Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Braz. arch. biol. technol ; Braz. arch. biol. technol;63: e20170710, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132254

ABSTRACT

Abstract (1) Background: The aim of this study was to evaluate the production and partial characterization of xylanase and avicelase by a newly isolated Penicillium sp. in solid-state fermentation, using soybean hulls as substrate. (2) Methods: Temperature, time, number of spores, and substrate moisture on xylanase and avicelase bioproduction were evaluated, maximizing activity with 30°C, 1x106 spores/g substrate, 14 and 7 days of fermentation with 70 and 76% substrate moisture contents, for xylanase and avicelase, respectively. (3) Results: Different solvents, temperatures, and agitation in the enzymatic extraction were evaluated, obtaining higher activities, 430.77 and 26.77 U/g for xylanase and avicelase using 30 min extraction and 0.05 M citrate buffer solution (pH 4.5 ), respectively at 60°C and 175 rpm and 50°C and 125 rpm. The optimum pH and temperature for enzymatic activity determination were 5.3 and 50°C. Enzyme extract stability was evaluated, obtaining higher stability with pH between 4.5 and 5.5, higher temperature of up to 40°C. The kinetic thermal denaturation (Kd), half-life time, D-value, and Z-value were similar for both enzymes. The xylanase Ed value (89.1 kJ/mol) was slightly lower than the avicelase one (96.7 kJ/mol), indicating higher thermostability for avicelase. (4) Conclusion: In this way, the production of cellulases using alternative substrates is a way to reduce production costs, since they represent about 10% of the world demand of enzymes, with application in animal feed processing, food production and breweries, textile processing, detergent and laundry production, pulp manufacturing and the production of biofuels.


Subject(s)
Penicillium/isolation & purification , Penicillium/enzymology , Glycine max/microbiology , Xylosidases/biosynthesis , Cellulases/biosynthesis , Temperature , Time Factors , Substrates for Biological Treatment
2.
Prep Biochem Biotechnol ; 48(9): 777-786, 2018.
Article in English | MEDLINE | ID: mdl-30303453

ABSTRACT

The objective of the present study was to optimize parameters for the cultivation of Lichtheimia corymbifera (mesophilic) and Byssochlamys spectabilis (thermophilic) for the production of ß-glucosidases and to compare the catalytic and thermodynamic properties of the partially purified enzymes. The maximum amount of ß-glucosidase produced by L. corymbifera was 39 U/g dry substrate (or 3.9 U/mL), and that by B. spectabilis was 77 U/g (or 7.7 U/mL). The optimum pH and temperature were 4.5 and 55 °C and 4.0 and 50 °C for the enzyme from L. corymbifera and B. spectabilis, respectively. ß-Glucosidase produced by L. corymbifera was stable at pH 4.0-7.5, whereas the enzyme from B. spectabilis was stable at pH 4.0-6.0. Regarding the thermostability, ß-glucosidase produced by B. spectabilis remained stable for 1 h at 50 °C, and that from L. corymbifera was active for 1 h at 45 °C. Determination of thermodynamic parameters confirmed the greater thermostability of the enzyme produced by the thermophilic fungus B. spectabilis, which showed higher values of ΔH, activation energy for denaturation (Ea), and half-life t(1/2). The enzymes were stable in the presence of ethanol and were competitively inhibited by glucose. These characteristics contribute to their use in the simultaneous saccharification and fermentation of vegetable biomass.


Subject(s)
Byssochlamys/enzymology , Cellulases/chemistry , Fungal Proteins/chemistry , Mucorales/enzymology , Byssochlamys/growth & development , Catalysis , Cellulases/antagonists & inhibitors , Cellulases/isolation & purification , Culture Techniques/methods , Enzyme Inhibitors/chemistry , Ethanol/chemistry , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/isolation & purification , Glucose/chemistry , Hydrogen-Ion Concentration , Kinetics , Mucorales/growth & development , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL