Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(27): 35613-35625, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38949183

ABSTRACT

Anti/deicing coatings that combine active and passive methods can utilize various energy sources to achieve anti/deicing effects. However, poor photothermal or electrothermal performance and inevitable heat loss often reduce their anti/deicing efficiency. Herein, copper sulfide loaded activated biochar (AC@CuS) as photo/electric material, polydimethylsiloxane as hydrophobic component, thermally expandable microspheres as foaming agent, and an anti/deicing coating integrating thermal insulation, superhydrophobicity, photo/electrothermal effects was successfully constructed. Benefiting from the synergistic effect of superhydrophobicity and thermal insulation, the freezing time of water droplets on the coating surface is extended from 150 to 2140 s, showing excellent passive anti-icing performance. AC@CuS exhibits photo/electrothermal effects, and porous expanded microspheres reduce heat loss, which endows the coating with desirable photo/electrothermal conversion performance. Under the conditions of 0.2 W/cm2 electric power density (EPD) and 0.1 W/cm2 optical power density (OPD), the temperature of the coating increases from 24 to 96.4 and 113 °C, respectively. Interestingly, with a coheating of 0.05 W/cm2 weaker OPD and 0.05 W/cm2 lower EPD, the ice on the coating surface can be quickly melted in 2.5 min, showing synergistic deicing performance. In addition, the WCA of the prepared coating remains above 150° after mechanical damage, rain impact, UV irradiation, chemical corrosion, and high-temperature treatment, and good superhydrophobic durability ensures the anti/deicing durability of the coating.

2.
Biosens Bioelectron ; 238: 115577, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37579531

ABSTRACT

Affinity biosensors play a crucial role in clinical diagnosis, pharmaceuticals, immunology, and other areas of human health. Affinity biosensors rely on the specific binding between target analytes and biological ligands such as antibodies, nucleic acids, aptamers, or other receptors to primarily generate electrochemical or optical signals. Considerable effort has been put into improving the performance of the affinity technologies to make them more sensitive, efficient and reproducible, of the many approaches electrokinetic phenomena are a viable option. In this perspective, studies that combine electrokinetic phenomena with affinity biosensor are discussed about their promise for achieving higher sensitivity and lower detection limit.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nucleic Acids , Humans , Antibodies , Ligands
3.
Article in English | MEDLINE | ID: mdl-31551648

ABSTRACT

A multiscale electrothermal simulation approach is presented to optimize the design of a hybrid switch soft-switching inverter using a library of dynamic electrothermal component models parameterized in terms of electrical, structural, and material properties. Individual device area, snubber capacitor, and gate drive timing are used to minimize the total loss of the soft-switching inverter module subject to the design constraints including total device area and minimum on-time consideration. The proposed multiscale electrothermal simulation approach allows for a large number of parametric studies involving multiple design variables to be considered, drastically reducing simulation time. The optimized design is then compared and contrasted with an already existing design from the Virginia Tech Freedom Car Project using the generation II module. It will be shown that the proposed approach improves the baseline design by 16% in loss and reduces the cooling requirements by 42%. Validation of the electrical and thermal device models against measured data is also provided.

4.
Sensors (Basel) ; 15(6): 14745-56, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26110409

ABSTRACT

Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.


Subject(s)
Micro-Electrical-Mechanical Systems/instrumentation , Equipment Design , Hot Temperature , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL