Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Environ Sci Pollut Res Int ; 31(28): 41025-41031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842778

ABSTRACT

The abiotic transformations of quinolones and tetracyclines facilitated by redox-active minerals has been studied extensively, however limited information is available regarding the antimicrobial activity and toxicity of their resultant transformation products. In this study, we first investigated the mechanisms underlying the transformation of two commonly used antibiotics, ciprofloxacin (CIP) and tetracycline (TC), by the ubiquitous redox soil mineral, birnessite (MnO2). Subsequently, we evaluated the impact of these transformation products on both the growth and activity of the environmental denitrifier Pseudomonas veronii. Following the reaction with birnessite, four transformation products for CIP and five for TC were identified. Remarkably, the antibacterial activity of both CIP and TC was lost upon the formation of transformation products during their interaction with birnessite. This loss of antimicrobial efficacy was associated with specific chemical transformations, such as the opening of the piperazine ring for CIP and hydroxylation and demethylation for TC. Interestingly, denitrifying activity, quantified in terms of nitrate reduction rates, remained unaffected by both CIP and TC at low concentrations that did not impact bacterial growth. However, under certain conditions, specifically at low concentrations of CIP, the second step of denitrification-nitrite reduction-was hindered, leading to the accumulation of nitrite. Our findings highlight that the transformation products induced by the mineral-mediated reactions of CIP or TC lose the initial antibacterial activity observed in the parent compounds. This research contributes valuable insights into the intricate interplay between antibiotics, redox-active minerals, and microbial activity in environmental systems.


Subject(s)
Anti-Bacterial Agents , Denitrification , Minerals , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Pseudomonas/metabolism
2.
Adv Microb Physiol ; 84: 1-49, 2024.
Article in English | MEDLINE | ID: mdl-38821631

ABSTRACT

In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.


Subject(s)
Bacteria , Bacteria/metabolism , Bacteria/genetics , Humans , Phosphorus/metabolism , Ecosystem , Environmental Microbiology , Organophosphorus Compounds/metabolism , Phosphates/metabolism
3.
Microorganisms ; 12(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38674743

ABSTRACT

This study describes two cases of bacteraemia sustained by a new putative Pannonibacter species isolated at the U.O.C. of Microbiology and Virology of the Policlinico of Bari (Bari, Italy) from the blood cultures of two patients admitted to the Paediatric Oncohaematology Unit. Pannonibacter spp. is an environmental Gram-negative bacterium not commonly associated with nosocomial infections. Species identification was performed using Sanger sequencing of the 16S rRNA gene and Whole-Genome Sequencing (WGS) for both strains. Genomic analyses for the two isolates, BLAST similarity search, and phylogeny for the 16S rDNA sequences lead to an assignment to the species Pannonibacter phragmitetus. However, by performing ANIb, ANIm, tetranucleotide correlation, and DNA-DNA digital hybridization, analyses of the two draft genomes showed that they were very different from those of the species P. phragmitetus. MALDI-TOF analysis, assessment of antimicrobial susceptibility by E-test method, and Analytical Profile Index (API) tests were also performed. This result highlights how environmental bacterial species can easily adapt to the human host and, especially in nosocomial environments, also gain pathogenic potential through antimicrobial resistance.

4.
Environ Pollut ; 348: 123818, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38508367

ABSTRACT

Currently, the selection of non-pathogenic microorganisms that lack clinically relevant antimicrobial resistance is crucial to bioaugmentation strategies. Pseudomonas sp. P26 (P26) is an environmental bacterium of interest due to its ability to remove aromatic compounds from petroleum, but its safety characteristics are still unknown. The study aimed to: a) determine P26 sensitivity to antimicrobials, b) investigate the presence of quinolone and ß-lactam resistance genes, c) determine the presence of virulence factors, and d) evaluate the effect of P26 on the viability of Galleria mellonella (an invertebrate animal model). P26 antimicrobial sensitivity was determined in vitro using the Kirby-Bauer agar diffusion method and the VITEK 2 automated system (BioMerieux®). Polymerase Chain Reaction was employed for the investigation of genes associated with quinolone resistance, extended-spectrum ß-lactamases, and carbapenemases. Hemolysin and protease production was determined in human blood agar and skimmed-milk agar, respectively. In the in vivo assay, different doses of P26 were injected into Galleria mellonella larvae and their survival was monitored daily. Control larvae injected with Pseudomonas putida KT2440 (a strain considered as safe) and Pseudomonas aeruginosa PA14 (a pathogenic strain) were included. Pseudomonas sp. P26 was susceptible to most evaluated antimicrobials, except for trimethoprim-sulfamethoxazole. No epidemiologically relevant genes associated with quinolone and ß-lactam resistance were identified. Hemolysin and protease production was only evidenced in the virulent strain (PA14). Furthermore, the results obtained in the in vivo experiment demonstrated that inocula less than 108 CFU/mL of P26 and P. putida KT2440 did not significantly affect larval survival, whereas larvae injected with the lowest dose of the pathogenic strain P. aeruginosa PA14 experienced instant mortality. The results suggest that Pseudomonas sp. P26 is a safe strain for its application in environmental bioremediation processes. Additional studies will be conducted to ensure the safety of this bacterium against other organisms.


Subject(s)
Anti-Infective Agents , Moths , Quinolones , Animals , Humans , Pseudomonas/genetics , Agar/pharmacology , Hemolysin Proteins/pharmacology , Moths/microbiology , Larva , Pseudomonas aeruginosa , Anti-Infective Agents/pharmacology , Peptide Hydrolases , Anti-Bacterial Agents/toxicity
5.
Front Microbiol ; 15: 1338600, 2024.
Article in English | MEDLINE | ID: mdl-38435686

ABSTRACT

Salmonella enterica is a leading cause of foodborne illness in the U.S. In the meat industry, one action taken to address pathogen contamination incidence is an intense sanitization (IS) of the entire processing plant that many large processors perform annually or semiannually. However, this procedure's immediate and long-term impact on environment microbial community and pathogen colonization are unknown. Here we investigated the impact of IS procedure on environmental biofilms and the subsequent S. enterica colonization and stress tolerance. Environmental samples were collected from floor drains at various areas 1 week before, 1 week, and 4 weeks after the IS procedure at a beef plant with sporadic S. enterica prevalence. Biofilm formation by microorganisms in the drain samples without S. enterica presence was tested under processing temperature. The ability of the biofilms to recruit and/or protect a co-inoculated S. enterica strain from quaternary ammonium compound (QAC) treatment was determined. The community structure of each drain sample was elucidated through 16S rRNA amplicon community sequencing. Post-IS samples collected from 8 drains formed significantly stronger biofilms than the respective pre-IS samples. S. enterica colonization was not different between the pre- and post-IS biofilms at all drain locations. S. enterica survival in QAC-treated pre- and post-IS mixed biofilms varied depending upon the drain location but a higher survival was associated with a stronger biofilm matrix. The 16S rRNA amplicon gene community sequencing results exhibited a decrease in community diversity 1 week after IS treatment but followed by a significant increase 4 weeks after the treatment. The IS procedure also significantly altered the community composition and the higher presence of certain species in the post-IS community may be associated with the stronger mixed biofilm formation and Salmonella tolerance. Our study suggested that the IS procedure might disrupt the existing environmental microbial community and alter the natural population composition, which might lead to unintended consequences as a result of a lack of competition within the multispecies mixture. The survival and recruitment of species with high colonizing capability to the post-IS community may play crucial roles in shaping the ensuing ecological dynamics.

6.
Heliyon ; 10(5): e27384, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486766

ABSTRACT

Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum ß-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of ß-lactams was applied to quantify ß-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 103 to 1.7 × 104 CFU per 100 mL were detected on the nutrient-poor medium spiked with 3rd generation cephalosporins and carbapenems. These numbers were 3 log10 higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant ß-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of ß-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of ß-lactamase genes (blaTEM, blaCMY-2, blaOXA-48, blaVIM-2, blaSHV, and blaNDM-1) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log10 gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.

