural networks were used to develop prediction models. Non-linear EHG parameters were found to be more reliable than linear for differentiating labor in under and over 7/14 days. Using EHG and obstetric data, the <7- and <14-day labor prediction models achieved an AUC in the test group of 87.1 ± 4.3% and 76.2 ± 5.8%, respectively. These results suggest that EHG can be reliable for predicting imminent labor in TPL women, regardless of the tocolytic therapy stage. This paves the way for the development of diagnostic tools to help obstetricians make better decisions on treatments, hospital stays and admitting TPL women, and can therefore reduce costs and improve maternal and fetal wellbeing.


Subject(s)
Labor, Obstetric , Obstetric Labor, Premature , Tocolysis , Uterus , Female , Humans , Infant, Newborn , Monitoring, Physiologic , Obstetric Labor, Premature/diagnosis , Obstetric Labor, Premature/drug therapy , Pregnancy , Prognosis , Uterine Contraction
15.
Sensors (Basel) ; 20(11)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466584

ABSTRACT

Postpartum hemorrhage (PPH) is one of the major causes of maternal mortality and morbidity worldwide, with uterine atony being the most common origin. Currently there are no obstetrical techniques available for monitoring postpartum uterine dynamics, as tocodynamometry is not able to detect weak uterine contractions. In this study, we explored the feasibility of monitoring postpartum uterine activity by non-invasive electrohysterography (EHG), which has been proven to outperform tocodynamometry in detecting uterine contractions during pregnancy. A comparison was made of the temporal, spectral, and non-linear parameters of postpartum EHG characteristics of vaginal deliveries and elective cesareans. In the vaginal delivery group, EHG obtained a significantly higher amplitude and lower kurtosis of the Hilbert envelope, and spectral content was shifted toward higher frequencies than in the cesarean group. In the non-linear parameters, higher values were found for the fractal dimension and lower values for Lempel-Ziv, sample entropy and spectral entropy in vaginal deliveries suggesting that the postpartum EHG signal is extremely non-linear but more regular and predictable than in a cesarean. The results obtained indicate that postpartum EHG recording could be a helpful tool for earlier detection of uterine atony and contribute to better management of prophylactic uterotonic treatment for PPH prevention.


Subject(s)
Cesarean Section , Electrophysiological Phenomena , Labor, Obstetric , Uterine Contraction , Uterine Monitoring , Adult , Electromyography , Female , Humans , Postpartum Period , Pregnancy , Vagina
16.
Biocybern Biomed Eng ; 40(1): 352-362, 2020.
Article in English | MEDLINE | ID: mdl-32308250

ABSTRACT

Developing a computational method for recognizing preterm delivery is important for timely diagnosis and treatment of preterm delivery. The main aim of this study was to evaluate electrohysterogram (EHG) signals recorded at different gestational weeks for recognizing the preterm delivery using random forest (RF). EHG signals from 300 pregnant women were divided into two groups depending on when the signals were recorded: i) preterm and term delivery with EHG recorded before the 26th week of gestation (denoted by PE and TE group), and ii) preterm and term delivery with EHG recorded during or after the 26th week of gestation (denoted by PL and TL group). 31 linear features and nonlinear features were derived from each EHG signal, and then compared comprehensively within PE and TE group, and PL and TL group. After employing the adaptive synthetic sampling approach and six-fold cross-validation, the accuracy (ACC), sensitivity, specificity and area under the curve (AUC) were applied to evaluate RF classification. For PL and TL group, RF achieved the ACC of 0.93, sensitivity of 0.89, specificity of 0.97, and AUC of 0.80. Similarly, their corresponding values were 0.92, 0.88, 0.96 and 0.88 for PE and TE group, indicating that RF could be used to recognize preterm delivery effectively with EHG signals recorded before the 26th week of gestation.

17.
Sensors (Basel) ; 20(24)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419319

ABSTRACT

The aim of the present study was to assess the capability of conduction velocity amplitudes and directions of propagation of electrohysterogram (EHG) waves to better distinguish between preterm and term EHG surface records. Using short-time cross-correlation between pairs of bipolar EHG signals (upper and lower, left and right), the conduction velocities and their directions were estimated using preterm and term EHG records of the publicly available Term-Preterm EHG DataSet with Tocogram (TPEHGT DS) and for different frequency bands below and above 1.0 Hz, where contractions and the influence of the maternal heart rate on the uterus, respectively, are expected. No significant or preferred continuous direction of propagation was found in any of the non-contraction (dummy) or contraction intervals; however, on average, a significantly lower percentage of velocity vectors was found in the vertical direction, and significantly higher in the horizontal direction, for preterm dummy intervals above 1.0 Hz. The newly defined features-the percentages of velocities in the vertical and horizontal directions, in combination with the sample entropy of the EHG signal recorded in the vertical direction, obtained from dummy intervals above 1.0 Hz-showed the highest classification accuracy of 86.8% (AUC=90.3%) in distinguishing between preterm and term EHG records of the TPEHGT DS.


Subject(s)
Electromyography , Premature Birth , Uterine Contraction , Electricity , Female , Humans , Infant, Newborn , Pregnancy , Premature Birth/diagnosis , Uterus
18.
Biocybern Biomed Eng ; 39(3): 806-813, 2019.
Article in English | MEDLINE | ID: mdl-31787794

ABSTRACT

The aims of this study were to apply decision tree to classify uterine activities (contractions and non-contractions) using the waveform characteristics derived from different channels of electrohysterogram (EHG) signals and then rank the importance of these characteristics. Both the tocodynamometer (TOCO) and 8-channel EHG signals were simultaneously recorded from 34 healthy pregnant women within 24 h before delivery. After preprocessing of EHG signals, EHG segments corresponding to the uterine contractions and non-contractions were manually extracted from both original and normalized EHG signals according to the TOCO signals and the human marks. 24 waveform characteristics of the EHG segments were derived separately from each channel to train the decision tree and classify the uterine activities. The results showed the Power and sample entropy (SamEn) extracted from the un-normalized EHG segments played the most important roles in recognizing uterine activities. In addition, the EHG signal characteristics from channel 1 produced better classification results (AUC = 0.75, Sensitivity = 0.84, Specificity = 0.78, Accuracy = 0.81) than the others. In conclusion, decision tree could be used to classify the uterine activities, and the Power and SamEn of un-normalized EHG segments were the most important characteristics in uterine contraction classification.

19.
Comput Biol Med ; 113: 103394, 2019 10.
Article in English | MEDLINE | ID: mdl-31445226

ABSTRACT

Uterine contraction (UC) activity is commonly used to monitor the approach of labour and delivery. Electrohysterograms (EHGs) have recently been used to monitor UC and distinguish between efficient and inefficient contractions. In this study, we aimed to identify UC in EHG signals using a convolutional neural network (CNN). An open-access database (Icelandic 16-electrode EHG database from 45 pregnant women with 122 recordings, DB1) was used to develop a CNN model, and 14000 segments with a length of 45 s (7000 from UCs and 7000 from non-UCs, which were determined with reference to the simultaneously recorded tocography signals) were manually extracted from the 122 EHG recordings. Five-fold cross-validation was applied to evaluate the ability of the CNN to identify UC based on its sensitivity (SE), specificity (SP), accuracy (ACC), and area under the receiver operating characteristic curve (AUC). The CNN model developed using DB1 was then applied to an independent clinical database (DB2) to further test its generalisation for recognizing UCs. The EHG signals in DB2 were recorded from 20 pregnant women using our multi-channel system, and 308 segments (154 from UCs and 154 from non-UCs) were extracted. The CNN model from five-fold cross-validation achieved average SE, SP, ACC, and AUC of 0.87, 0.98, 0.93, and 0.92 for DB1, and 0.88, 0.97, 0.93, and 0.87 for DB2, respectively. In summary, we demonstrated that CNN could effectively identify UCs using EHG signals and could be used as a tool for monitoring maternal and foetal health.


Subject(s)
Databases, Factual , Electromyography , Signal Processing, Computer-Assisted , Uterine Contraction/physiology , Uterus/physiology , Adult , Female , Humans , Pregnancy
20.
Med Biol Eng Comput ; 57(2): 401-411, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30159659

ABSTRACT

As one of the main aims of obstetrics is to be able to detect imminent delivery in patients with threatened preterm labor, the techniques currently used in clinical practice have serious limitations in this respect. The electrohysterogram (EHG) has now emerged as an alternative technique, providing relevant information about labor onset when recorded in controlled checkups without administration of tocolytic drugs. The studies published to date mainly focus on EHG-burst analysis and, to a lesser extent, on whole EHG window analysis. The study described here assessed the ability of EHG signals to discriminate imminent labor (< 7 days) in women with threatened preterm labor undergoing tocolytic therapy, using both EHG-burst and whole EHG window analyses, by calculating temporal, spectral, and non-linear parameters. Only two non-linear EHG-burst parameters and four whole EHG window analysis parameters were able to distinguish the women who delivered < 7 days from the others, showing that EHG can provide relevant information on the approach of labor, even in women with threatened preterm labor under the effects of tocolytic therapy. The whole EHG window outperformed the EHG-burst analysis and is seen as a step forward in the development of real-time EHG systems able to predict imminent labor in clinical praxis. Graphical abstract The ability of EHG recordings to predict imminent labor (< 7 days) was analyzed in preterm threatened patients undergoing tocolytic therapies by means of EHG-burst and whole EHG window analysis. The non-linear features were found to have better performance than the temporal and spectral parameters in separating women who delivered in less than 7 days from those who did not.


Subject(s)
Obstetric Labor, Premature/physiopathology , Uterus/physiopathology , Adult , Electromyography/methods , Female , Humans , Pregnancy , Tocolysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL