Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Mol Microbiol ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38922722

ABSTRACT

An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy minimization, and steady-state kinetics of wild-type and mutant enzymes give insight into the catalytic mechanism. Car1 is structurally related to calcineurin-like metallophosphoesterases (MPPs). It functions as a binuclear metal hydrolase with limited phosphatase activity, particularly relying on the divalent metal Ni2+. As an As(V) reductase, it displays metal promiscuity and is coupled to the thioredoxin redox cycle, requiring the participation of two cysteine residues, Cys74 and Cys76. These findings suggest that Car1 evolved from a common ancestor of extant phosphatases by incorporating a redox function into an existing MPP catalytic site. Its proposed mechanism of arsenate reduction involves Cys74 initiating a nucleophilic attack on arsenate, leading to the formation of a covalent intermediate. Next, a nucleophilic attack of Cys76 leads to the release of As(III) and the formation of a surface-exposed Cys74-Cys76 disulfide, ready for reduction by thioredoxin.

2.
ACS Appl Mater Interfaces ; 16(22): 28452-28460, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775640

ABSTRACT

The electrocatalytic nitrogen reduction reaction (NRR) presents an alternative method for the Haber-Bosch process, and single-atom catalysts (SACs) to achieve efficient NRR have attracted considerable attention in the past decades. However, whether SACs are more suitable for NRR compared to atomic-cluster catalysts (ACCs) remains to be studied. Herein, we have successfully synthesized both the Fe monomers (Fe1) and trimers (Fe3) on nitrogen-doped carbon catalysts. Both the experiments and DFT calculations indicate that compared to the end-on adsorption of N2 on Fe1 catalysts, N2 activation is enhanced via the side-on adsorption on Fe3 catalysts, and the reaction follows the enzymatic pathway with a reduced free energy barrier for NRR. As a result, the Fe3 catalysts achieved better NRR performance (NH3 yield rate of 27.89 µg h-1 mg-1cat. and Faradaic efficiency of 45.13%) than Fe1 catalysts (10.98 µg h-1 mg-1cat. and 20.98%). Therefore, our research presents guidance to prepare more efficient NRR catalysts.

3.
Front Chem ; 12: 1373312, 2024.
Article in English | MEDLINE | ID: mdl-38456185

ABSTRACT

L-Asparaginases, divided into three structural Classes, catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. The members of Class 3, ReAIV and ReAV, encoded in the genome of the nitrogen fixing Rhizobium etli, have the same fold, active site, and quaternary structure, despite low sequence identity. In the present work we examined the biochemical consequences of this difference. ReAIV is almost twice as efficient as ReAV in asparagine hydrolysis at 37°C, with the kinetic KM, kcat parameters (measured in optimal buffering agent) of 1.5 mM, 770 s-1 and 2.1 mM, 603 s-1, respectively. The activity of ReAIV has a temperature optimum at 45°C-55°C, whereas the activity of ReAV, after reaching its optimum at 37°C, decreases dramatically at 45°C. The activity of both isoforms is boosted by 32 or 56%, by low and optimal concentration of zinc, which is bound three times more strongly by ReAIV then by ReAV, as reflected by the KD values of 1.2 and 3.3 µM, respectively. We also demonstrate that perturbation of zinc binding by Lys→Ala point mutagenesis drastically decreases the enzyme activity but also changes the mode of response to zinc. We also examined the impact of different divalent cations on the activity, kinetics, and stability of both isoforms. It appeared that Ni2+, Cu2+, Hg2+, and Cd2+ have the potential to inhibit both isoforms in the following order (from the strongest to weakest inhibitors) Hg2+ > Cu2+ > Cd2+ > Ni2+. ReAIV is more sensitive to Cu2+ and Cd2+, while ReAV is more sensitive to Hg2+ and Ni2+, as revealed by IC50 values, melting scans, and influence on substrate specificity. Low concentration of Cd2+ improves substrate specificity of both isoforms, suggesting its role in substrate recognition. The same observation was made for Hg2+ in the case of ReAIV. The activity of the ReAV isoform is less sensitive to Cl- anions, as reflected by the IC50 value for NaCl, which is eightfold higher for ReAV relative to ReAIV. The uncovered complementary properties of the two isoforms help us better understand the inducibility of the ReAV enzyme.

4.
Antibiotics (Basel) ; 12(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38136683

ABSTRACT

Alginates play an important role in the resistance of mucoid strains of Pseudomonas aeruginosa to antibiotics, as well as their persistence by escaping the immune defense system. GDP-mannose dehydrogenase (GMD) is the key enzyme in alginate biosynthesis by catalyzing the irreversible double oxidation of GDP-mannose to GDP-mannuronate. GDP-mannose dehydrogenase purified from mucoid strains exhibits strong negative cooperativity for its substrate, the GDP-mannose, with a KM of 13 µM for the site of strong affinity and 3 mM for this weak of a binding. The presence of a nucleotide strongly associated with the enzyme was detected, confirming the fact that the substrate oxidation reaction takes place in two distinct steps, with the substrate blocked on the enzyme in a half-oxidation state in the form of a hemiacetal. As the GMD polypeptide has only one site for substrate binding, our results tend to confirm the fact that the enzyme functions in a dimer form. The GDP-mannose dehydrogenase inhibition strategy that we developed a few years ago, based on the synthesis of substrate analogs, has shown its effectiveness. The addition of an alkynyl radical on carbon 6 of the mannose grafted to an amino-sulfonyl-guanosine allows, at a concentration of 0.5 mM, to inhibit GMD by 90%. As we had previously shown the effectiveness of these analogs on the sensitivity of mucoid strains of Pseudomonas aeruginosa to aminoglycosides, this revives the interest in the synthesis of new inhibitors of GDP-mannose dehydrogenase.

5.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 775-791, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37494066

ABSTRACT

The genome of Rhizobium etli, a nitrogen-fixing bacterial symbiont of legume plants, encodes two L-asparaginases, ReAIV and ReAV, that have no similarity to the well characterized enzymes of class 1 (bacterial type) and class 2 (plant type). It has been hypothesized that ReAIV and ReAV might belong to the same structural class 3 despite their low level of sequence identity. When the crystal structure of the inducible and thermolabile protein ReAV was solved, this hypothesis gained a stronger footing because the key residues of ReAV are also present in the sequence of the constitutive and thermostable ReAIV protein. High-resolution crystal structures of ReAIV now confirm that it is a class 3 L-asparaginase that is structurally similar to ReAV but with important differences. The most striking differences concern the peculiar hydration patterns of the two proteins, the presence of three internal cavities in ReAIV and the behavior of the zinc-binding site. ReAIV has a high pH optimum (9-11) and a substrate affinity of ∼1.3 mM at pH 9.0. These parameters are not suitable for the direct application of ReAIV as an antileukemic drug, although its thermal stability and lack of glutaminase activity would be of considerable advantage. The five crystal structures of ReAIV presented in this work allow a possible enzymatic scenario to be postulated in which the zinc ion coordinated in the active site is a dispensable element. The catalytic nucleophile seems to be Ser47, which is part of two Ser-Lys tandems in the active site. The structures of ReAIV presented here may provide a basis for future enzyme-engineering experiments to improve the kinetic parameters for medicinal applications.


Subject(s)
Asparaginase , Rhizobium etli , Asparaginase/chemistry , Rhizobium etli/chemistry , Rhizobium etli/genetics , Catalysis , Binding Sites , Plants/metabolism , Zinc
6.
Methods Enzymol ; 675: 131-158, 2022.
Article in English | MEDLINE | ID: mdl-36220268

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient levels in the cell and based on the availability, regulates cellular growth and proliferation. Its activity is tightly modulated by two GTPase units, the Rag GTPases and the Rheb GTPase. The Rag GTPases are the central hub of amino acid sensing as they summarize the amino acid signals from upstream regulators and control the subcellular localization of mTORC1. Unique from canonical signaling GTPases, the Rag GTPases are obligatory heterodimers, and the two subunits coordinate their nucleotide loading states to regulate their functional states. Robust biochemical analysis is indispensable to understanding the molecular mechanism governing the GTPase cycle. This chapter discusses protocols for purifying and biochemically characterizing the Rag GTPase heterodimer. We described two purification protocols to recombinantly produce the Rag GTPase heterodimer in large quantities. We then described assays to quantitatively measure the nucleotide binding and hydrolysis by the Rag GTPases. These assays allow for a thorough investigation of this unique heterodimeric GTPase, and they could be applicable to investigations of other noncanonical GTPases.


Subject(s)
Monomeric GTP-Binding Proteins , Amino Acids/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/chemistry , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Nucleotides/metabolism , Ras Homolog Enriched in Brain Protein/metabolism
7.
Biomolecules ; 12(8)2022 08 02.
Article in English | MEDLINE | ID: mdl-36008960

ABSTRACT

The plasma protein transthyretin (TTR), a transporter for thyroid hormones and retinol in plasma and cerebrospinal fluid, is responsible for the second most common type of systemic (ATTR) amyloidosis either in its wild type form or as a result of destabilizing genetic mutations that increase its aggregation propensity. The association between free calcium ions (Ca2+) and TTR is still debated, although recent work seems to suggest that calcium induces structural destabilization of TTR and promotes its aggregation at non-physiological low pH in vitro. We apply high-resolution NMR spectroscopy to investigate calcium binding to TTR showing the formation of labile interactions, which leave the native structure of TTR substantially unaltered. The effect of calcium binding on TTR-enhanced aggregation is also assessed at physiological pH through the mechano-enzymatic mechanism. Our results indicate that, even if the binding is weak, about 7% of TTR is likely to be Ca2+-bound in vivo and therefore more aggregation prone as we have shown that this interaction is able to increase the protein susceptibility to the proteolytic cleavage that leads to aggregation at physiological pH. These events, even if involving a minority of circulating TTR, may be relevant for ATTR, a pathology that takes several decades to develop.


Subject(s)
Amyloidosis , Prealbumin , Amyloidosis/metabolism , Calcium/metabolism , Humans , Prealbumin/chemistry , Proteolysis
8.
Acta Crystallogr D Struct Biol ; 78(Pt 2): 162-173, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35102882

ABSTRACT

The stability of the tetrameric enzyme urate oxidase in complex with excess of 8-azaxanthine was investigated either under high hydrostatic pressure per se or under a high pressure of argon. The active site is located at the interface of two subunits, and the catalytic activity is directly related to the integrity of the tetramer. This study demonstrates that applying pressure to a protein-ligand complex drives the thermodynamic equilibrium towards ligand saturation of the complex, revealing a new binding site. A transient dimeric intermediate that occurs during the pressure-induced dissociation process was characterized under argon pressure and excited substates of the enzyme that occur during the catalytic cycle can be trapped by pressure. Comparison of the different structures under pressure infers an allosteric role of the internal hydrophobic cavity in which argon is bound, since this cavity provides the necessary flexibility for the active site to function.


Subject(s)
Urate Oxidase , Argon , Binding Sites , Hydrostatic Pressure , Ligands , Urate Oxidase/chemistry , Urate Oxidase/metabolism
9.
J Hazard Mater ; 424(Pt A): 127269, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34607026

ABSTRACT

Phenolic root exudates (PREs) released from wetland plants are potentially effective for accelerating the biodegradation of alkylphenols, yet the inherent behavior is still unclear. In this study, two representative root exudates (REs), namely p-coumaric acid (PREs) and oxalic acid (non-PREs) were exogenously added as specific and non-specific co-metabolic substrates, respectively, to elucidate the quantification of each removal pathway and degradation mechanism of co-metabolism for alkylphenols (i.e. p-tert-butylphenol (PTBP)) from synthetic wastewater. The results showed that soil adsorption (31-37%), microbial degradation (27-37%), and plant uptake (16-41%) are the main removal pathways of PTBP by PREs in the Phragmites australis rhizosphere. Both REs enriched anaerobic functional community (anaerobic ammonium oxidation bacteria and denitrifying bacteria) and promoted the usage of PTBP as carbon source and/or electron donor. The activity of non-specific enzyme (polyphenol oxidase) was enhanced by RE which owning a significant positive correlation with bacterial abundance, whereas only PREs strengthened the activity of specific enzyme (monophenol oxidase) catalyzing the phenolic ring hydroxylation of PTBP followed by a dehydrogenation route. Moreover, exogenous PREs significantly improved the growth of degrading-related bacteria (Sphingomonas and Gemmatimonas), especially in unplanted soils with high activity of dioxygenase catalyzing the cleavage pathway of PTBP, instead of plant presence.


Subject(s)
Rhizosphere , Wastewater , Biodegradation, Environmental , Exudates and Transudates , Plant Roots , Poaceae , Soil Microbiology
10.
J Biol Chem ; 297(3): 101043, 2021 09.
Article in English | MEDLINE | ID: mdl-34358565

ABSTRACT

A large number of protein sequences are registered in public databases such as PubMed. Functionally uncharacterized enzymes are included in these databases, some of which likely have potential for industrial applications. However, assignment of the enzymes remained difficult tasks for now. In this study, we assigned a total of 28 original sequences to uncharacterized enzymes in the FAD-dependent oxidase family expressed in some species of bacteria including Chryseobacterium, Flavobacterium, and Pedobactor. Progenitor sequence of the assigned 28 sequences was generated by ancestral sequence reconstruction, and the generated sequence exhibited L-lysine oxidase activity; thus, we named the enzyme AncLLysO. Crystal structures of ligand-free and ligand-bound forms of AncLLysO were determined, indicating that the enzyme recognizes L-Lys by hydrogen bond formation with R76 and E383. The binding of L-Lys to AncLLysO induced dynamic structural change at a plug loop formed by residues 251 to 254. Biochemical assays of AncLLysO variants revealed the functional importance of these substrate recognition residues and the plug loop. R76A and E383D variants were also observed to lose their activity, and the kcat/Km value of G251P and Y253A mutations were approximately 800- to 1800-fold lower than that of AncLLysO, despite the indirect interaction of the substrates with the mutated residues. Taken together, our data demonstrate that combinational approaches to sequence classification from database and ancestral sequence reconstruction may be effective not only to find new enzymes using databases of unknown sequences but also to elucidate their functions.


Subject(s)
Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Amino Acid Oxidoreductases/genetics , Bacteria/chemistry , Bacteria/genetics , Bacterial Proteins/genetics , Binding Sites , Catalysis , Data Mining , Hydrogen Bonding , Kinetics , Lysine/chemistry , Lysine/metabolism , Models, Molecular
11.
Foods ; 10(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808876

ABSTRACT

Exploitation of plant proteins as an alternative to animal proteins currently presents an important challenge for food industries. In this contribution, total sunflower protein isolate from cold press meal was used as a starting material for the generation of highly soluble and functional hydrolysates that could be used in various food formulations. To do this, a rational and complete approach of controlled hydrolysis was implemented using the individual Alcalase and Prolyve enzymes. The method of stopping the hydrolysis reaction was also evaluated. The influence of operating conditions on hydrolysis kinetics and enzymatic mechanism was studied to identify the appropriate hydrolysis conditions. The gain of the solubility was then analyzed and compared to that of the initial proteins. Finally, the emulsifying and foaming properties (capacities and stabilities) of the resulting hydrolysates were also assessed. As a result, controlled enzymatic proteolysis significantly improved the sunflower protein solubility at neutral pH (twofold increase) and generated highly soluble hydrolysates. The limited proteolysis also maintained the good foam capacities and allowed an improvement in the initial foam stabilities and emulsifying capacities and stabilities of sunflower proteins. This contribution can greatly increase the value of sunflower meal and help in the development of sunflower protein products in the future.

12.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 4): 128-133, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33830078

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are copper-center enzymes that are involved in the oxidative cleavage of the glycosidic bond in crystalline cellulose and other polysaccharides. The LPMO reaction is initiated by the addition of a reductant and oxygen to ultimately form an unknown activated copper-oxygen species that is responsible for polysaccharide-substrate H-atom abstraction. Given the sensitivity of metalloproteins to radiation damage, neutron protein crystallography provides a nondestructive technique for structural characterization while also informing on the positions of H atoms. Neutron cryo-crystallography permits the trapping of catalytic intermediates, thereby providing insight into the protonation states and chemical nature of otherwise short-lived species in the reaction mechanism. To characterize the reaction-mechanism intermediates of LPMO9D from Neurospora crassa, a cryo-neutron diffraction data set was collected from an ascorbate-reduced crystal. A second neutron diffraction data set was collected at room temperature from an LPMO9D crystal exposed to low-pH conditions to probe the protonation states of ionizable groups involved in catalysis under acidic conditions.


Subject(s)
Data Collection/methods , Mixed Function Oxygenases/chemistry , Neutron Diffraction/methods , Polysaccharides/chemistry , X-Ray Diffraction/methods , Hydrogen-Ion Concentration , Mixed Function Oxygenases/analysis , Neurospora crassa/chemistry , Polysaccharides/analysis , Protein Structure, Secondary
13.
J Cannabis Res ; 3(1): 7, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33722296

ABSTRACT

Cannabis has been integral to Eurasian civilization for millennia, but a century of prohibition has limited investigation. With spreading legalization, science is pivoting to study the pharmacopeia of the cannabinoids, and a thorough understanding of their biosynthesis is required to engineer strains with specific cannabinoid profiles. This review surveys the biosynthesis and biochemistry of cannabinoids. The pathways and the enzymes' mechanisms of action are discussed as is the non-enzymatic decarboxylation of the cannabinoic acids. There are still many gaps in our knowledge about the biosynthesis of the cannabinoids, especially for the minor components, and this review highlights the tools and approaches that will be applied to generate an improved understanding and consequent access to these potentially biomedically-relevant materials.

14.
J Agric Food Chem ; 68(35): 9299-9307, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32786837

ABSTRACT

Microvirga flocculans CGMCC 1.16731 can degrade many cyano group-containing neonicotinoid insecticides. Here, its genome was sequenced, and a novel nitrile hydratase gene cluster was discovered in a plasmid. The NHase gene cluster (pnhF) has gene structure ß-subunit 1, α-subunit, and ß-subunit 2, which is different from previously reported NHase gene structures. Phylogenetic analysis of α-subunits indicated that NHases containing the three subunit (ß1αß2) structure are independent from NHases containing two subunits (αß). pnhF was successfully expressed in Escherichia coli, and the purified PnhF could convert the nitrile-containing insecticide flonicamid to N-(4-trifluoromethylnicotinoyl)glycinamide. The enzymatic properties of PnhF were investigated using flonicamid as a substrate. Homology models revealed that amino acid residue ß1-Glu56 may strongly affect the catalytic activity of PnhF. This study expands our understanding of the structures and functions of NHases and the enzymatic mechanism of the environmental fate of flonicamid.


Subject(s)
Bacterial Proteins/metabolism , Hydro-Lyases/metabolism , Methylobacteriaceae/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Computational Biology , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Kinetics , Methylobacteriaceae/chemistry , Methylobacteriaceae/genetics , Methylobacteriaceae/physiology , Multigene Family , Nitriles/chemistry , Nitriles/metabolism , Nitrogen Fixation , Phylogeny , Sequence Alignment
15.
J Biol Chem ; 295(33): 11379-11387, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32571879

ABSTRACT

Systemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The in vitro preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation in vivo and may offer an important tool for drug discovery. Here, we compared the morphology and thermodynamic stability of natural transthyretin fibrils with those of fibrils generated in vitro either using the common acidification procedure or primed by limited selective cleavage by plasmin. The free energies for fibril formation were -12.36, -8.10, and -10.61 kcal mol-1, respectively. The fibrils generated via plasmin cleavage were more stable than those prepared at low pH and were thermodynamically and morphologically similar to natural fibrils extracted from human amyloidotic tissue. Determination of thermodynamic stability is an important tool that is complementary to other methods of structural comparison between ex vivo fibrils and fibrils generated in vitro Our finding that fibrils created via an in vitro amyloidogenic pathway are structurally similar to ex vivo human amyloid fibrils does not necessarily establish that the fibrillogenic pathway is the same for both, but it narrows the current knowledge gap between in vitro models and in vivo pathophysiology.


Subject(s)
Amyloid Neuropathies, Familial/pathology , Amyloid/chemistry , Prealbumin/chemistry , Amyloid/genetics , Amyloid/ultrastructure , Amyloid Neuropathies, Familial/genetics , Humans , Mutation , Prealbumin/genetics , Protein Aggregates , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Stability , Thermodynamics
16.
Zhongguo Zhong Yao Za Zhi ; 45(24): 5884-5889, 2020 Dec.
Article in Chinese | MEDLINE | ID: mdl-33496128

ABSTRACT

Protoberberine alkaloids belong to the quaternary ammonium isoquinoline alkaloids, and are the main active ingredients in traditional Chinese herbal medicines, like Coptis chinensis. They have been widely used to treat such diseases as gastroenteritis, intestinal infections, and conjunctivitis. Studies have shown that structural modification of the protoberberine alkaloids could produce derivative compounds with new pharmacological effects and biological activities, but the transformation mechanism is not clear yet. This article mainly summarizes the researches on the biotransformation and structure modification of protoberberine alkaloids mainly based on berberine, so as to provide background basis and new ideas for studies relating to the mechanism of protoberberine alkaloids and the pharmacological activity and application of new compounds.


Subject(s)
Alkaloids , Berberine Alkaloids , Berberine , Coptis , Biotransformation
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878850

ABSTRACT

Protoberberine alkaloids belong to the quaternary ammonium isoquinoline alkaloids, and are the main active ingredients in traditional Chinese herbal medicines, like Coptis chinensis. They have been widely used to treat such diseases as gastroenteritis, intestinal infections, and conjunctivitis. Studies have shown that structural modification of the protoberberine alkaloids could produce derivative compounds with new pharmacological effects and biological activities, but the transformation mechanism is not clear yet. This article mainly summarizes the researches on the biotransformation and structure modification of protoberberine alkaloids mainly based on berberine, so as to provide background basis and new ideas for studies relating to the mechanism of protoberberine alkaloids and the pharmacological activity and application of new compounds.


Subject(s)
Alkaloids , Berberine , Berberine Alkaloids , Biotransformation , Coptis
18.
Chemosphere ; 236: 124281, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31310980

ABSTRACT

Microcystinase (MlrA) catalyzes the first and most important biodegradation step of hepatotoxic microcystin-LR (MC-LR) produced and released from cyanobacterial cells, and the underlying catalytic mechanism is not completely understood yet. MlrA was postulated previously to be a metalloprotease with an active site of H260AIH263NE265, a variant of the common metal-binding motif of HEXXH. Through comparison with representative modes in HEXXH-containing metalloproteases, molecular dynamics simulation, homology modeling, and docking, the active sites of MlrA involved in the MC-LR biodegradation by Sphingomonas sp. USTB-05 were predicted. Site-directed mutants of MlrA were constructed for verification then. The results show that MlrA is likely not a metalloprotease, but a glutamate protease belonging to type II CAAX prenyl endopeptidases. Combined with the biodegradation of MC-LR by MlrA and its mutants, a complete enzymatic mechanism for MC-LR biodegradation by MlrA is proposed: Glu172 and His205 activate a water molecule facilitating a nucleophilic attack on the Adda-Arg peptide bond of MC-LR; Trp176 and Trp201 contact the carboxylate side chain of Glu172and, by raising its pKa potentially, accelerate the reaction rates; His260 and Asn264 (located in the previous postulated active center of H260AIH263NE265) function as an oxyanion hole to stabilize the transition states. This study reveals the enzymatic mechanism of MlrA for catalyzing MC-LR in both the representative modes and the experiments of site-directed mutagenesis.


Subject(s)
Biodegradation, Environmental , Microcystins/chemistry , Marine Toxins , Molecular Structure
19.
Structure ; 27(7): 1124-1136.e4, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31130485

ABSTRACT

The pseudo-atomic structural model of human pyruvate dehydrogenase complex (PDHc) core composed of full-length E2 and E3BP components, calculated from our cryoelectron microscopy-derived density maps at 6-Å resolution, is similar to those of prokaryotic E2 structures. The spatial organization of human PDHc components as evidenced by negative-staining electron microscopy and native mass spectrometry is not homogeneous, and entails the unanticipated formation of local clusters of E1:E2 and E3BP:E3 complexes. Such uneven, clustered organization translates into specific duties for E1-E2 clusters (oxidative decarboxylation and acetyl transfer) and E3BP-E3 clusters (regeneration of reduced lipoamide) corresponding to half-reactions of the PDHc catalytic cycle. The addition of substrate coenzyme A modulates the conformational landscape of PDHc, in particular of the lipoyl domains, extending the postulated multiple random coupling mechanism. The conformational and associated chemical landscapes of PDHc are thus not determined entirely stochastically, but are restrained and channeled through an asymmetric architecture and further modulated by substrate binding.


Subject(s)
Acetyl Coenzyme A/chemistry , Coenzyme A/chemistry , Protein Subunits/chemistry , Pyruvate Dehydrogenase Complex/chemistry , Acetyl Coenzyme A/metabolism , Catalytic Domain , Cloning, Molecular , Coenzyme A/metabolism , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics
20.
FEBS Lett ; 593(12): 1351-1359, 2019 06.
Article in English | MEDLINE | ID: mdl-31077353

ABSTRACT

A key step of denitrification, the reduction of toxic nitric oxide to nitrous oxide, is catalysed by cytochrome c-dependent NO reductase (cNOR). cNOR contains four redox-active cofactors: three hemes and a nonheme iron (FeB ). Heme b3 and FeB constitute the active site, but the specific mechanism of NO-binding events and reduction is under debate. Here, we used a recently constructed, fully folded and hemylated cNOR variant that lacks FeB to investigate the role of FeB during catalysis. We show that in the FeB -less cNOR, binding of both NO and O2 to heme b3 still occurs but further reduction is impaired, although to a lesser degree for O2 than for NO. Implications for the catalytic mechanisms of cNOR are discussed.


Subject(s)
Heme/metabolism , Oxidoreductases/metabolism , Catalysis , Catalytic Domain , Kinetics , Nitric Oxide/metabolism , Oxidation-Reduction , Oxygen/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL