Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 198: 106557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823094

ABSTRACT

Sexual reproduction of reef-building corals is vital for coral reef ecosystem recovery. Corals allocate limited energy to growth and reproduction, when being under environmental disturbance, which ultimately shapes the community population dynamics. In the present study, energetic and physiological parameters of both parental colonies and larvae of the coral Pocillopora damicornis were measured during their reproduction stage under four temperatures; 28 °C (low-temperature acclimation, LA), 29 °C (control temperature, CT), 31 °C (high-temperature acclimation, HA), and 32 °C (heat stress, HS). The results showed temperature changes altered the larvae release timing and fecundity in P. damicornis. Parental colonies exposed to the LA treatment exhibited reduced investment in reproduction and released fewer larvae, while retaining more energy for their development. However, each larva acquired higher energy and symbiont densities enabling survival through longer planktonic periods before settlement. In contrast, parental colonies exposed to the HA treatment had increased investment for reproduction and larvae output, while per larva gained less energy to mitigate the threat of higher temperature. Furthermore, the energy allocation processes restructured fatty acids concentration and composition in both parental colonies and larvae as indicated by shifts in membrane fluidity under adaptable temperature changes. Notably, parental colonies from the HS treatment expended more energy in response to heat stress, resulting in adverse effects, especially after larval release. Our study expands the current knowledge on the energy allocation strategies of P. damicornis and how it is impacted by temperature. Parental colonies employed different energy allocation strategies under distinct temperature regimes to optimize their development and offspring success, but under heat stress, both were compromised. Lipid metabolism is essential for the success of coral reproduction and further understanding their response to heat stress can improve intervention strategies for coral reef conservation in warmer future oceans.


Subject(s)
Anthozoa , Energy Metabolism , Reproduction , Temperature , Animals , Anthozoa/physiology , Coral Reefs , Larva/physiology , Larva/growth & development , Acclimatization/physiology
2.
Environ Pollut ; : 124388, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897281

ABSTRACT

Understanding the impact of environmental pollution on organismal energy budgets is crucial for predicting adaptive responses and potential maladaptation to stressors. However, the regulatory mechanism governing the trade-off between energy intake and consumption remains largely unknown, particularly considering the diverse adaptations influenced by exposure history in realistic field conditions. In the present study, we conducted a simulated field reciprocal transplant experiment to compare the energy budget strategies of Strauchbufo raddei tadpoles exposed to heavy metal. The simulated heavy metal concentrations (0.29 mg/L Cu, 1.17 mg/L Zn, 0.47 mg/L Pb, 0.16 mg/L Cd) mirrored the actual environmental exposure concentrations observed in the field habitat. This allowed for a comparison between tadpoles with parental chronic exposure to heavy metal pollutants in their habitat and those without such exposure. Results revealed that under heavy metal exposure, tadpoles originating from unpolluted areas exhibited heightened vulnerability, characterized by reduced food intake, diminished nutrient absorption, increased metabolism cost, reduced energy reserves, and increased mortality rates. In contrast, tadpoles originating from areas with long-term heavy metal pollution demonstrated adaptive strategies, manifested through adjustments in liver and small intestine phenotypes, optimizing energy allocation, and reducing energy consumption to preserve energy, thus sustaining survival. However, tadpoles from polluted areas exhibited certain maladaptive such as growth inhibition, metabolic suppression, and immune compromise due to heavy metal exposure. In conclusion, while conserving energy consumption has proven to be an effective way to deal with long-term heavy metal stress, it poses a threat to individual survival and population development in the long run.

3.
Aquat Toxicol ; 273: 106984, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38901220

ABSTRACT

Oil spills are reported to have conflicting impacts of either injury or resilience on zooplankton communities, and physiological plasticity is speculated to be the possible causative factor. But how? An explanation was sought by exposing the marine rotifer Brachionus plicatilis to a series of water-accommodated fractions (WAFs) of crude oil under controlled laboratory conditions, and population dynamics, which is the core issue for zooplankton facing external stress, were analyzed. The total hydrocarbon concentration of WAFs was quickly degraded from a concentration of 5.0 mg L-1 to half within 24 h and then remained stable. No acute lethality was observed; only motion inhibition was observed in the group treated with 10 %, 50 % and 100 % WAFs, which occurred simultaneously with inhibition of feeding and filtration. However, sublethal exposure to the WAFs concentration series presented stimulation impacts on reproduction and even the population of B. plicatilis. The negative correlation between motion and reproduction seemed to indicate that a shift in the distribution of individual energy toward reproduction rather than motion resulted in increased reproduction after exposure to WAFs. More evidence from transmission electron microscopy (TEM) revealed ultrastructural impairment in both the ovaries and cilia in each treated group, and imbalance in mitochondrial numbers was one of the distinct features of alteration. WAFs stress may alter the energy utilization and storage paradigm, as indicated by the significant elevation in glycogen and the significant decrease in lipid content after WAFs exposure. Further evidence from metabolomics analysis showed that WAFs stress increased the level of lipid metabolism and inhibited some of the pathways in glucose metabolism. Sublethal acute toxicity was observed only in the first 24 h with WAFs exposure, and an energy strategy consisting of changes in the utilization and storage paradigm and reallocation is responsible for the population resilience of B. plicatilis during oil spills.

4.
J Exp Biol ; 227(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38533751

ABSTRACT

The physiological processes underlying the post-prandial rise in metabolic rate, most commonly known as the 'specific dynamic action' (SDA), remain debated and controversial. This Commentary examines the SDA response from two opposing hypotheses: (i) the classic interpretation, where the SDA represents the energy cost of digestion, versus (ii) the alternative view that much of the SDA represents the energy cost of growth. The traditional viewpoint implies that individuals with a reduced SDA should grow faster given the same caloric intake, but experimental evidence for this effect remains scarce and inconclusive. Alternatively, we suggest that the SDA reflects an organism's efficacy in allocating the ingested food to growth, emphasising the role of post-absorptive processes, particularly protein synthesis. Although both viewpoints recognise the trade-offs in energy allocation and the dynamic nature of energy distribution among physiological processes, we argue that equating the SDA with 'the energy cost of digestion' oversimplifies the complexities of energy use in relation to the SDA and growth. In many instances, a reduced SDA may reflect diminished nutrient absorption (e.g. due to lower digestive efficiency) rather than increased 'free' energy available for somatic growth. Considering these perspectives, we summarise evidence both for and against the opposing hypotheses with a focus on ectothermic vertebrates. We conclude by presenting a number of future directions for experiments that may clarify what the SDA is, and what it is not.


Subject(s)
Energy Intake , Postprandial Period , Humans , Animals , Postprandial Period/physiology , Oxygen Consumption , Digestion/physiology , Energy Metabolism/physiology
5.
Chemosphere ; 352: 141445, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354862

ABSTRACT

Organic and nanoparticle pollutants are the main environmental problems affecting marine species, which have received great attention. However, the combined effect of pollutants on marine life in the presence of predators needs to be clarified. In this study, the effects of pentachlorophenol (PCP) and titanium dioxide nanoparticles (nano-TiO2) on the energy metabolism of mussels (Mytilus coruscus) in the presence of predators were assessed through cellular energy allocation (CEA) approach. Mussels were exposed to PCP (0, 1, and 10 µg/L), nano-TiO2 (1 mg/L, 25 and 100 nm), and predators (Portunus trituberculatus presence/absence) for 14 days. Exposure to high concentrations of PCP (10 µg/L) with small particle size nano-TiO2 (25 nm) decreased cellular energy stores (carbohydrates, lipids, and proteins) and increased cellular energy demand (measured as the activity of the mitochondrial electron transport system, ETS). During the first 7 days, energy was supplied mainly through the consumption of carbohydrates, while lipids are mobilized to participate after 7 days. The presence of predators caused a further decrease in energy stores. These findings demonstrate that PCP, nano-TiO2 and predators have a negative impact on energy metabolism at the cellular level. Carbohydrates are not able to meet the metabolic demand, lipids need to be consumed, and energy metabolism was also mediated by the involvement of proteins. Overall, our results suggest that PCP, nano-TiO2 and predators disrupt the cellular energy metabolism of mussels through reduced cellular energy allocation, small particles and predators drive mussels to exert energetic metabolic adjustments for detoxification reactions when toxic contaminants are present.


Subject(s)
Environmental Pollutants , Mytilus , Nanoparticles , Pentachlorophenol , Water Pollutants, Chemical , Animals , Pentachlorophenol/metabolism , Mytilus/metabolism , Nanoparticles/toxicity , Energy Metabolism , Environmental Pollutants/metabolism , Carbohydrates , Lipids , Titanium/pharmacology , Water Pollutants, Chemical/metabolism
6.
Sci Total Environ ; 915: 170006, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38220007

ABSTRACT

Northern China has experienced a significant increase in vegetation cover over the past few decades. It lacks a comprehensive understanding of how greening impacts local hydrothermal conditions. To address this issue, in our study, the RegCM-CLM45 model was used to conduct a thorough assessment of the impacts of greening on temperature, vapor pressure deficit (VPD), precipitation, and soil moisture. The findings revealed that the local climatic effects of greening varied across different drought gradients based on the aridity index (AI). In drier regions with AI<0.3, the increased energy induced by greening tended to dissipate as sensible heat, exacerbating both warming and drought conditions. Conversely, in wetter regions with AI>0.3, a greater proportion of energy was lost through evapotranspiration, attenuating warming. Additionally, greening enhanced precipitation and soil moisture in drier regions and moderated their decline in wetter regions. Significantly, our research emphasized the effectiveness of grassland expansion and conservation as prime strategies for ecological restoration, particularly in drylands, where they could effectively alleviate soil drought. Given the diverse responses of different land cover transformations to local hydrothermal conditions in drylands, there is an urgent need to address potential adverse effects arising from inappropriate ecological restoration strategies and to develop an optimal restoration framework for the future.

7.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220482, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38186275

ABSTRACT

Metabolic rates, including standard (SMR) and maximum (MMR) metabolic rate have often been linked with life-history strategies. Variation in context- and tissue-level metabolism underlying SMR and MMR may thus provide a physiological basis for life-history variation. This raises a hypothesis that tissue-specific metabolism covaries with whole-animal metabolic rates and is genetically linked to life history. In Atlantic salmon (Salmo salar), variation in two loci, vgll3 and six6, affects life history via age-at-maturity as well as MMR. Here, using individuals with known SMR and MMR with different vgll3 and six6 genotype combinations, we measured proxies of mitochondrial density and anaerobic metabolism, i.e. maximal activities of the mitochondrial citrate synthase (CS) and lactate dehydrogenase (LDH) enzymes, in four tissues (heart, intestine, liver, white muscle) across low- and high-food regimes. We found enzymatic activities were related to metabolic rates, mainly SMR, in the intestine and heart. Individual loci were not associated with the enzymatic activities, but we found epistatic effects and genotype-by-environment interactions in CS activity in the heart and epistasis in LDH activity in the intestine. These effects suggest that mitochondrial density and anaerobic capacity in the heart and intestine may partly mediate variation in metabolic rates and life history via age-at-maturity. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Subject(s)
Muscles , Salmo salar , Animals , Humans , Anaerobiosis , Biological Evolution , Genotype , Heart , Transcription Factors , Energy Metabolism/physiology
8.
J Adv Res ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38246245

ABSTRACT

INTRODUCTION: During the adaptation to host plant resistance, herbivorous insects faced the challenge of overcoming plant defenses while ensuring their own development and reproductive success. To achieve this, a strategic allocation of energy resources for detoxification and ecological fitness maintenance became essential. OBJECTIVE: This study aimed to elucidate the intricate energy allocation mechanisms involved in herbivore adaptation that are currently poorly understood. METHODS: The rice Oryza sativa and its monophagous pest, the brown planthopper (BPH), Nilaparvata lugens were used as a model system. An integrated analysis of metabolomes and transcriptomes from different BPH populations were conducted to identify the biomarkers. RNA interference of key genes and exogenous injection of key metabolites were performed to validate the function of biomarkers. RESULTS: We found that alanine was one of the key biomarkers of BPH adaptation to resistant rice variety IR36. We also found that alanine flow determined the adaptation of BPH to IR36 rice. The alanine aminotransferase (ALT)-mediated alanine transfer to pyruvate was necessary and sufficient for the adaptation. This pathway may be conserved, at least to some extent, in BPH adaptation to multiple rice cultivars with different resistance genes. More importantly, ALT-mediated alanine metabolism is the foundation of downstream energy resource allocation for the adaptation. The adapted BPH population exhibited a significantly higher level of energy reserves in the fat body and ovary when fed with IR36 rice, compared to the unadapted population. This rendered the elevated detoxification in the adapted BPH and their ecological fitness recovery. CONCLUSION: Overall, our findings demonstrated the crucial role of ALT-mediated alanine metabolism in energy allocation during the adaptation to resistant rice in BPH. This will provide novel knowledge regarding the co-evolutionary mechanisms between herbivores and their host plants.

9.
Pest Manag Sci ; 80(4): 1751-1760, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009258

ABSTRACT

BACKGROUND: Migration is a strategy that shifts insects to more favorable habitats in response to deteriorating local environmental conditions. The ecological factors that govern insect migration are poorly understood for many species. Plutella xylostella causes great losses in Brassica vegetable and oilseed crops, and undergoes mass migration. However, the physiological and behavioral basis for distinguishing migratory individuals and the factors driving its migration remain unclear. RESULTS: Daily light trap catches conducted from April to July in a field population of P. xylostella in central China revealed a sharp decline in abundance from late-May. Analysis of ovarian development levels showed that the proportion of sexually immature females gradually increased, while the mating rate decreased, indicating that generations occurring in May mainly resulted from local breeding and that emigration began in late-May. Physiological and behavioral analyses revealed that emigrant populations had a higher take-off proportion, stronger flight capacity and greater energy reserves of triglyceride compared to residents. Furthermore, a gradual increase in temperature from 24 °C to >30 °C during larval development resulted in a significant delay in oogenesis and increased take-off propensity of adults compared with the control treatment reared at a constant temperature of 24 °C. CONCLUSION: Our results provide the physiological and behavioral factors that underpin mass migration in P. xylostella, and demonstrate that exposure to increased temperature increases their migration propensity at the cost of reproductive output. This study sheds light on understanding the factors that influence population dynamics, migratory propensity and reproductive tradeoffs in migratory insects. © 2023 Society of Chemical Industry.


Subject(s)
Brassica , Moths , Humans , Animals , Female , Plant Breeding , Temperature , Heat-Shock Response , Larva
10.
J Evol Biol ; 36(12): 1731-1744, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37955420

ABSTRACT

There is growing empirical evidence that animal hosts actively control the density of their mutualistic symbionts according to their requirements. Such active regulation can be facilitated by compartmentalization of symbionts within host tissues, which confers a high degree of control of the symbiosis to the host. Here, we build a general theoretical framework to predict the underlying ecological drivers and evolutionary consequences of host-controlled endosymbiont density regulation for a mutually obligate association between a host and a compartmentalized, vertically transmitted symbiont. Building on the assumption that the costs and benefits of hosting a symbiont population increase with symbiont density, we use state-dependent dynamic programming to determine an optimal strategy for the host, i.e., that which maximizes host fitness, when regulating the density of symbionts. Simulations of active host-controlled regulation governed by the optimal strategy predict that the density of the symbiont should converge to a constant level during host development, and following perturbation. However, a similar trend also emerges from alternative strategies of symbiont regulation. The strategy which maximizes host fitness also promotes symbiont fitness compared to alternative strategies, suggesting that active host-controlled regulation of symbiont density could be adaptive for the symbiont as well as the host. Adaptation of the framework allowed the dynamics of symbiont density to be predicted for other host-symbiont ecologies, such as for non-essential symbionts, demonstrating the versatility of this modelling approach.


Subject(s)
Biological Evolution , Symbiosis , Animals , Symbiosis/physiology , Models, Theoretical
11.
Insects ; 14(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37504586

ABSTRACT

The phenomenon of food shortage is widespread in spider populations, which has a great impact on their growth, development, and survival. Pardosa pseudoannulata is a dominant spider species in rice fields and has an important controlling effect on rice pests. In this study, three feeding levels were tested at the juvenile stage (H, high feeding; M, medium dietary restriction; L, severe dietary restriction) and two at the adult stage (H and L). A total of six feeding levels were tested to explore the effects of dietary restriction on the development, longevity, nutrient content, and predation by P. pseudoannulata [HH (control group), HL, MH, ML, LH, LL]. The results showed that continuous dietary restriction (ML and LL groups) had negative impacts on the growth of P. pseudoannulata and positive impacts on longevity. Spiderlings suffered from dietary restrictions during the juvenile period, and when the restrictions were removed upon reaching adulthood (MH and LH groups), their lifespan started decreasing whilst their weight began returning to normal. This suggested that there might be a trade-off between the growth and longevity of the spider under dietary restrictions. The study also found that when food was severely restricted in the juvenile stage (LH and LL groups), the nutrient contents of the adult spider could return to the same level as the control group, but the predatory ability decreased. When food was moderately restricted in the juvenile stage (MH and ML groups), the predatory ability of the adult spiders improved, while nutrients of the adult spiders declined. Our results will provide an empirical basis for the protection and effective use of dominant spider species in agricultural fields.

12.
J Exp Biol ; 226(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37334714

ABSTRACT

The lifetime growth of almost all fishes follows a biphasic relationship - juvenile growth is rapid and adult growth subsequently decelerates. For a trend that is so ubiquitous, there is no general agreement as to the underlying mechanisms causing adult growth to decelerate. Ongoing theories argue that adult growth slows because either the gills fail to supply the body with surplus oxygen needed for continued somatic gain (i.e. oxygen limited), or sexual maturation induces a switch in energy allocation towards reproduction and away from growth (i.e. energy limited). Here, we empirically tested these notions by tracking the individual growth trajectories of ∼100 female Galaxias maculatus, ranging in size, during their first 3 months of adulthood. At a summer temperature of 20°C, we provided subsets of fish with additional energy (fed once versus twice a day), supplementary oxygen (normoxia versus hyperoxia), or a combination of the two, to assess whether we could change the trajectory of adult growth. We found that growth improved marginally with additional energy, yet remained unaffected by supplementary oxygen, thereby providing evidence for a role for energy reallocation in the deceleration of adult growth. Interestingly, additional dietary energy had a disproportionately larger effect on the growth of fish that matured at a greater size, revealing size-dependent variance in energy acquisition and/or allocation budgets at summer temperatures. Overall, these findings contribute towards understanding the mechanisms driving widespread declines in the body size of fish with climate warming.


Subject(s)
Deceleration , Oxygen , Female , Animals , Fishes , Reproduction , Body Size , Temperature
13.
J Environ Manage ; 342: 118241, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37276622

ABSTRACT

The free flow of energy cannot be fully achieved in China's energy market because of incomplete market-oriented reform, resulting in energy allocation distortion, which has hampered carbon emissions reduction. However, the extent of energy allocation distortion and its role in carbon emission efficiency remain unexplored. Therefore, this study aims to measure energy allocation distortion and investigate its impact on carbon emission efficiency. For this purpose, first, we derive energy allocation distortion based on a production function and carbon emission efficiency using a meta-frontier non-radial Malmquist index. To effectively address the endogeneity issue, we use a generalized method of moments model to estimate the impact of energy allocation distortion on carbon emission efficiency. Second, we further explore the distortionary mechanism of carbon emission efficiency associated with energy allocation and analyze the asymmetric effect of energy allocation distortion on carbon emission efficiency. The results show a certain degree of energy allocation distortion throughout the country, and disparity exists among different regions. The average value of carbon emission efficiency in the eastern region is 1.0286, well ahead of the national average, demonstrating better performance than other regions. Energy allocation distortion negatively affects carbon emission efficiency, with a 1% increase in energy allocation distortion leading to a 0.251% decrease in carbon emission efficiency. Technological progress, the structure of energy consumption, and industrial structure are important transmission channels through which energy allocation affects carbon emission efficiency. The study contributes to uncovering regional energy allocation distortion and its impacts on carbon emission efficiency and providing strategic policy recommendations for improving energy allocation efficiency.


Subject(s)
Carbon , Economic Development , Carbon/analysis , China , Industry , Efficiency , Carbon Dioxide
14.
J Hazard Mater ; 458: 131918, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37356177

ABSTRACT

Microplastics (MPs) are emerging contaminants, and there are only limited studies reporting the impacts of some MPs on liver lipid metabolism in animals. In this study, we investigated the accumulation of polypropylene-MPs in mouse liver and unraveled the change in lipid metabolic profiles by both lipidomics and Raman spectroscopy. Polypropylene-MP exposure did not cause obvious health symptoms, but hematoxylin-eosin staining showed pathological changes that polypropylene-MPs induced lipid droplet accumulation in liver. Lipidomics results showed a significant change in lipid metabolic profiles and the most influenced categories were triglycerides, fatty acids, free fatty acids and lysophosphatidylcholine, implying the effects of polypropylene-MPs on the hemostasis of lipid droplet biogenesis and catabolism. Most altered lipids contained unsaturated bonds and polyunsaturated phospholipids, possibly affecting the fluidity and curvature of membrane surfaces. Raman spectroscopy confirmed that the major spectral alterations of liver tissues were related to lipids, evidencing the altered lipid metabolism and cell membrane components in the presence of polypropylene-MPs. Our findings firstly disclosed the impacts of polypropylene-MPs on lipid metabolisms in mouse liver and hinted at their detrimental disturbance on membrane properties, cellular lipid storage and oxidation regulation, helping our deeper understanding on the toxicities and corresponding risks of polypropylene-MPs to mammals.


Subject(s)
Microplastics , Water Pollutants, Chemical , Mice , Animals , Microplastics/metabolism , Plastics/metabolism , Polypropylenes/toxicity , Lipidomics , Spectrum Analysis, Raman , Liver/metabolism , Fatty Acids/metabolism , Water Pollutants, Chemical/metabolism , Mammals
15.
Front Physiol ; 14: 1175075, 2023.
Article in English | MEDLINE | ID: mdl-37168230

ABSTRACT

Largemouth bass (LMB) production exceeded 0.7 million tons in 2021 and has become one of the most important freshwater aquaculture species in China. The stable and fixed culture cycle led to regular and drastic price fluctuation during the past decade. Strong price fluctuation provides opportunities and challenges for the LMB industry, and out-of-season spawning (OSS) and culture will provide technical support for the opportunities. To induce OSS at a low cost, we established a controllable recirculating system that allows precise thermo-photoperiod manipulation. In the system, four experimental groups were assigned, 18NP (18°C overwintering water temperature, natural photoperiod), 18CP (18°C overwintering water temperature, controlled photoperiod), 16CP (16°C overwintering water temperature, controlled photoperiod), and NTNP (natural water temperature and natural photoperiod), to determine the effects of chilling temperature and photoperiod on spawning performance. OSS was observed in all the experimental groups without significant differences, except NTNP. The manipulated broodstock can re-spawn 3 months later in the next spring in advance. Further analysis of the volume percentage of different stages of oocytes provides a base for excellent regression between the volume percentage of the primary growth stage, cortical alveoli stage, vitellogenesis/maturation stage, and gonadal development/maturation. The results suggest that the volume percentage of oocytes is a better indicator of gonadal development and maturation than the gonadosomatic index. We also found that LMB prefers palm fiber as a spawning nest over gravel. The findings of this work provide important technique guidance for practical OSS of the LMB aquaculture industry and standardization of ovary development and maturation in fish with asynchronous developmental oocytes.

16.
Environ Toxicol Chem ; 42(6): 1401-1408, 2023 06.
Article in English | MEDLINE | ID: mdl-37036245

ABSTRACT

There is concern that microplastics can act as a vector for cadmium (Cd), altering the bioavailability and subsequent toxicity of Cd to ecologically important species such as Daphnia magna. The toxicity of Cd to D. magna has been well described; however, what is not known, and what the present study addresses, was how the addition of polyethylene microplastic altered Cd toxicity. Using high-throughput feeding assays and size assessments, the present study quantified effects of exposure to Cd, microplastic, or their mixture on daphnids from neonate to adult. Exposure to Cd inhibited feeding efficiency, while exposure to microplastic inhibited growth rates of juveniles. Daphnia magna coexposed to Cd and microplastic showed significant decreases in both feeding and prereproductive growth rate. There were no differences in life-history traits across any treatments. The alterations of feeding and growth while maintaining reproductive endpoints (time to first brood, reproductive frequency, the number of neonates released at each reproductive event, and the size of neonates produced) might be the result of a shift in energy allocation away from somatic growth, allowing individuals to maintain reproductive output despite lower nutritional reserves. Our findings suggest that cocontamination of microplastic and Cd has additive effects on feeding and growth rates, resulting in a greater energy allocation shift. Environ Toxicol Chem 2023;42:1401-1408. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Cadmium , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Cadmium/analysis , Microplastics , Plastics/toxicity , Daphnia , Water Pollutants, Chemical/analysis , Polyethylene
17.
Ecol Evol ; 13(1): e8070, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36733451

ABSTRACT

Sexual size dimorphism (SSD) is caused by differences in selection pressures and life-history trade-offs faced by males and females. Proximate causes of SSD may involve sex-specific mortality, energy acquisition, and energy expenditure for maintenance, reproductive tissues, and reproductive behavior. Using a quantitative, individual-based, eco-genetic model parameterized for North Sea plaice, we explore the importance of these mechanisms for female-biased SSD, under which males are smaller and reach sexual maturity earlier than females (common among fish, but also arising in arthropods and mammals). We consider two mechanisms potentially serving as ultimate causes: (a) Male investments in male reproductive behavior might evolve to detract energy resources that would otherwise be available for somatic growth, and (b) diminishing returns on male reproductive investments might evolve to reduce energy acquisition. In general, both of these can bring about smaller male body sizes. We report the following findings. First, higher investments in male reproductive behavior alone cannot explain the North Sea plaice SSD. This is because such higher reproductive investments require increased energy acquisition, which would cause a delay in maturation, leading to male-biased SSD contrary to observations. When accounting for the observed differential (lower) male mortality, maturation is postponed even further, leading to even larger males. Second, diminishing returns on male reproductive investments alone can qualitatively account for the North Sea plaice SSD, even though the quantitative match is imperfect. Third, both mechanisms can be reconciled with, and thus provide a mechanistic basis for, the previously advanced Ghiselin-Reiss hypothesis, according to which smaller males will evolve if their reproductive success is dominated by scramble competition for fertilizing females, as males would consequently invest more in reproduction than growth, potentially implying lower survival rates, and thus relaxing male-male competition. Fourth, a good quantitative fit with the North Sea plaice SSD is achieved by combining both mechanisms while accounting for sex-specific costs males incur during their spawning season. Fifth, evolution caused by fishing is likely to have modified the North Sea plaice SSD.

18.
Article in English | MEDLINE | ID: mdl-36738902

ABSTRACT

Plastic materials found in the environment are expected to degrade into smaller plastic nanoparticles (NPs) posing a greater toxic risk because they sorb contaminants and pass physiological barriers. Moreover the presence and effects of NPs is difficult to tease out from the contamination background at polluted sites. The purpose of this study was to examine for the presence of polystyrene NPs in feral Mya arenaria clam population near anthropogenic sources of pollution and potential toxic effects. Polystyrene NPs were determined by a newly developed fluorescence-based and size exclusion chromatography methodologies. Clam health status was determined by following changes in air survival time, condition factor, growth, alcohol/aldehyde dehydrogenase (AADH), protein aggregation and lactate dehydrogenase (LDH). In addition, multi-elemental analysis in tissues was also determined. The results revealed that clams collected at 2 polluted sites contained elevated amounts of polystyrene-like NPs between 10 and 110 nm in size based on size exclusion chromatography. Elevated levels of AADH suggest the presence of hydroxylated products and were correlated with plastic NPs in tissues. Moreover, principal component analysis revealed that As, Ca, Cu, Sn and V were closely related to either polystyrene-like NPs in tissues or AADH activity. Although we cannot rule out other pollutants, clams contaminated by polystyrene-like NPs had lower condition, growth rate, air survival time and LDH activity. Increased metal/element contamination reported to sorb onto plastic polymers were also related to NPs in tissues. In conclusion, clams populations close to anthropogenic sources of pollution show evidence of polystyrene-like NPs contamination and could contribute to decreased clam health status.


Subject(s)
Mya , Water Pollutants, Chemical , Animals , Mya/chemistry , Mya/metabolism , Polystyrenes/toxicity , Microplastics/toxicity , Microplastics/metabolism , Estuaries , Canada , Water Pollutants, Chemical/metabolism
19.
Physiol Behav ; 261: 114089, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36657652

ABSTRACT

Individual-level sibling interactions in the litter huddle have been studied extensively, especially in the domestic rabbit (Oryctolagus cuniculus). However, little is known about inter-litter differences in pup activity patterns during early postnatal life, in particular regarding the drivers of such variation. In our study on 2-3-day-old rabbit pups, we predicted lower locomotor activity in litters with lower mean body masses on the day of birth (starting body mass) and with lower daily milk intake per pup, possibly constituting a behavioral strategy of pups to cope with associated energetic constraints. For an automatized assessment of pup locomotor activity in the litter huddle, we successfully developed and validated a method based on the quantification of dissimilarities between consecutive frames of video footage. Using this method, we could confirm a U-shaped time course of litter-level locomotor activity, with maximum values shortly before and after the once-daily nursing typical for the rabbit. As predicted, between-litter variation in mean starting body mass and in daily milk intake affected the degree of locomotor activity in the litter huddle, in an interactive way. That is, in litters with heavier starting body masses, pup locomotor activity was greater in pups with an initially higher milk intake, suggesting that only pups with better body condition and a higher energy intake could afford higher levels of activity. This interaction was exclusively apparent during the middle phase of the 24 h inter-nursing interval, when litter activity was low. Shortly before nursing, when pups show higher levels of locomotor behavior in anticipation of the mother's arrival, and shortly after nursing when the pups were more active possibly due to adjustments of their positions in the huddle, activity levels were decoupled from pups' starting body mass and previous milk intake. Our findings highlight the importance of pup body mass and daily energy intake, two parameters known to be related to maternal characteristics, in shaping inter-litter differences in pup locomotor activity.


Subject(s)
Behavior, Animal , Energy Intake , Animals , Rabbits , Pregnancy , Female , Animals, Newborn , Locomotion , Litter Size , Body Weight
20.
Sci Total Environ ; 858(Pt 3): 160090, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36379341

ABSTRACT

Ocean acidification has become a major ecological and environmental problem in the world, whereas the impact mechanism of ocean acidification in marine bivalves is not fully understood. Cellular energy allocation (CEA) approach and high-coverage metabolomic techniques were used to investigate the acidification effects on the energy metabolism of mussels. The thick shell mussels Mytilus coruscus were exposed to seawater pH 8.1 (control) and pH 7.7 (acidification) for 14 days and allowed to recover at pH 8.1 for 7 days. The levels of carbohydrates, lipids and proteins significantly decreased in the digestive glands of the mussels exposed to acidification. The 14-day acidification exposure increased the energy demands of mussels, resulting in increased electron transport system (ETS) activity and decreased cellular energy allocation (CEA). Significant carry-over effects were observed on all cellular energy parameters except the concentration of carbohydrates and cellular energy demand (Ec) after 7 days of recovery. Metabolomic analysis showed that acidification affected the phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and glycine, serine and threonine metabolism. Correlation analysis showed that mussel cell energy parameters (carbohydrates, lipids, proteins, CEA) were negatively/positively correlated with certain differentially abundant metabolites. Overall, the integrated biochemical and metabolomics analyses demonstrated the negative effects of acidification on energy metabolism at the cellular level and implicated the alteration of biosynthesis and metabolism of amino acids as a mechanism of metabolic perturbation caused by acidification in mussels.


Subject(s)
Metabolomics , Seawater , Hydrogen-Ion Concentration , Energy Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL