Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.361
Filter
1.
J Environ Sci (China) ; 148: 188-197, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095156

ABSTRACT

Bisphenol compounds (BPs) have various industrial uses and can enter the environment through various sources. To evaluate the ecotoxicity of BPs and identify potential gene candidates involved in the plant toxicity, Arabidopsis thaliana was exposed to bisphenol A (BPA), BPB, BPE, BPF, and BPS at 1, 3, 10 mg/L for a duration of 14 days, and their growth status were monitored. At day 14, roots and leaves were collected for internal BPs exposure concentration detection, RNA-seq (only roots), and morphological observations. As shown in the results, exposure to BPs significantly disturbed root elongation, exhibiting a trend of stimulation at low concentration and inhibition at high concentration. Additionally, BPs exhibited pronounced generation of reactive oxygen species, while none of the pollutants caused significant changes in root morphology. Internal exposure concentration analysis indicated that BPs tended to accumulate in the roots, with BPS exhibiting the highest level of accumulation. The results of RNA-seq indicated that the shared 211 differently expressed genes (DEGs) of these 5 exposure groups were enriched in defense response, generation of precursor metabolites, response to organic substance, response to oxygen-containing, response to hormone, oxidation-reduction process and so on. Regarding unique DEGs in each group, BPS was mainly associated with the redox pathway, BPB primarily influenced seed germination, and BPA, BPE and BPF were primarily involved in metabolic signaling pathways. Our results provide new insights for BPs induced adverse effects on Arabidopsis thaliana and suggest that the ecological risks associated with BPA alternatives cannot be ignored.


Subject(s)
Arabidopsis , Benzhydryl Compounds , Oxidation-Reduction , Phenols , Plant Roots , Arabidopsis/drug effects , Arabidopsis/genetics , Phenols/toxicity , Benzhydryl Compounds/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , RNA-Seq , Sequence Analysis, RNA , Soil Pollutants/toxicity
2.
Clin Biomech (Bristol, Avon) ; 119: 106329, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39173447

ABSTRACT

BACKGROUND: The semitendinosus tendon is one of the most used autografts in anterior cruciate ligament reconstruction. Although recent evidence indicates that young patients, especially in females, may experience high rates of revision and residual instability, the reasons for the inferior outcomes in these patients remain unclear. To address this issue, we aimed to compare the mechanical properties of the semitendinosus tendon used for anterior cruciate ligament reconstruction in male and female patients of various ages. METHODS: The semitendinosus tendons harvested from 31 male and 29 female patients who underwent anterior cruciate ligament reconstruction surgery using the semitendinosus tendon autografts were used in this study. Using the distal part of the harvested semitendinosus tendon, the extent of cyclic loading-induced elongation (i.e., the extent of the increase in slack length) and the Young's modulus were measured during cyclic tensile testing. FINDINGS: Spearman correlation analyses revealed that the Young's modulus (|ρ| = 0.725, P < 0.001), but not elongation (|ρ| ≤ 0.036, P ≥ 0.351) positively correlated with the patient age in male tendon samples. In contrast, for female tendon samples, the elongation (|ρ| ≥ 0.415, P ≤ 0.025), but not the Young's modulus (|ρ| = 0.087, P = 0.655) negatively correlated with the patient age. INTERPRETATION: These results indicate that the semitendinosus tendon used for anterior cruciate ligament reconstruction in young male patients is compliant, whereas that in young female patients is susceptible to elongation induced by cyclic loading.

3.
Ecol Evol ; 14(8): e70051, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114161

ABSTRACT

Sand rice (Agriophyllum squarrosum), widely distributed in Central Arid Asia and prevalent in the sand dunes of northern China, presents a promising potential as a climate-resilient crop. The plasticity of hypocotyl growth is the key trait for sand rice to cope with wind erosion and sand burial, ensure seedling emergence, and determine plant architecture. In this study, we assessed the overall hypocotyl phenotype of six sand rice elite lines, which were collected from different regions of northern China, and selected by our group over past decade through common garden trials. Significant phenotypic variations were observed in thousand-seed weight (TSW), seedling emergence percentage, hypocotyl length and diameter, and seedling fresh weight among the lines. The elite line Aerxiang (AEX) exhibited excellent agronomic performance with superior and synchronous emergence, and high survival percentage, distinguishing itself as a prime candidate for further large-scale cultivation. Contrastingly, the lines from the arid regions showed markedly lower performance. Partial Least Squares Path Modeling (PLSPM) was used to assess the impact of seed provenance climate factors, including annual mean temperature (AMT) and annual mean precipitation (AMP), on trait variability among lines. The findings indicate a significant correlation between climate factors and hypocotyl length, highlighting the intricate adaptation of sand rice to local climate. The comprehensive understanding of the mechanisms behind phenotypic variations offers valuable insights for sand rice de novo domestication and innovative germplasm resources, and lays the foundation for ecological restoration in sandy areas.

4.
Am J Ophthalmol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128551

ABSTRACT

PURPOSE: To investigate the progression patterns and risk factors of axial elongation in young adults with non-pathologic high myopia. DESIGN: Prospective, clinical observational cohort study with 2- to 4-year follow-up. METHODS: A total of 1043 eyes of 563 participants (3515 medical records) aged 18 to 50 years with non-pathologic high myopia (axial length [AL] ≥ 26 mm; myopic maculopathy < diffuse chorioretinal atrophy; without posterior staphyloma) were included from 1546 participants (6318 medical records). Annual axial elongation was calculated via linear mixed-effect models. The associated risk factors of axial elongation were determined by ordinal logistic regression analysis, with generalized estimate equations for eliminating an interocular correlation bias. RESULTS: Based on 5359 times of AL measurements, the annual axial elongation of participants (mean [SD] age 31.39 [9.22] years) was 0.03 mm/year (95% confidence interval [CI], 0.03-0.04, P < 0.001) during a 30.23 (6.06) months' follow-up. Severe (> 0.1 mm/year), moderate (0.05-0.09 mm/year), mild (0-0.049 mm/year), and nil (≤ 0 mm/year) elongation was observed in 122 (11.7%), 211 (20.2%), 417 (40.0%), and 293 (28.1%) eyes. The following risk factors were significantly associated with axial elongation: baseline AL≥ 28 mm (odds ratio [OR], 4.23; 95%CI, 2.95-6.06; P < 0.001); age < 40 years (OR, 1.64; 95%CI, 1.18-2.28; P = 0.003); axial asymmetry (OR, 2.04; 95%CI, 1.26-3.29; P = 0.003), and women (OR, 1.52; 95%CI, 1.13-2.2.05; P = 0.006). Using anti-glaucoma medications was a protective factor (OR, 0.46; 95%CI, 0.27-0.79; P = 0.005), which slowed 75% of axial elongation from 0.04 (0.06) to 0.01 (0.06) mm/y (P < 0.001). CONCLUSIONS: Axial elongation continued in young adults with non-pathologic myopia. Risk factors included longer baseline AL and axial asymmetry, younger age, and woman. Topical use of anti-glaucoma medications may be useful to reduce ongoing axial elongation.

5.
Biopolymers ; : e23621, 2024 Aug 12.
Article in Spanish | MEDLINE | ID: mdl-39133070

ABSTRACT

Ramie is a widely used plant fiber for making textiles and reinforcement in biodegradable composites. Pretreating cellulosic fibers with alkali before producing composites is increasingly used to enhance adhesion with polymeric resin. In this work, response surface methodology (RSM) based on the Box-Behnken technique was utilized to investigate the impact of independent variables on ramie fabric characteristics and determine the optimal treatment condition. The impact of alkali concentration, treatment time, and temperature on the breaking load and elongation at break of woven ramie fabrics were evaluated using Design-Expert software, which established the design matrix and analyzed the experimental data employing numerical and graphical optimization methods. Moreover, the impact of alkali treatment conditions on the surface morphology, structural change of ramie fabrics, and thermal properties was investigated. Based on the analysis of variance (ANOVA) results, the suggested quadratic models can adequately predict the breaking load and elongation at break of the ramie woven fabrics within the range of conditions applied in this investigation. The RSM revealed that an alkali concentration of 6.12%, a treatment time of 30 min, and a temperature of 39.13°C resulted in an optimum treatment condition with a breaking load of 518.28 N and elongation at break of 23.36%.

6.
J Adv Res ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39106927

ABSTRACT

INTRODUCTION: Interspecific introgression between Gossypium hirsutum and G. barbadense allows breeding cotton with outstanding fiber length (FL). However, the dynamic gene regulatory network of FL-related genes has not been characterized, and the functional mechanism through which the hub gene GhTUB5 mediates fiber elongation has yet to be determined. METHODS: Coexpression analyses of 277 developing fiber transcriptomes integrated with QTL mapping using 250 introgression lines of different FL phenotypes were conducted to identify genes related to fiber elongation. The function of GhTUB5 was determined by ectopic expression of two TUB5 alleles in Arabidopsis and knockout of GhTUB5 in upland cotton. Yeast two-hybrid, split-luciferase and pull-down assays were conducted to screen for interacting proteins, and upstream genes were identified by yeast one-hybrid, dual-LUC and electrophoretic mobility shift assays. RESULTS: The 32,612, 30,837 and 30,277 genes expressed at 5, 10 and 15 days postanthesis (dpa) were grouped into 19 distinct coexpression modules, and 988 genes in the MEblack module were enriched in the cell wall process and exhibited significant associations with FL. A total of 20 FL-QTLs were identified, each explaining 3.34-16.04 % of the phenotypic variance in the FL. Furthermore, several FL-QTLs contained 15 genes that were differentially expressed in the MEblack module including the tubulin beta gene (TUB5). Compared with the wild type, the overexpression of GhTUB5 and GbTUB5 in Arabidopsis suppressed root cell length but promoted cellulose synthesis. Knockout of GhTUB5 resulted in longer fiber lines. Protein-based experiments revealed that GhTUB5 interacts with GhZFP6. Additionally, GhTUB5 was directly activated by GhHD-ZIP7, a homeobox-leucine zipper transcription factor, and its paralogous gene was previously reported to mediate fiber elongation. CONCLUSION: This study opens a new avenue to dissect functional mechanism of cotton fiber elongation. Our findings provide some molecular details on how GhTUB5 mediates the FL phenotype in cotton.

7.
BMC Genomics ; 25(1): 758, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095734

ABSTRACT

To reveal the molecular function of elongation family of very long chain fatty acids(ELO) protein in Cyrtotrachelus buqueti, we have identified 15 ELO proteins from C.buqueti genome. 15 CbuELO proteins were located on four chromosomes. Their isoelectric points ranged from 9.22 to 9.68, and they were alkaline. These CbuELO proteins were stable and hydrophobic. CbuELO proteins had transmembrane movement, and had multiple phosphorylation sites. The secondary structure of CbuELO proteins was mainly α-helix. A total of 10 conserved motifs were identified in CbuELO protein family. Phylogenetic analysis showed that molecular evolutionary relationships of ELO protein family between C. buqueti and Tribolium castaneum was the closest. Developmental transcriptome analysis indicated that CbuELO10, CbuELO13 and CbuELO02 genes were key enzyme genes that determine the synthesis of very long chain fatty acids in pupae and eggs, CbuELO6 and CbuELO7 were that in the male, and CbuELO8 and CbuELO11 were that in the larva. Transcriptome analysis under different temperature conditions indicated that CbuELO1, CbuELO5, CbuELO12 and CbuELO14 participated in regulating temperature stress responses. Transcriptome analysis at different feeding times showed CbuELO12 gene expression level in all feeding time periods was significant downregulation. The qRT-PCR experiment verified expression level changes of CbuELO gene family under different temperature and feeding time conditions. Protein-protein interaction analysis showed that 9 CbuELO proteins were related to each other, CbuELO1, CbuELO4 and CbuELO12 had more than one interaction relationship. These results lay a theoretical foundation for further studying its molecular function during growth and development of C. buqueti.


Subject(s)
Evolution, Molecular , Fatty Acids , Insect Proteins , Phylogeny , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Fatty Acids/metabolism , Coleoptera/genetics , Coleoptera/metabolism , Gene Expression Profiling , Genome, Insect , Multigene Family
8.
Pathophysiology ; 31(3): 388-397, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39189165

ABSTRACT

BACKGROUND: Surgeons often encounter patients with intestinal failure due to inadequate intestinal length ("short bowel syndrome"/SBS). Treatment in these patients remains challenging and the process of physiologic adaptation may take years to complete, which frequently requires parenteral nutrition. We propose a proof-of-concept mechanical bowel elongation approach using a self-expanding prototype of an intestinal expansion sleeve (IES) for use in SBS to accelerate the adaptation process. METHODS: IESs were deployed in the small intestines of Sprague Dawley rats. Mechanical characterization of these prototypes was performed. IES length-tension relationships and post-implant bowel expansion were measured ex vivo. Bowel histology before and after implantation was evaluated. RESULTS: IES mechanical studies demonstrated decreasing expansive force with elongation. The deployment of IES devices produced an immediate 21 ± 8% increase in bowel length (p < 0.001, n = 11). Mechanical load testing data showed that the IESs expressed maximum expansive forces at 50% compression of the initial pre-contracted length. The small-intestine failure load in the rats was 1.88 ± 21 N. Intestinal histology post deployment of the IES showed significant expansive changes compared to unstretched bowel tissue. CONCLUSIONS: IES devices were scalable to the rat intestinal model in our study. The failure load of the rat small intestine was many times higher than the force exerted by the contraction of the IES. Histology demonstrated preservation of intestinal structure with some mucosal erosion. Future in vivo rat studies on distraction enterogenesis with this IES should help to define this organogenesis phenomenon.

9.
Cells ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39120298

ABSTRACT

The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.


Subject(s)
Axons , Cell Polarity , Wnt-5a Protein , Animals , Wnt-5a Protein/metabolism , Cell Polarity/drug effects , Axons/metabolism , Axons/drug effects , Mice , Wnt Signaling Pathway/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neuronal Outgrowth/drug effects , Neurons/metabolism , Neurons/cytology , Wnt3A Protein/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics
10.
Article in English | MEDLINE | ID: mdl-39090985

ABSTRACT

Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product carbon length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range.

11.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131270

ABSTRACT

Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR-Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with a small eye morphological phenotype and demonstrate that even the morphologically normal siblings exhibit dysregulated gene pathways related to vision and stress response. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities and provide insight into maternal nutritional strategies that optimize infant brain health.

12.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125929

ABSTRACT

In this work, liposomes loaded with the fungicide, Fludioxonil (FLUD), for the containment of fungal diseases in agriculture were developed. Three types of vesicles with different compositions were compared: (I) plain vesicles, composed of soy phosphatidylcholine and cholesterol; (II) PEG-coated vesicles, with an additional polyethylene glycol coating; and (III) cationic vesicles, containing didodecyldimethylammonium bromide. Nanometric-sized vesicles were obtained both by the micelle-to-vesicle transition method and by the extrusion technique, and encapsulation efficiency, drug loading content, and Zeta potential were determined for all the samples. The extruded and PEGylated liposomes were the most stable over time and together with the cationic ones showed a significant prolonged FLUD release capacity. The liposomes' biological activity was evaluated on conidial germination, germ tube elongation and colony radial growth of the ascomycete Botrytis cinerea, a phytopathogenic fungus affecting worldwide many important agricultural crops in the field as well as in the postharvest phase. The extruded and PEGylated liposomes showed greater effectiveness in inhibiting germ tube elongation and colony radial growth of the fungal pathogen, even at 0.01 µg·mL-1, the lowest concentration assessed.


Subject(s)
Botrytis , Dioxoles , Fungicides, Industrial , Liposomes , Plant Diseases , Liposomes/chemistry , Botrytis/drug effects , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Dioxoles/pharmacology , Dioxoles/chemistry , Dioxoles/administration & dosage , Plant Diseases/microbiology , Plant Diseases/prevention & control , Polyethylene Glycols/chemistry , Agriculture/methods , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Phosphatidylcholines/chemistry , Spores, Fungal/drug effects , Pyrroles
13.
J Exp Bot ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167699

ABSTRACT

Light and temperature are the two most variable environmental signals, which significantly regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signaling pathways converge, and regulate plant development. This review outlines diverse mechanisms of light and temperature perception and downstream signaling, with an emphasis on their integration and interconnection. The recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signaling proteins under different light conditions, and circadian clock components at warm temperatures. We have made an attempt to comprehensively describe these studies and demonstrate their connection with plant developmental responses. We have also explained how gene signaling pathways of light and thermomorphogenesis, are interconnected with HSR-mediated thermotolerance, which reveals new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signaling molecules between light and temperature is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.

14.
Plant J ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172024

ABSTRACT

Cotton fiber (Gossypium hirsutum) serves as an ideal model for investigating the molecular mechanisms of plant cell elongation at the single-cell level. Brassinosteroids (BRs) play a crucial role in regulating plant growth and development. However, the mechanism by which BR influences cotton fiber elongation remains incompletely understood. In this study, we identified EXORDIUM-like (GhEXL3) through transcriptome analysis of fibers from BR-deficient cotton mutant pagoda 1 (pag1) and BRI1-EMS-SUPPRESSOR 1 (GhBES1.4, encoding a central transcription factor of BR signaling) overexpression cotton lines. Knockout of GhEXL3 using CRISPR/Cas9 was found to impede cotton fiber elongation, while its overexpression promoted fiber elongation, suggesting a positive regulatory function for GhEXL3 in fiber elongation. Furthermore, in vitro ovule culture experiments revealed that the overexpression of GhEXL3 partially counteracted the inhibitory effects of brassinazole (BRZ) on cotton fiber elongation, providing additional evidence of GhEXL3 involvement in BR signaling pathways. Moreover, our findings demonstrate that GhBES1.4 directly binds to the E-box (CACGTG) motif in the GhEXL3 promoter region and enhances its transcription. RNA-seq analysis revealed that overexpression of GhEXL3 upregulated the expression of EXPs, XTHs, and other genes associated with fiber cell elongation. Overall, our study contributes to understanding the mechanism by which BR regulates the elongation of cotton fibers through the direct modulation of GhEXL3 expression by GhBES1.4.

15.
J Mol Biol ; : 168743, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127140

ABSTRACT

Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed "premature" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are "not wanted" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.

16.
Ophthalmic Res ; 67(1): 488-498, 2024.
Article in English | MEDLINE | ID: mdl-39111293

ABSTRACT

INTRODUCTION: The aim of the study was to investigate the association of parameters related to accommodation and convergence and axial elongation in basic intermittent exotropia (IXT) patients and the potential clinical predictors of axial length (AL) growth. METHODS: A total of 140 basic IXT patients were recruited in this study. The medians of AL growth in different age brackets were chosen to divide the subjects into group A (slower axial elongation group, n = 69) and group B (faster axial elongation group, n = 71). Parameters of dominant and nondominant eyes were compared and analyzed during the 12-month follow-up period. The parameters, including baseline refraction, angle of deviation, Newcastle control score (NCS), accommodative amplitude (AMP), accommodative facility (AMF), accommodative response, positive or negative relative accommodation (PRA/NRA), and near point of convergence (NPC), were analyzed via univariate and multivariate regression. RESULTS: Subjects in the faster axial elongation group tended to have more myopic spherical equivalents (t = 3.956, p < 0.001), greater AMPs of dominant eyes (t = -2.238, p = 0.027), and fewer near points of convergence (t = 2.347, p = 0.020) than in the slower axial elongation group. For dominant eyes, logistic and linear regression analysis revealed that more negative spherical equivalents (OR = 0.603, p < 0.001; ß = -0.045, p < 0.001), greater AMPs (OR = 1.201, p = 0.027; ß = 0.023, p = 0.010), and less near points of convergence (OR = 0.883, p = 0.021; ß = -0.012, p = 0.019) were correlated with the faster axial elongation. For nondominant eyes, a more myopic spherical equivalent (OR = 0.682; p = 0.001; ß = -0.029, p = 0.005) was the only parameter correlated with faster axial elongation through regression analysis. CONCLUSION: In children with basic IXT, faster axial elongation in the dominant eyes was associated with more myopic spherical equivalents, greater AMPs, and lower NPCs. These accommodative parameters can serve as potential clinical indicators for monitoring myopia progression in addition to AL.


Subject(s)
Accommodation, Ocular , Axial Length, Eye , Convergence, Ocular , Exotropia , Refraction, Ocular , Humans , Accommodation, Ocular/physiology , Exotropia/physiopathology , Male , Female , Axial Length, Eye/physiopathology , Child , Convergence, Ocular/physiology , Child, Preschool , Refraction, Ocular/physiology , Follow-Up Studies , Visual Acuity/physiology , Vision, Binocular/physiology , Retrospective Studies
17.
Dev Cell ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39191251

ABSTRACT

Ergosterols are essential components of fungal plasma membranes. Inhibitors targeting ergosterol biosynthesis (ERG) genes are critical for controlling fungal pathogens, including Magnaporthe oryzae, the fungus that causes rice blast. However, the translational mechanisms governing ERG gene expression remain largely unexplored. Here, we show that the Trm6/Trm61 complex catalyzes dynamic N1-methyladenosine at position 58 (m1A58) in 51 transfer RNAs (tRNAs) of M. oryzae, significantly influencing translation at both the initiation and elongation stages. Notably, tRNA m1A58 promotes elongation speed at most cognate codons mainly by enhancing eEF1-tRNA binding rather than affecting tRNA abundance or charging. The absence of m1A58 leads to substantial decreases in the translation of ERG genes, ergosterol production, and, consequently, fungal virulence. Simultaneously targeting the Trm6/Trm61 complex and the ergosterol biosynthesis pathway markedly improves rice blast control. Our findings demonstrate an important role of m1A58-mediated translational regulation in ergosterol production and fungal infection, offering a potential strategy for fungicide development.

18.
Cells Dev ; : 203969, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39191372

ABSTRACT

Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions and transform their cuboidal shape into a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution. Here we described the motion and shapes of all cells composing the dorsal half of the somite in three-dimensional space using lightsheet microscopy. We identified two types of cell movement-in horizontal and dorsal directions-that occur simultaneously within individual cells, creating a complex, twisted flow of cells during somite elongation. Chemical inhibition of Sdf1 signaling disrupted the collective movement in both directions and inhibited somite elongation, suggesting that Sdf1 signaling is crucial for the cell flow. Furthermore, three-dimensional computational modeling suggested that horizontal cell rotation accelerates the perpendicular elongation of the somite along the dorsoventral axis. Together, our study offers novel insights into the role of collective cell migration in tissue morphogenesis, which proceeds dynamically in the three-dimensional space of the embryo.

19.
Mol Reprod Dev ; 91(8): e23767, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39175337

ABSTRACT

In many mammals, including ruminants, pregnancy requires pregnancy recognition signaling molecules secreted by the conceptus; however, the mechanism underlying pregnancy establishment in cattle remains unknown. Trophoblastic vesicles (TVs) are artificially produced from the extraembryonic tissues of the elongating conceptus and may be useful tools for understanding conception. This study investigated the morphological and functional properties of TVs in comparison to those of intact conceptuses. TVs were prepared from the extraembryonic tissues of conceptuses collected 14 days after artificial insemination (AI), cryopreserved immediately after dissection, and cultured after thawing for subsequent transplantation into the uterus. The transferred TVs were collected 7 days after transplantation and compared with extraembryonic tissue samples collected from conceptuses at 21 days post-AI. The recovered TVs were 40 times longer than those of their pre-transplant counterparts. Microscopic evaluation revealed that their membrane structures consisted of trophoblast and hypoblast layers. The expression patterns of the cell differentiation markers, CDX2, SOX2, and GATA6, and interferon tau (IFNT) protein expression levels in the TVs were similar to those in control extraembryonic tissue samples. These findings suggest that TVs are capable of morphological elongation and maintain IFNT production in a similar way as original trophoblasts.


Subject(s)
Trophoblasts , Animals , Cattle , Female , Trophoblasts/metabolism , Trophoblasts/cytology , Pregnancy , Interferon Type I/metabolism , Pregnancy Proteins/metabolism , Uterus/metabolism , Extracellular Vesicles/metabolism
20.
J Mol Biol ; : 168746, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147127

ABSTRACT

The RNA polymerase II (RNAPII) transcription cycle is regulated at every stage by a network of cyclin-dependent protein kinases (CDKs) and protein phosphatases. Progression of RNAPII from initiation to termination is marked by changing patterns of phosphorylation on the highly repetitive carboxy-terminal domain (CTD) of RPB1, its largest subunit, suggesting the existence of a CTD code. In parallel, the conserved transcription elongation factor SPT5, large subunit of the DRB sensitivity-inducing factor (DSIF), undergoes spatiotemporally regulated changes in phosphorylation state that may be directly linked to the transitions between transcription-cycle phases. Here we review insights gained from recent structural, biochemical, and genetic analyses of human SPT5, which suggest that two of its phosphorylated regions perform distinct functions at different points in transcription. Phosphorylation within a flexible, RNA-binding linker promotes release from the promoter-proximal pause-frequently a rate-limiting step in gene expression-whereas modifications in a repetitive carboxy-terminal region are thought to favor processive elongation, and are removed just prior to termination. Phosphorylations in both motifs depend on CDK9, catalytic subunit of positive transcription elongation factor b (P-TEFb); their different timing of accumulation on chromatin and function during the transcription cycle might reflect their removal by different phosphatases, different kinetics of phosphorylation by CDK9, or both. Perturbations of SPT5 regulation have profound impacts on viability and development in model organisms through largely unknown mechanisms, while enzymes that modify SPT5 have emerged as potential therapeutic targets in cancer; elucidating a putative SPT5 code is therefore a high priority.

SELECTION OF CITATIONS
SEARCH DETAIL