7.
Ecotoxicol Environ Saf ; 267: 115662, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37939554

ABSTRACT

Lead (Pb), a naturally occurring element, is redistributed in the environment mainly due to anthropogenic activities. Pb pollution is a crucial public health problem worldwide due to its adverse effects. Environmental bacteria have evolved various protective mechanisms against high levels of Pb. The pbr operon, first identified in Cupriavidus metallidurans CH34, encodes a unique Pb(II) resistance mechanism involving transport, efflux, sequestration, biomineralization, and precipitation. Similar pbr operons are gradually found in diverse bacterial strains. This review focuses on the pbr-encoded Pb(II) resistance system. It summarizes various whole-cell biosensors harboring artificially designed pbr operons for Pb(II) biomonitoring with fluorescent, luminescent, and colorimetric signal output. Optimization of genetic circuits, employment of pigment-based reporters, and screening of host cells are promising in improving the sensitivity, selectivity, and response range of whole-cell biosensors. Engineered bacteria displaying Pb(II) binding and sequestration proteins, including PbrR and its derivatives, PbrR2 and PbrD, for adsorption are involved. Although synthetic bacteria show great potential in determining and removing Pb at the nanomolar level for environmental protection and food safety, some challenges must be addressed to meet demanding application requirements.


Subject(s)
Biological Monitoring , Lead , Adsorption , Biological Transport , Biomineralization
8.
Heliyon ; 9(6): e16426, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37274727

ABSTRACT

Composting favours recycling organic waste and producing an end product with high bioenergy potential and significant nutritional value for the soil. Analysing composted organic waste prepared in Dubai, a region with a desertic climate and a unique environment is essential since environmental conditions can greatly affect the physicochemical and biological soil properties and no studies in the Gulf region have been published yet on that process. This study analysed twelve different compost samples prepared in well ventilated wooden chambers, using home-generated organic wastes following the hot aerobic composting method for a duration of three months. The physicochemical parameters, measured at the end of the study, revealed that organic matter, electrical conductivity and pH were within the standard ranges while moisture content was low. Concerning macronutrients, most of the samples were within the standard range for carbon, potassium and sodium, while they were poor in phosphorous and nitrogen. Metagenomic analysis with Illumina MiSeq revealed the abundance of Firmicutes (30.35%), followed by Bacteroidota (26.69%), Proteobacteria (21.47%), and Actinobacteriota (11.17%). The phylum Planctomycetota, solely detected in compost and known to have a significant impact on soil ecosystem and decomposition of organic matter, was reported at a relatively significant level (2.35%). The Clostridia class, efficient in degrading cellulose, was described at high levels compared to other studies. The composting project succeeded in generating a healthy soil but lengthening the duration will allow the samples to fully decompose and therefore increase the total available nitrogen and phosphorus to meet the criteria of a typical mature compost. Various microbial consortia helped in the decomposition process. The qualitative information collected in this study will help in improving the composting technology to favour its utilization by a larger public in the Gulf region.

9.
Folia Microbiol (Praha) ; 68(6): 939-949, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37233886

ABSTRACT

This study aims to determine the bacterial flora on the skin surface of the juvenile forms of Pelophylax ridibundus inhabiting three different altitudes and examine potential correlations between bacterial diversity, ecological location, and factors. It was attempted to characterize thirty-two bacteria isolated from the Melet River, Sülük Lake, and Çambasi Pond through combined biochemical and molecular methods. Canonical correspondence analysis showed that the most important ecological factors for microorganisms to settle on frog skin were determined as water conductivity and dissolved oxygen amount. The most frequently isolated bacteria belonged to the genera Erwinia and Pseudomonas. Altitude positively affected Exiguobacterium. This first report of skin cultivable bacteria from P. ridibundus juvenile forms natural population improves our knowledge of amphibian skin bacterial flora. This study contributes to a better understanding of their ecology and how this species has survived in an environment modulated by altitude.


Subject(s)
Bacteria , Ranidae , Animals , Ranidae/microbiology , Skin
10.
Sci Total Environ ; 857(Pt 1): 159221, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36206910

ABSTRACT

Co-occurrence of resistance and virulence is often overlooked in aquatic bacteria as environmental reservoirs, while transmission of these characteristics to clinically significant strains present unforeseen problems in future. In this investigation, environmental bacteria identified concurrently from multiple aquatic habitats viz., groundwater, canal, river and coastal waters were profiled for antibiotic resistance, metal tolerance, virulence factors and genes coding for these determinants. Strains from polluted river and canal exhibited higher resistance and virulence, especially Pseudomonas gessardii and P. fluorescens displayed high antibiotic resistance index (ARI > 0.6-0.8) with Alkaline Protease and Phospholipase production. Opportunistic pathogens including Vibrio parahaemolyticus, V. alginolyticus, V. vulnificus, Corynebacterium and Comamonas testosteroni expressed all three virulence factors with relatively low resistance. However, V. vulnificus and V. alginolyticus exhibited multiclass antibiotic resistance (5/6 classes). Metagenomic analysis revealed that genes corresponding to beta-lactam resistance were significantly higher (p < 0.05) in freshwater than seawater, while multidrug resistance gene were higher (p < 0.05) in seawater. In all aquatic bodies, abundant virulence genes belonged to secretion system proteins followed by motility related genes. Culturable bacteria revealed differential distribution of positive and negative correlation between 31 targeted genes with expressed resistance and virulence. Among Acinetobacter, significant positive correlation was found between Phospholipase production, other virulence genes (OVGs) and resistance to DNA Synthesis Inhibitors (DSI). In Pseudomonas, positive correlation was detected between toxin genes (toxA, eta, hlyA and stx) and resistance to cell wall synthesis inhibitors (CSI) as well as with OVGs and adhesion genes (eae, afa, papC and papA). Network analysis displayed unique clustering of genes ncc, arsB, strA, merA and intI dominated by non-pathogens and distinct clustering of genes pho, erm, nfsA, trh, lasB, tdh and invA by Vibrio. This investigation extends insight on co-occurring resistance and virulence in aquatic reservoir bacteria that could pose serious threats to public health in future.


Subject(s)
Vibrio parahaemolyticus , Virulence/genetics , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Phospholipases
11.
Front Immunol ; 13: 928374, 2022.
Article in English | MEDLINE | ID: mdl-36389825

ABSTRACT

HLA-DR3 (DR3) is one of the dominant HLA-DR alleles associated with systemic lupus erythematosus (SLE) susceptibility. Our previous studies showed multiple intramolecular DR3 restricted T cell epitopes in the Smith D (SmD) protein, from which we generated a non-homologous, bacterial epitope mimics library. From this library we identified ABC247-261 Mimic as one new DR3 restricted bacterial T cell epitope from the ABC transporter ATP-binding protein in Clostridium tetani. It activated and induced autoreactive SmD66-80-specific T cells and induced autoantibodies to lupus-related autoantigens in vivo. Compared to healthy donors, SLE patients have a greater percentage of cross-reactive T cells to ABC247-261 Mimic and SmD66-80. In addition, we analyzed the ability of single DR3 restricted Tetanus toxoid (TT) T cell epitopes to induce autoimmune T cells. We found that the immunodominant TT epitope TT826-845 stimulated SmD66-80 reactive T cells but failed to induce persistent anti-SmD autoantibodies compared to the ABC247-261 Mimic. Thus, exposure to the ABC247-261 Mimic epitope may contribute to autoimmunity in susceptible DR3 individuals.


Subject(s)
HLA-DR3 Antigen , Lupus Erythematosus, Systemic , Humans , Autoantigens , Clostridium tetani , Epitopes, T-Lymphocyte , T-Lymphocytes , Autoantibodies
12.
Front Microbiol ; 13: 885588, 2022.
Article in English | MEDLINE | ID: mdl-36160202

ABSTRACT

There is evidence that breastfeeding practices may impact the milk microbiota diversity and differential abundance at the genera level; however, the possibility that distinct feeding practices, such as exclusive (EBF) and non-exclusive breastfeeding (non-EBF), might alter the milk microbiome at the species level has not been explored. This cross-sectional study analyzed the milk microbiome of 64 Mam-Mayan indigenous mothers from San Juan Ostuncalco in Guatemala. Two breastfeeding practices [exclusive (EBF) vs non-exclusive (non-EBF)] were analyzed at two stages of lactation [early (5-46 days post-partum) vs late (109-184 days post-partum)]. EBF was defined as offering only human milk and non-EBF was defined as feeding the infant herbal teas (agüitas) and/or complementary foods while continuing to breastfeed. Results identified four clusters with distinct microbial communities that segregated bacterial species by both breastfeeding practices and stage of lactation. Comparison among these clusters identified several notable patterns. First, during EBF, the microbiome differed by stage of lactation where there was a shift in differential abundance from Actinobacteria and Firmicutes in early to Bacteroidetes and Proteobacteria species in late lactation. Second, a similar comparison between non-EBF mothers by stage of lactation also identified a higher differential abundance of Actinobacteria and Firmicutes species in early lactation, but only Proteobacteria and not Bacteroidetes in late lactation, indicating a further shift in the milk microbial ecosystem with fewer oral bacteria present in late lactation. Third, comparisons between EBF and non-EBF mothers at both early and late lactation showed that mothers who exclusively breastfed had more differentially abundant species in early (11 vs 1) and late (13 vs 2) lactation. Fourth, EBF at early and late lactation had more commensal and lactic acid bacteria, including Lactobacillus gasseri, Granulicatella elegans, Streptococcus mitis, and Streptococcus parasanguinis, compared to those who did not exclusively breastfeed. Collectively, these results show that EBF has more differentially abundant bacteria, including commensal and lactic acid bacteria, and that the addition of agüitas (herbal teas) and/or complementary foods modify the milk microbiome composition by reducing the oral bacteria and introducing more environmentally sourced bacteria to the ecosystem.

13.
Pathogens ; 11(9)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36145464

ABSTRACT

Comamonas spp. are non-fermenting Gram-negative bacilli. They were first discovered in 1894, and since then, twenty-four species have been characterized. The natural habitat of these bacteria is soil, wastewater/sludge, fresh water such as ponds and rivers, and the animal intestinal microbiome. They were also isolated from industrial settings, such as activated sludge and polluted soil, and from the hospital environment and clinical samples, such as urine, pus, blood, feces, and kidney. Comamonas spp. are associated with environmental bioremediation and are considered an important environmental bacterium rather than a human pathogen. However, in the 1980s, they became a concern when several human infections associated with these species were reported. Here, the Comamonas genus was examined in terms of its members, identification techniques, and pathogenicity. Seventy-seven infection cases associated with these microorganisms that have been discussed in the literature were identified and investigated in this project. All relevant information regarding year of infection, country of origin, patient information such as age, sex, underlying medical conditions if any, type of infection caused by the Comamonas species, antibiotic susceptibility testing, treatment, and outcomes for the patient were extracted from case reports. The findings suggest that even though Comamonas spp. are thought of as being of low virulence, they have caused harmful health conditions in many healthy individuals and even death in patients with underlying conditions. Antimicrobial treatment of infections associated with these species, in general, was not very difficult; however, it can become an issue in the future because some strains are already resistant to different classes of antibiotics. Therefore, these pathogens should be considered of such importance that they should be included in the hospital screening programs.

14.
Cureus ; 14(5): e25407, 2022 May.
Article in English | MEDLINE | ID: mdl-35774695

ABSTRACT

Sphingomonas p aucimobilis is a nonfermenting gram-negative bacillus that is widely distributed in both community environments and hospitals. Various infections have been identified in humans, but most have been limited to case reports. When reported, it is most commonly nosocomial infections associated with contaminated hospital equipment such as indwelling catheters, ventilators, hemodialysis devices, and very rarely upper respiratory tract infections. We report an unusual presentation of S . paucimobilis infection. This case report describes a 59-year-old immunocompetent man who presented with a retropharyngeal abscess. Blood culture was positive for S . paucimobilis. The patient was treated for a total of 21 days of intravenous (IV) cefepime and oral (PO) metronidazole. He showed significant improvement and was discharged home with no medical sequelae.

15.
J Parasitol ; 108(3): 245-253, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35687318

ABSTRACT

Microbial metabarcoding is a common method to study the biology of blood-feeding arthropods and identify patterns of potential pathogen transmission. Before DNA extraction, specimens are often surface washed to remove environmental contaminants. While surface washing is common, its effects on microbial diversity remain unclear. We characterized the microbiome of the flea species Ceratophyllus idius, an avian ectoparasite, and a potential vector of pathogens, using high-throughput 16S rRNA sequencing. Half of the nests from which fleas were collected were subjected to an environmental manipulation in which nesting materials were periodically replaced. In a crossed study design we surface washed half of the flea samples from each environmental condition to produce 4 experimental conditions. Environmental manipulations resulted in significant differences in the diversity and structure of the flea microbiome, but these differences were unapparent when specimens were surface washed. Furthermore, differential abundance testing of the experimental groups revealed that surface washing predominantly affected the abundance of bacterial groups that are characterized as environmental contaminants. These findings suggest that environmental changes primarily affect the surface microbiome of arthropods and that surface washing is a useful tool to reduce the footprint of the external microbiome on analysis.


Subject(s)
Flea Infestations , Microbiota , Siphonaptera , Animals , Bacteria/genetics , Flea Infestations/parasitology , Flea Infestations/prevention & control , Flea Infestations/veterinary , RNA, Ribosomal, 16S/genetics , Siphonaptera/microbiology
16.
Biomedicines ; 10(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35625667

ABSTRACT

Clostridioides difficile is an environmentally acquired, anaerobic, spore-forming bacterium which ordinarily causes disease following antibiotic-mediated dysbiosis of the intestinal microbiota. Although much is understood regarding the life cycle of C. difficile, the fate of C. difficile spores upon ingestion remains unclear, and the underlying factors that predispose an individual to colonization and subsequent development of C. difficile infection (CDI) are not fully understood. Here, we show that Bacillus, a ubiquitous and environmentally acquired, spore-forming bacterium is associated with colonization resistance to C. difficile. Using animal models, we first provide evidence that animals housed under conditions that mimic reduced environmental exposure have an increased susceptibility to CDI, correlating with a loss in Bacillus. Lipopeptide micelles (~10 nm) produced by some Bacilli isolated from the gastro-intestinal (GI)-tract and shown to have potent inhibitory activity to C. difficile have recently been reported. We show here that these micelles, that we refer to as heterogenous lipopeptide lytic micelles (HELMs), act synergistically with components present in the small intestine to augment inhibitory activity against C. difficile. Finally, we show that provision of HELM-producing Bacillus to microbiota-depleted animals suppresses C. difficile colonization thereby demonstrating the significant role played by Bacillus in colonization resistance. In the wider context, our study further demonstrates the importance of environmental microbes on susceptibility to pathogen colonization.

17.
Front Microbiol ; 13: 857492, 2022.
Article in English | MEDLINE | ID: mdl-35479618

ABSTRACT

The aim of this study was to perform an in silico analysis of the available whole-genome sequencing data to detect syntenic genomic islands (GIs) having homology to Salmonella genomic island 1 (SGI1), analyze the genetic variations of their backbone, and determine their relatedness. Eighty-nine non-redundant SGI1-related elements (SGI1-REs) were identified among gamma-proteobacteria. With the inclusion of the thirty-seven backbones characterized to date, seven clusters were identified based on integrase homology: SGI1, PGI1, PGI2, AGI1 clusters, and clusters 5, 6, and 7 composed of GIs mainly harbored by waterborne or marine bacteria, such as Vibrio, Shewanella, Halomonas, Idiomarina, Marinobacter, and Pseudohongiella. The integrase genes and the backbones of SGI1-REs from clusters 6 and 7, and from PGI1, PGI2, and AGI1 clusters differed significantly from those of the SGI1 cluster, suggesting a different ancestor. All backbones consisted of two parts: the part from attL to the origin of transfer (oriT) harbored the DNA recombination, transfer, and mobilization genes, and the part from oriT to attR differed among the clusters. The diversity of SGI1-REs resulted from the recombination events between GIs of the same or other families. The oriT appeared to be a high recombination site. The multi-drug resistant (MDR) region was located upstream of the resolvase gene. However, most SGI1-REs in Vibrio, Shewanella, and marine bacteria did not harbor any MDR region. These strains could constitute a reservoir of SGI1-REs that could be potential ancestors of SGI1-REs encountered in pathogenic bacteria. Furthermore, four SGI1-REs did not harbor a resolvase gene and therefore could not acquire an integron. The presence of mobilization genes and AcaCD binding sites indicated that their conjugative transfer could occur with helper plasmids. The plasticity of SGI1-REs contributes to bacterial adaptation and evolution. We propose a more relevant classification to categorize SGI1-REs into different clusters based on their integrase gene similarity.

18.
BMC Vet Res ; 18(1): 129, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35366866

ABSTRACT

BACKGROUND: Intestinal bacteria of mammal can be influenced by many factors, environmental bacteria is an important factor. However, there are few studies on the interactions between environmental bacteria and intestinal bacteria in wild mammals. To explore the associations between the intestinal bacteriome and the related environmental bacteriome, the intestinal bacterial communities of Eospalax cansus at three different sites and the bacterial communities of the surrounding soil (outside and inside the cave) at each site were investigated by 16S rRNA sequencing. RESULTS: The composition and structure between zokor intestinal bacteria and related soil bacteria were distinct, and the soil of zokor habitat harbored significantly higher diversity than that of zokor intestinal bacteria. We have found that host factors may be more important than environmental factors in shaping intestinal bacteriome. In addition, it was found that the relative abundances of shared OTUs between zokors and related soil were significantly negatively related. These shared OTUs were present in the soil at relatively low abundance. However, these shared OTUs between zokors and soil were affiliated with diverse bacterial taxa, and they were related to the degradation of complex carbohydrates. CONCLUSIONS: These results suggested that the zokor gut may mainly select for low-abundance but diverse soil bacteria, which may be a host- specific choice for zokor to meet the needs of its phytophagous dietary.


Subject(s)
Bacteria , Soil , Animals , Bacteria/genetics , Ecosystem , Muridae , RNA, Ribosomal, 16S/genetics
19.
Environ Toxicol Chem ; 41(3): 687-714, 2022 03.
Article in English | MEDLINE | ID: mdl-35191071

ABSTRACT

River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.


Subject(s)
COVID-19 , Rivers , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Bacterial/genetics , Ecosystem , Genes, Bacterial , Humans , Rivers/chemistry , SARS-CoV-2
20.
Appl Environ Microbiol ; 88(2): e0193921, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34757819

ABSTRACT

The aim of this study was to investigate the temporal stability of microbial contamination during cheddar cheese production by examining patterns of nonstarter bacteria in 60-day aged cheddar collected from the start and end of 30 consecutive production days. Further, we explored the source of these temporal microbial variations by comparing microbial communities in the aged cheese to those on food contact surfaces from a piece of cheesemaking equipment previously identified as a major source of nonstarter bacteria in the same processing environment. 16S rRNA metabarcoding and culture-based sequencing methods identified two Streptococcus sequence variants significantly associated with the end of the production day in both the aged cheese and the cheese processing environment. Closer inspection of these sequence variants in the aged cheese over the 40-day sampling period revealed sinusoidal-like fluctuations in their relative ratios, which appeared to coincide with the Lactococcus starter rotation schedule. These results demonstrate that the microbial composition of finished cheese can vary according to the timing of processing within a production day. Further, our results demonstrate that time-of-day microbial differences in cheese can result from bacterial growth on food contact surfaces and that the composition of these microbial differences is subject to change day-to-day and may be linked to routine changes in the Lactococcus starter culture. IMPORTANCE Long production schedules used in modern cheese manufacturing can create circumstances that support the growth of microorganisms in the cheese processing environment. This work demonstrates that this growth can lead to significant changes in the microbial quality of aged cheese produced later in the production day. Further, we demonstrate that the dominant bacteria associated with these microbial changes throughout production are subject to change between days and might be influenced by specific cheese manufacturing practices. These findings improve understanding of microbial contamination patterns in modern food manufacturing facilities, thereby improving our ability to develop strategies to minimize quality losses due to microbial spoilage.


Subject(s)
Cheese , Microbiota , Bacteria/genetics , Cheese/microbiology , Lactococcus , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL