Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Nat Prod Res ; : 1-11, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049511

ABSTRACT

The endophytic fungi, Epicoccum sorghinum AMFS4 was investigated for its metabolic components and composition of bioactive exopolysaccharides (EPS). Metabolic analysis of the ethyl acetate extract majorly detected sugars derivatives such as, 4-Cholesten-3-one semicarbazone (20.9%), d-Fructose (18.96%), and α-d-Galactopyranosiduronicacid (1.71%). The growth curve and EPS yield were determined as 12.22 ± 1.02 g/L and 7.41 ± 0.32 g/L (dry weight) respectively on day 8. The deproteined EPS has been characterised with pyranose ring linked by α-glycosidic bonds, composing fructose, galactose and glucose monosaccharides validated by HPLC. Total sugar content was found to be 93.18 ± 0.81% with detection of proteins and uronate. The viscous EPS appeared filamentous under SEM observation and behaves as emulsifier with notable antioxidant properties. Priming of EPS on tomato seeds showed early induction of secondary rooting than in the control seedlings. Thus, E. sorghinum AMFS4 synthesises bioactive EPS with simple carbohydrate structure, good water absorption and significant metabolic influence on seed germination.

2.
Plant Dis ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499971

ABSTRACT

Polygonatum cyrtonema Hua (family Asparagaceae) is a traditional Chinese medicinal plant that is widely cultivated in various parts of China, including Hunan Province. In summer 2022, a leaf spot disease was observed in 10% of the P. cyrtonema plants (Huang jing) in 18 hectares of this crop in the Hongjiang District (27°18'4″N, 110°11'1″E) of Hunan Province. The initial symptoms of the disease were brown spots on young leaves, and adjacent tissues gradually changed from green to yellow. The entire leaf then became yellow, withered, and eventually exhibited a thn and black appearance. In total, 12 diseased plants from four sampling sites (three plants per site) were collected for laboratory analysis to address the concerns of P. cyrtonema growers. Symptomatic leaf samples were selected, and the leaf fragments containing infected parts of the plants were disinfected with 75% ethanol for 1 min, then immersed in 2.5% hypochlorite for 45 s. After disinfection, symptomatic leaf samples were rinsed three times with sterile water, placed on potato saccharose agar containing 50 µg/ml kanamycin and incubated at 25°C for 2 days. Subsequently, 12 fungal isolates were isolated from various leaf samples through hyphal tip transferring. Ten of the 12 fungal isolates had similar morphological features, and one of them (isolate hjh) was used as the representative isolate for the study. With a growth rate of 6.3 mm per day, its white colonies transformed into red concentric rings in five days; they gradually became black after 10 days of growth. The chlamydospores were round (4.0-9.9 × 3.1-9.3 µm, n = 30), whereas the conidia were ovate (8.0-12.1 × 3.2-6.5 µm, n = 30). The morphological features of the isolate hjh were similar to the features of Epicoccum spp. (Aveskamp et al. 2010). The internal transcribed spacer (ITS) region (including the partial ITS1 sequence and the 5.8S and ITS2 complete sequences), ß-tubulin (tub) gene, and large subunit (LSU) rRNA gene, were amplified from the isolate hjh using the primer pairs ITS5/ITS4, Bt2a/Bt2b, and LROR/LR5, respectively (Taguiam et al. 2021). BLASTn analysis showed that the ITS (OR253745), tub (OR253764), and LSU (OR253746) sequences generated from the isolate hjh were 98-99% similar to the sequences of E. sorghinum strains CBS 179.80 and CBS 627.68. Subsequently, the ITS, tub, and LSU sequences were combined using Sequence Matrix software; phylogenetic analysis via Bayesian and maximum likelihood methods (Vaidya et al. 2011; Li et al. 2021) classified the isolate hjh into the E. sorghinum clade. To fulfill Koch's postulates, pathogenicity tests were conducted on healthy (lesion-free and disease-free) 2-year-old P. cyrtonema plants. Three healthy plants were inoculated by spraying whole plant until run-off with a spore suspension of the isolate hjh (1 × 106 conidia/ml); Three other healthy plants were sprayed with sterile water as controls. The inoculated plants were incubated in a growth chamber at 25 ± 2°C with 85% humidity for 28 days(Chen et al. 2021). Leaves from the inoculated plants gradually became brown within 15 days. Finally, the plants died 28 days after inoculation. The control plants showed no symptoms throughout the experimental period. Isolates (isolate hjh1, hjh2 and hjh3) that were reisolated from the inoculated plants exhibited morphologically similar characteristics and molecularly identical to the original isolate hjh. To our knowledge, this is the first report of E. sorghinum causing leaf spot disease on P. cyrtonema. The results of this study may facilitate the production of P. cyrtonema in China.

3.
Plant Dis ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-37134249

ABSTRACT

Phoebe bournei, belonging to the family Lauraceae, is indigenous to China, where it is a protected species. In March 2022, ca. 90% of 20,000 P. bournei saplings suffered from leaf tip blight in a sapling nursery with an area of 200 m2 in Fuzhou, China. Initially, brown discoloration appeared on the tips of young leaves. The symptomatic tissue continued to expand as the leaf grew. To isolate the pathogen, 10 symptomatic leaves were randomly sampled from the nursery, and surface-sterilized in 75% alcohol for 30 s, followed by a 5% NaClO solution for 3 min, and then rinsed 3 times with sterile water. Twenty small pieces (0.3 x 0.3 cm) were excised from the margin of diseased and healthy tissue and transferred to five PDA plates amended with 50 µg/ml ampicillin. The plates were incubated at 25°C for 5 days. Finally, 17 isolates were obtained, and nine isolates with the highest isolation frequency shared the same morphological characteristics. On PDA, these colonies had aerial hyphae, white in the beginning, and became pale brown with the pigment production. Chlamydospores were observed after incubation for 7 days at 25°C, pale brown and nearly spherical, unicellular, or multicellular. Conidia were unicellular or bicellular, hyaline, and ellipsoidal, 5.15 to 9.89× 3.46 to 5.87 µm, n=50. The 9 fungi were identified as Epicoccum sp (Khoo et al. 2022a, b, c). Furthermore, strain MB3-1 was chosen randomly as the representative of the 9 isolates, and ITS, LSU, TUB sequences were amplified using the primers ITS1/ITS4, LR0R/LR5, Bt2a/Bt2b respectively (Raza et al. 2019). The sequences were submitted to NCBI and analyzed using BLAST. Results of BLAST showed that ITS (OP550308), LSU (OP550304), TUB (OP779213) sequences had 99.59% (490bp out of 492bp), 99.89% (870bp out of 871bp), 100% (321bp out of 321bp) identity to Epicoccum sorghinum sequences MH071389, MW800361, MW165323, respectively. ITS, LSU, TUB sequences were concatenated for phylogenetic analysis using the maximum likelihood method with 1000 bootstrap replicates in MEGA 7.0 software. The phylogenetic tree showed that MB3-1 was clustered together with E. sorghinum. Pathogenicity tests were performed on young leaves of healthy P. bournei saplings in vivo by inoculating with fungal conidia suspension. The conidia were eluted from the colony of MB3-1 and adjusted to 1×106 spores/ml. An amount of 20 µl conidia suspension (0.1% tween-80) was evenly sprayed on three leaves of one P. bournei sapling, 20 µl sterile water was sprayed on three other leaves of the same sapling as control, and three saplings were treated. All the treated saplings were kept at 25°C. MB3-1 caused leaf tip blight symptoms similar to those observed in nature at 6 days post inoculation (dpi). The pathogen was reisolated from inoculated leaves and identified as E. sorghinum. The experiment was repeated twice with the same results. Recently, E. sorghinum has been reported in Brazil (Gasparetto et al. 2017), Malaysia (Khoo et al. 2022a, b, c), and the United States (Imran et al. 2022). To our knowledge, this is the first report of E. sorghinum causing leaf tip blight on P. bournei. Wood from P. bournei is used to produce high-quality furniture due to its vertical grain and durability (Chen et al. 2020). And the demand for wood requires numerous saplings for afforestation. But this disease has the risk of causing insufficient saplings, which would affect the development of the P. bournei timber industry.

4.
Plant Dis ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37227432

ABSTRACT

Soybean (Glycine max (Linn.) Merr.) is one of the important oil crops in China. In September 2022, a new soybean leaf spot disease was found in Zhaoyuan County, Suihua City, Heilongjiang Province, China. Symptoms of the initial formation of irregular brown lesions on the leaves, dark brown inside, the periphery is yellow, vein chlorotic yellow, severe leaf spots connected into pieces, late fall off, not the same as previously reported soybean leaf spot (Fig. 1A). The leaf samples of infected plants were collected, and the leaf tissue (5 × 5 mm) was cut from the edge of the lesion, and then surface sterilized with 3% sodium hypochlorite for 5 min, rinsed with sterile distilled water for 3 times, and inoculated on potato dextrose agar (PDA) at 28°C. Isolates growing around the tissues from samples were subcultured on PDA, and 3 isolates were obtained using the single-spore isolation method. The fungal hyphae were white or grayish white in early stage, and the hyphae with light green concentric ring appeared on the front of the colony after 3 days, appeared orange, pink or white convex, irregular shape, reddish brown on the front of the colony for 10 days and black spherical pycnidium can be produced in the hyphae layer for 15 days (Fig.1D, E). Conidia were oval, hyaline, unicellular, aseptate, and 2.3 to 3.7 × 4.1 to 6.8 µm (n=30, Fig. 1F). Chlamydospores were subglobose, light brown, unicellular or multicellular, and 7.2 to 14.7 × 12.2 to 43.9 µm (n=30, Fig. 1H, I). Pycnidia mostly spheroid, brown, and 47.1 to 114.4 × 72.6 to 167.4 µm (n=30, Fig. 1G). A cetyl trimethyl ammonium bromide method was used to extract DNA from 7-day-old. Internal transcribed spacer (ITS), RNA polymerase II (RPB2) and ß-tubulin (TUB) gene were amplified using ITS1/ITS4 (White et al. 1990), RPB2-5F/RPB2-7cR (Liu et al. 1999) and BT2a/Bt2b (O'Donnell et al. 1997) primers respectively. The sequences obtained by polymerase chain reaction (PCR) were sequenced and the results showed that the DNA sequences of the 3 isolates were identical. Therefore, the sequence of isolate DNES22-01, DNES22-02 and DNES22-03 was submitted to GenBank. According to BLAST search, the ITS (OP884646), RPB2 (OP910000) and TUB (OP909999) sequences showed 99.81% similarity to Epicoccum sorghinum strain LC12103 (MN215621.1), 99.07% to strain P-XW-9A (MW446946.1), and 98.85% with the strain UMS (OM048108.1), respectively. Phylogenetic analysis by maximum likelihood method (MEGA7.0) generated based on the ITS, RPB2 and TUB sequences indicated that the isolates formed a supported clade to the related E. sorghinum type sequences. Isolates was found to be most closely related to E. sorghinum and far from other species. Based on morphological and phylogenetic characteristics, isolates DNES22-01, DNES22-02 and DNES22-03 was identified as E. sorghinum (Bao et al. 2019; Chen et al. 2021; Zhang et al. 2022). At the 4-leaf-stage, 10 soybean plants were inoculated by spraying with a conidial suspension (1 × 106 spores·ml-1). Sterile water served as a control. The test was repeated 3 times. All samples were incubated in a growth chamber at 27°C. Symptoms typical developed on the leaves after 7 days, but control samples remained healthy (Fig.1B, C). The fungus was reisolated from symptomatic tissues and identified as E. sorghinum by morphology characteristics and molecular characterization. To our knowledge, this is the first report of E. sorghinum causing leaf spot on soybean in Heilongjiang, China. The results can provide the basis for future studies on the occurrence, prevention, and management of this disease.

6.
Plant Dis ; 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35802010

ABSTRACT

Bothriochloa ischaemum (family Poaceae) is a perennial weed that can be found in borders of agricultural fields, pastures and roadsides in Malaysia. B. ischaemum is an important phytoremediation species in copper tailings dams (Jia et al. 2020). In December 2021, chlorotic spots with brown halos were observed on leaf samples of B. ischaemum with an incidence of approximately 80% in Penampang, Sabah province (5°56'50.4"N, 116°04'32.8"E). On older leaves, the spots coalesced into larger chlorotic spots. Small pieces (5 x 5 mm) of infected leaves collected from three plants were excised, and then surface sterilized according to Khoo et al. (2022). The fungus was isolated (one isolate was obtained) and cultured on potato dextrose agar (PDA) at 25°C. After 3 days, the colony had cottony aerial mycelia with light purple concentric rings appearing on the underside of the colony. Chlamydospores were produced, either unicellular or multicellular. Conidia were unicellular, hyaline, oval, and were 3.7 to 5.1 x 1.8 to 2.6 µm (n=20). Pycnidia were spheroid, and were 66.4 to 115.3 x 43.1 to 87.4 µm (n=20). Genomic DNA was extracted from fresh mycelia of the fungus based on the extraction method described by Khoo et al. (2022). Amplification of the internal transcribed spacer (ITS) region and large subunit (LSU) of rDNA, and actin (ACT), tubulin (TUB) and RNA polymerase II second largest subunit (RPB2) genes was performed using ITS1/ITS4, LR0R/LR7, ACT512F/ACT783R, T10/Bt2b and RPB2-5F2/RPB2-7cR primers, respectively (O'Donnell and Cigelnik, 1997; Liu et al. 1999; Sung et al. 2007; Chen et al. 2021). The PCR products were sequenced at Apical Scientific Sdn. Bhd.. Sequences were deposited in GenBank as OM453926 (ITS), OM453925 (LSU), OM451236 (ACT), OM451237 (TUB) and OM863567 (RPB2). Sequences of our isolate had 100% homology to ITS of isolate UMS (OK626271) (507/507 bp), LSU of isolate UMS (OM238129) (1328/1328 bp), ACT of isolate CZ01 (MN956831) (275/275 bp), TUB of isolate BJ-F1 (MF987525) (556/556 bp) and RPB2 of isolate HYCX2 (MK836295) (596/596 bp) sequences. Phylogenetic analysis was performed using the maximum likelihood method based on the general time reversible model with a gamma distribution and invariant sites (GTR + G + I) generated from the combined ITS, TUB, LSU and RPB2 sequences, indicating that the isolates formed a supported clade to the related Epicoccum sorghinum type sequences. Morphological and molecular characterization matched the description of E. sorghinum (Li et al. 2020). Koch's postulates were performed by spray inoculation (106 spores/ml) on the leaves of three healthy B. ischaemum plants, using isolate BPL01, while sterilized water was sprayed on three additional B. ischaemum which served as the control. Symptoms similar to those occurred after 6 days post inoculation. No symptoms occurred on controls. The experiment was repeated two more times. The reisolated pathogen was morphologically and genetically identical to E. sorghinum. E. sorghinum was reported previously on Brassica parachinensis (Yu et al. 2019), Camellia sinensis (Bao et al. 2019), Myrica rubra (Li et al. 2020), Oryza sativa (Liu et al. 2020) and Zea mays (Chen et al. 2021) in China. To our knowledge, this is the first report of E. sorghinum causing leaf spot on B. ischaemum in Malaysia. Our findings expand the geographic range and host range of E. sorghinum in Malaysia. B. ischaemum which is a weed in agricultural fields is a host of the pathogen and therefore could be a potential threat to Brassica parachinensis, Camellia sinensis, Oryza sativa and Zea mays in Malaysia. Weed management could be an effective way to eliminate inoculum sources of E. sorghinum.

7.
Plant Dis ; 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869587

ABSTRACT

Basella alba (family Basellaceae) is a perennial vine that serves as an edible leaf vegetable in Malaysia. In May 2021, red spots were observed on leaf samples of B. alba in Lido, Sabah Province (5°56'39.1"N, 116°04'47.6"E). The disease severity was about 20% with 10% incidence. The spots enlarged and coalesced into larger necrotic spots. Small pieces (5 x 5 mm) of infected leaves were excised from three plants, and then surface disinfected based on Khoo et al. (2022). One fungal isolate (Lido01) was isolated and cultured on potato dextrose agar (PDA) at 25°C. A single isolate with cottony aerial mycelia and pink concentric rings was observed on the upper surface of the culture. Unicellular and multicellular chlamydospores were observed, and measured 7.1 to 14.3. × 17.8 to 74.5 µm. Conidia were unicellular, hyaline, oval, and measured 3.8 to 5.2 x 1.7 to 2.7 µm (n= 20). Pycnidia were spheroid, and measured 66.2 to 114.3 x 44.1 to 86.1 µm (n= 20). Genomic DNA was extracted from fresh mycelia according to the extraction method of Khoo et al. (2022a and 2022b). ITS1/ITS4, LR0R/LR7, ACT512F/ACT783R, and T10/Bt2b primers were used to amplify the internal transcribed spacer (ITS), large subunit (LSU), actin (ACT), and tubulin (TUB) genes, respectively (O'Donnell and Cigelnik, 1997; Chen et al. 2021). PCR products were Sanger sequenced by Apical Scientific Sdn. Bhd. (Serdang, Malaysia). Sequences of isolate Lido01 were deposited in GenBank as OM501130 (ITS), OM501128 (LSU), OM513916 (ACT) and OM513917 (TUB). Respective gene sequences of this isolate showed 100% homology to ITS sequence of isolate BPL01 (OM453926) (507/507 bp), LSU sequence of isolate BPL01 (OM453925) (1328/1328 bp), ACT sequence of isolate CZ01 (MN956831) (275/275 bp) and TUB sequence of isolate BJ-F1 (MF987525) (556/556 bp). The sequences of Lido01 established a supported clade (99% bootstrap value) to the related Epicoccum sorghinum type sequences, according to phylogenetic analysis using maximum likelihood based on the concatenated ITS, ACT, and TUB sequences. Morphological characters also matched the description of E. sorghinum (Li et al. 2020). Koch's postulates were tested as described by Chai et al. (2017) with modification by spray inoculation (106 spores/ml) on the leaves of three healthy one-month-old B. alba, while sterilized distilled water served as the control treatment. Monitoring and incubation were performed in a greenhouse based on Iftikhar et al. (2022). All inoculated leaves developed symptoms as described above by 8 days post-inoculation, whereas no symptoms occurred on controls, thus fulfilling Koch's postulates. The experiment was repeated twice. The reisolated pathogen was morphologically and genetically identical to E. sorghinum. E. sorghinum was reported causing leaf spot on Brassica parachinensis (Yu et al. 2019), Camellia sinensis (Bao et al. 2019), Myrica rubra (Li et al. 2020), Oryza sativa (Liu et al. 2020) and Zea mays (Chen et al. 2021). To our knowledge, this is the first report of E. sorghinum causing leaf spot on B. alba in Malaysia. Our findings have expanded the geographic range and host range of E. sorghinum in Malaysia, though the host range of this isolate is not known.

8.
Chin J Nat Med ; 20(7): 537-540, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35907652

ABSTRACT

Four new diphenyl ethers, named epicoccethers K-N (1-4), were purified from the fermentation medium of a fungus Epicoccum sorghinum derived from Myoporum bontioides, and identified through HR-ESI-MS and NMR spectral analysis. Except that compound 1 showed moderate antifungal activity against Penicillium italicum and Fusarium graminearum, the other three compounds showed stronger activity against them than triadimefon. All of them showed moderate or weak antibacterial activity towards Staphylococcus aureus and Escherichia coli with O6 and O78 serotypes except that 3 was inactive to E. coli O6.


Subject(s)
Ascomycota , Escherichia coli , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure , Phenyl Ethers/chemistry
9.
Plant Dis ; 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698249

ABSTRACT

Platostoma palustre (family Lamiaceae), locally known as 'Black Cincau', is an herb processed as herbal drinks in Malaysia. In November 2021, brown lesions were observed on leaf samples of P. palustre with an incidence of approximately 10% in a nursery in Penampang, Sabah province (5°55'30.4"N 116°04'35.7"E). The lesions developed into larger chlorotic spots with aging of leaves. Five samples of infected leaves were collected, excised (5 × 5 mm), and then surface sterilized with 75% ethanol for 1 minute, washed with 2% sodium hypochlorite solution for 1 minute, rinsed, and air dried before inoculated onto potato dextrose agar (PDA). Inoculated plates were incubated at 25°C. Three isolates were isolated from the samples, which showed cottony aerial mycelia with light purple concentric rings appeared on the reverse side of the colony after 3 days. Pycnidia which were spheroid and measured 64.0 to 114.1 × 41.2 to 88.0 µm (n= 30). Conidia, unicellular, hyaline, oval and measured 3.8 to 4.9 × 2.0 to 2.7 µm (n= 30). Chlamydospores were observed, either unicellular or multicellular. NaOH test on oatmeal agar positive, brownish red. Further, the genomic DNA of pathogens (UMS, UMS02 and UMS03) was extracted from fresh mycelia (7-day-old) using lysis buffer. Large Sub Unit (LSU), ß-tubulin (tub) and RNA polymerase II (RPB2) gene were amplified using LR0R/LR7, T10/Bt2b and RPB2-5F2/RPB2-7cR primers (Rehner and Samuel, 1994; O'Donnell and Cigelnik, 1997; Liu et al. 1999) respectively. The sequences of isolate UMS, UMS02 and UMS03 which deposited in Genbank were OM238129, ON386254, ON386255 (LSU), OM048108, ON366806, ON366807 (tub), and ON003417, ON366804, ON366805 (RPB2). They had 99-100% homology to the LSU (1328/1328 bp) of Epicoccum sorghinum isolate Lido01 (OM501128), tub (422/425 bp) of isolate BJ-F1 (MF987525), and RPB2 (596/596 bp) of isolate HYCX2 (MK836295). Phylogenetic analysis by maximum likelihood method generated from the combined tub, LSU and RPB2 sequences indicated that the isolates formed a supported clade to the related Epicoccum sorghinum type sequences. Morphological, NaOH test and molecular characterization matched the description of E. sorghinum (Boerema et al. 2004; Li et al. 2020). Koch's postulates were performed by spray inoculation (106 conidia/mL) on the leaves of three healthy P. palustre seedlings with isolate UMS, while water was sprayed on three additional P. palustre seedlings served as controls. The plants were maintained in a greenhouse at room temperature 25 to 28°C with a relative humidity of 80 to 90%. All inoculated plants exhibited the symptoms similar to those of the nursery collection occurred after 8 days post inoculation. No symptoms occurred on controls. The experiment was repeated twice. The reisolated pathogen was morphologically identical to E. sorghinum. E. sorghinum was reported previously on Myrica rubra in China (Li et al. 2020). To our knowledge, this is the first report of E. sorghinum causing leaf spot on P. palustre in Malaysia. Our findings expand the host range of E. sorghinum in Malaysia.

10.
Phytochemistry ; 200: 113221, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35605808

ABSTRACT

Metabolism of special endophytes and phytopathogens can be induced by the symbiotic interactions with the host. A phytopathogen Epicoccum sorghinum cultured in host mushroom Thelephora ganbajun medium exhibited different metabolites compared with that of ordinary medium. An unprecedented scaffold possessing the same substructure as perylenequinone mycotoxin, a first methyl rearrangement product of phytotoxin, epoxydon 6-methylsalicylate ester, three undescribed compounds, and an undescribed natural product were isolated from E. sorghinum cultured in T. ganbajun. Episorin A and epicosorin A were produced from E. sorghinum induced by culturing in host medium. Episorin A was the first example of perylenequinone analogue in the natural products. These induced compounds and other metabolites showed notable antibiosis against endogenous fungi, and insect existing in mushroom. Induced episorin A showed significant inhibitory effects on nitric oxide production in LPS-activated macrophages, and anti-acetylcholinesterase with the IC50 at 5.40 ± 0.25 µM, and 4.32 µM, respectively, and cytotoxicity against HL-60, A-549, SMMC-7721, MCF-7 and SW480 with IC50 at 14.21 ± 0.53, 17.93 ± 0.22, 18.17 ± 0.63, 28.36 ± 0.43, and 18.20 ± 1.03 µM.


Subject(s)
Agaricales , Basidiomycota , Agaricales/chemistry , Anti-Bacterial Agents/metabolism , Ascomycota
11.
Plant Dis ; 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35271776

ABSTRACT

Brown spot (Cochliobolus miyabeanus), blast (Magnaporthe oryzae) and stackburn (Alternaria padwickii) are common diseases in rice with similar leaf spot symptoms. In August 2021, a leaf spot disease, with symptoms dissimilar to these diseases, occurred on almost 100% of the leaves and sheaths of rice plants (cv. Presidio) in a 1-hectare field in Eagle Lake, Texas. Lesions started as small dark brown spots on lower leaves and sheaths. The spots enlarged to become round or oval (1.5 to 5.0 mm) spots having round ends with gray centers, dark-brown borders or rings, and slight gold halos. The spots on the sheaths were similar to those on the leaf blades, with lesion size ranging from 2 to 5 mm. Pieces of infected tissue were cut from the margin of necrotic lesions, surface disinfected with 1% NaOCl for 2 min followed by 75% ethanol for 30 s and rinsed with sterile distilled water three times. The tissues were then dried on sterilized filter paper, placed on potato dextrose agar (PDA), and incubated at 25℃ for 7 days. Two isolates (LS36 and LS37) were obtained, and their colonies were initially villose, gray at the center and pale at the margin, and then turned dark gray, with the reverse side becoming scarlet. Chlamydospores were unicellular or multicellular and massively produced in nearly spherical shape (11 to 26 × 10 to 22 µm, n=100). Pycnidia were dark and mostly spheroid (105 to 171 × 76 to 128 µm, n=100). Conidia were unicellular, hyaline, ellipsoidal, with the size of 3.6 to 5.8× 1.9 to 2.8 µm (n=100). These morphological characteristics were similar to those described for Epicoccum sorghinum (Zhou et al. 2018). The rDNA internal transcribed spacer (ITS), rRNA large subunit (LSU), and translation elongation factor 1 alpha (EF1) gene of an representative isolate (LS37) were amplified (Fell et al. 2000; Wang et al. 2014) and sequenced. The ITS sequence (OK189534) of the isolate was 96.95% identical to E. sorghinum (KX758542); the EF1 sequence (OK236518) was 98.37% identical to E. sorghinum (MN461167); and the LSU sequence (OK189535) was 99.29% identical to E. sorghinum (MK817520, MK817521, and MK817522). Rice plants (cv. Presidio) at heading were inoculated with the two isolates individually by placing a drop of conidial suspension of 1 x 106 conidia/ml or a 2-mm PDA plug of 7-day-old cultures on the wounded or unwounded leaves and sheaths (3 sites/leaf or sheath, 3 plants/treatment). The wound was made by penetrating the epidermis using a 0.5-mm-diameter pin. The plants inoculated with sterilized water or PDA-only plugs served as the controls. The treated plants were placed in a dew chamber at 26℃ for 2 days and then transferred in a greenhouse (25 to 30℃). After 5 days, typical symptoms, similar to those observed in the field, developed on all of the inoculated leaves and sheaths, with the wound inoculation inducing more rapid development of symptoms than the unwounded inoculation. No symptoms developed on the controls. The two isolates produced similar symptoms and the fungus was consistently re-isolated from the infected plants and confirmed to be E. sorghinum based on morphological characteristics. The pathogenicity test was repeated twice with similar results. To our knowledge, this is the first report of leaf spot caused by E. sorghinum in rice in the United States. This disease was first reported on rice in China in 2020 (Liu et al. 2020). This research will help identify this new disease from other leaf spot-like diseases and develop management strategies for control of this disease.

12.
Acta Pharmaceutica Sinica ; (12): 2115-2119, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-936561

ABSTRACT

The secondary metabolites from the dandelion-derived Epicoccum sorghinum 1-2 were isolated by silica gel and Sephadex gel column chromatography, and semi-preparative high performance liquid chromatography (HPLC). Their structures were identified by comprehensive NMR and MS methods. Their antibacterial activities were determined by filter paper method. Finally, seven compounds were isolated and identified from the fermentation product of E. sorghinum 1-2, including (4R*,5R*,6S*)-4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-methoxymethyl-2-cyclohexen-l-one (1), (4R*,5R*,6S*)-4,5-dihydroxy-6-(6′-methylsalicyloxy)-2-methyl-2-cyclohexen-1-one (2), (4R,5R,6S)-4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-hydroxymethyl-2-cyclohexen-1-one (3), (-)-gabosine E (4), theobroxide (5), 3-chlorogentisyl alcohol (6), and 3-hydroxybenzyl alcohol (7), of which 1-5 are epoxydons, and 6 and 7 are phenolics. Compounds 1 and 2 are new structures reported for the first time. Compound 6 showed significant antibacterial activity against Staphylococcus aureus.

13.
Article in English | WPRIM (Western Pacific) | ID: wpr-939918

ABSTRACT

Four new diphenyl ethers, named epicoccethers K-N (1-4), were purified from the fermentation medium of a fungus Epicoccum sorghinum derived from Myoporum bontioides, and identified through HR-ESI-MS and NMR spectral analysis. Except that compound 1 showed moderate antifungal activity against Penicillium italicum and Fusarium graminearum, the other three compounds showed stronger activity against them than triadimefon. All of them showed moderate or weak antibacterial activity towards Staphylococcus aureus and Escherichia coli with O6 and O78 serotypes except that 3 was inactive to E. coli O6.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Ascomycota , Escherichia coli , Microbial Sensitivity Tests , Molecular Structure , Phenyl Ethers/chemistry
15.
Bioorg Chem ; 115: 105232, 2021 10.
Article in English | MEDLINE | ID: mdl-34371373

ABSTRACT

The strategy "IEMAHC" (Induction of Endophyte Metabolism by Adding Host Components) was applied to the fermentation of the endophytic fungus Epicoccum sorghinum L28 from Myoporum bontioides by introducing guaiol, an ingredient of M. bontioides, into the cultivation medium, which resulted in the purification of nine new diphenyl ethers, epicoccethers A-I (1-9). Their structures were determined by overall spectroscopic analysis. HPLC-MS analysis revealed that compounds 5-7 were products generated by induction of guaiol. Compounds 6 and 7 are the first members containing an ester moiety formed by the natural long-chain fatty acid and the hydroxyl group in the phenylmethanol unit of the diphenyl ether class. The antifungal activities of compounds 1, 2, and 4-7 against Fusarium oxysporum were 1, 1, 2, 1, 2 and 4 times as high as those of the positive control triadimefon, respectively. Compounds 4 and 5 showed 1.6 times the antifungal activities of triadimefon towards Colletotrichum musae.


Subject(s)
Antifungal Agents/pharmacology , Ascomycota/chemistry , Colletotrichum/drug effects , Fusarium/drug effects , Phenyl Ethers/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Phenyl Ethers/chemistry , Phenyl Ethers/isolation & purification , Structure-Activity Relationship
16.
Plant Dis ; 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34077251

ABSTRACT

In November 2020, leaf sheath on maize (Zea mays) was detected in southeastern Jiangsu (Nantong municipality; 120.54° E, 31.58° N) in China. Physiologically mature plants, 13 weeks of cultivation (at the harvest stage), exhibited red-brown lesions in stem and leaves, and dried-up stem (Figure 1). The symptoms were observed on approximately 95% of the maize plants in a 0.8 ha maize field surrounded by old sorghum fields and the crop yield was decreased by 70-85% with respect previous years, when no disease symptoms were detected. Small pieces, approximately 0.3 cm2 in size, of symptomatic tissue were surface sterilized in 1.5% NaOCl for 1 min, and washed twice with sterile ddH2O. The pathogen was isolated (one isolate was obtained) and cultured on PDA medium, containing chloramphenicol (50 µg/mL), under darkness at 26 ºC for 3 days. Amplification of internal transcribed spacer (ITS), large subunit (LSU), actin (ACT) and ß-tubulin (TUB2) genes was performed using ITS1/ITS4, LR0R/LR7, ACT512F/ACT783R and T1/Bt2b primers, respectively (Ma et al. 2021). Sequences were submitted to GenBank under accession numbers MW800180 (ITS), MW800361 (LSU), MW845677 (ACT) and MW892439 (TUB2). Blast search revealed that the ITS sequence had 100% (492/492 bp) homology with E. sorghinum LY-D-1-1, MT604999, LSU had 98% (1075/1091 bp) homology with E. sorghinum GZDS2018BXT010, MK516207, ACT had 96% (214/222 bp) homology with E. sorghinum M3, MK044832, and TUB2 had 99% (498/499 bp) homology with E. sorghinum BJ-F1, MF987525. Molecular phylogenetic tree was constructed using MEGA7 to confirm the identity of the pathogen. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model, and the tree with the highest likelihood (-1774.9882) is shown in Figure 2. Bipolaris, Curvularia and Fusarium spp. found causing leaf spot on maize were included in the phylogenetic tree (Liu et al. 2021; Reyes Gaige et al. 2020; Chang et al. 2016). To confirm pathogenicity, a sterilized spatula was used to make wounds (3 mm diameter, 1 mm depth) on the stem and leaves of 2-week old maize plants. A solution containing 1 × 108 spores/mL (20 µL) was injected in the wound, whereas sterilized ddH2O was used in the control experiment. Inoculated plants were maintained in a growth chamber at 28 °C and 60% relative humidity for 3 days, observing fast-growing necrotic lesions in both stem and leaves. The pathogen was recovered from the infected plants and its identity was confirmed by morphological and sequence analyses. Microscope observations indicated the presence of chlamydospores, oval conidia (3 × 5 µm) and round pycnidia (60-100 µm diameter), and agree with those previously reported for the morphology of E. sorghinum (Bao et al. 2019). During last 2 years, E. sorghinum was reported to cause leaf spot on a number of relevant agricultural crops in China, including taro, Brassica parachinensis, tea, rice and wheat (Du et al. 2020; Li et al. 2020; Liu et al. 2020a, 2020b), confirming the expansion and host promiscuity of this pathogen. The pathogen was also reported to cause leaf spot on maize in Brazil in 2004 (Do Amaral et al. 2004); however, this is the first report of E. sorghinum causing leaf sheath and leaf spot on maize in China. Maize an important agricultural crop in China with more than 168 million tons produced in 2019. The observed yield loss and disease incidence of the isolated strain suggest that E. sorghinum may be a threat to maize production in China.

17.
Planta ; 253(6): 116, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33956231

ABSTRACT

MAIN CONCLUSION: We discovered and identified a series of characteristic substances, including one new polyketide, epicorepoxydon B, of the important pathogenic fungus, Epicoccum sorghinum, of sorghum. The fungal extract and some isolated polyketides are sensitive to a malignant triple-negative breast cancer cell line, MDA-MB-231. Sorghum (Kaoliang) grain is an important crop with high economic value and several applications. In Taiwan, sorghum has been used in the wine industry, and "Kinmen Kaoliang Liquor" is a well-known Asian brand. Fungal contamination is one of the major threats affecting the production of sorghum grain resulting in economic losses as well as human and animal health problems. Several fungal species can infect sorghum grain and generate some toxic secondary metabolites. Epicoccum sorghinum is one of the major fungal contaminants of sorghum grains and a potent producer of mycotoxins such as tenuazonic acid (TeA). However, except for TeA, few studies focused on chemical compounds produced by this fungus. To explore the potential biological and toxic effects of E. sorghinum, a chemical investigation was carried out on the ethyl acetate extract of the fungus because it showed cytotoxic activity against a triple-negative breast cancer cell line, MDA-MB-231 (54.82% inhibition at 20 µg/mL). One new polyketide, epicorepoxydon B (1), along with six known compounds including 4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-hydroxymethyl-2-cyclohexenl-one (2), epicorepoxydon A (3), 3-hydroxybenzyl alcohol (4), 6-methylsalicylic acid (5), gentisyl alcohol (6), and 6-(hydroxymethyl)benzene-1,2,4-triol (7) were obtained, and their structures were established by the interpretation of their MS and NMR spectroscopic data. The cytotoxic activity of all isolated polyketides 1-7 was evaluated, and compounds 2, 6, and 7 exhibited potent activities against A549, HepG2, and MDA-MB-231 human cancer cell lines with IC50 value ranging from 1.86 to 18.31 µM. The structure-activity relationship of the isolated compounds was proposed.


Subject(s)
Ascomycota , Polyketides , Sorghum , Edible Grain , Molecular Structure
18.
Plant Dis ; 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33118872

ABSTRACT

White Chrysanthemum (Chrysanthemum morifolium), a perennial herb of the Compositae family, is used for traditional medicine. The planting area of white chrysanthemum in Macheng city, Hubei Province is about 3333 ha and the annual output can reach more than 5000 tons. In 2019, leaf spot disease appeared on almost all middle and lower leaves of white chrysanthemum in most fields of Fengshumiao county, Macheng city (N31°29'57″, E115°05'49″). This county has 33 acres white chrysanthemum planting area, and most of the plants in the county were infected with the leaf spot disease. The average incidence of leaf spot disease was 65%, and incidence in some areas was 100%. In our observations, leaf spot disease can occur throughout the whole growth period of white chrysanthemum, and it will become more serious under the high temperature and humidity condition. Usually, the diseased leaves account for 30 to 80% of the total leaves on the plant. Leaf spot initially manifests as necrotic lesions on the edge and tip of the leaf, and then the lesions coalesce and gradually expand to form irregular light-brown to brown-black spots, eventually leading to necrosis and curling of the entire leaf. This disease seriously affects the growth and development of plants, resulting in the decline of yield and quality of white chrysanthemum. Ten symptomatic leaf samples were collected, the surfaces were disinfected with 0.1% mercuric chloride (HgCl2) for 3 min, and washed with sterile distilled water three times. Ten tissue samples at the junction of diseased and healthy areas (0.5 × 0.5 cm2) were cut and placed on potato dextrose agar (PDA) medium containing 100 µg/ml cefotaxime sodium and incubated in a dark chamber at 28°C. After 2 days, the hyphal tips from the edges of growing colonies were transferred to fresh PDA plates for further purification. Finally, eight isolates were obtained and these isolates were similar in morphology. The color of purified isolates was initially white to pale yellow. After six days of incubation, colonies had a diameter of 8 cm and the cultures were pale gray and starting to secrete scarlet pigment. After 15 days incubation, the colonies were grayish brown, while the backside was reddish-brown. Gray to tan chlamydospores were observed, nearly spherical, with a wart-like surface. Unicellular chlamydospores were 7.91 to 32.23 × 12.03 to 38.42 µm (n=30) and multicellular chlamydospores were 6.32 to 25.10 × 21.75 to 100.05 µm (n=30). The morphological characteristics were similar to Epicoccum sorghinum (Kang et al. 2019). The isolate FDY-5 was chosen for molecular identification. The sequence of rDNA-ITS, TUB, and LSU of the FDY-5 were amplified (GenBank MT800929, MT799852, and MT800935, respectively) (White et al. 1990; Carbone and Kohn 1999; Lumbsch et al. 2000). BLAST results showed that the rDNA-ITS sequences, the TUB gene sequences, and LSU gene sequences of strain FDY-5 shared 99% identity with the sequences of E. sorghinum (syn. Phoma sorghina) in GenBank (MN555348.1, MF987525.1, MK516207.1, respectively). Moreover, a phylogenetic tree of the LSU gene sequence of FDY-5 was constructed based on the Neighbor-Joining (NJ) method in MEGA6 software (Tamura et al. 2013) and revealed that strain FDY-5 was closest to E. sorghinum. Based on morphological and molecular characteristics, the fungus was identified as E. sorghinum. Pathogenicity tests were conducted on two-month-old white chrysanthemum plants. The upper three leaves of three plants were randomly selected for stab treatment and were inoculated with 5 × 5 mm mycelial discs produced from a fifteen-day-old colony on PDA. The inoculated and control (treated with sterile PDA disks) plants were incubated in a moist chamber (25 ± 2 °C, RH 85%). The first lesions appeared 1 day after inoculation on leaves, and the necrotic lesion area expanded outward and showed typical symptoms 3 days later. To fulfill Koch's postulates, the pathogen was reisolated from nine inoculated leaves by repeating the above isolating operation, and confirmed as E. sorghinum by morphology. To the best of our knowledge, this is the first report of E. sorghinum causing leaf spot on white chrysanthemum in China. E. sorghinum has a wide host range worldwide and often causes crop yield reduction. This report will facilitate the diagnosis of white chrysanthemum leaf spot of white chrysanthemum allowing control measures to be adopted to manage this disease in a timely manner. References Carbone, I., and Kohn, L. M. 1999. Mycologia 91:553. Kang, Y., et al. 2019. Plant Dis. 103 (7):1787. Lumbsch, H., et al. 2000. Plant Biol. 2:525. Tamura, K., et al. 2013. Mol. Biol. Evol. 30:2725-2729. White, T. J., et al. 1990. Page 315 in:PCR protocols:a guide to methods and applications. Academic Press, San Diego, CA. Funding Funding was supported by Major Increase and Decrease Projects at the Central Level of China (2060302) and the National Key Research and Development Program (2017FYC1700704).

19.
Microorganisms ; 8(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397322

ABSTRACT

Bayberry (Myrica rubra) is a commercial fruit in China. For the past seven years, twig blight disease has been attacking bayberry plantations in Shantou City, Guangdong Province, China, leading to destructive damage and financial loss. In this study, five fungal species associated with twig dieback and stem blight were identified based on morphological characteristics combined with multilocus sequence analysis (MLSA) on the internal transcribed spacer (ITS) region, partial sequences of ß-tubulin (tub2), translation elongation factor 1-α (tef1-α), large subunit ribosomal RNA (LSU) and small subunit ribosomal RNA (SSU) genes, which are Epicoccum sorghinum, Neofusicoccum parvum, Lasiodiplodia theobromae, Nigrospora oryzae and a Pestalotiopsis new species P. myricae. P. myricae is the chief pathogen in fields, based on its high isolation rate and fast disease progression after inoculation. To our knowledge, this is the first study reporting the above five fungi as the pathogens responsible for bayberry twig blight. Indoor screening of fungicides indicates that Prochloraz (copper salt) is the most promising fungicide for field application, followed by Pyraclostrobin, 15% Difenoconazole + 15% Propiconazole, Difenoconazole and Myclobutanil. Additionally, Bacillus velezensis strain 3-10 and zeamines from Dickeya zeae strain EC1 could be used as potential ecofriendly alternatives to control the disease.

20.
Food Chem ; 230: 491-496, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28407940

ABSTRACT

A survey of 100 samples of sorghum grains was carried out to determine Phoma spp. and tenuazonic acid (TA) contamination using molecular tools and LC-MS/MS. Sorghum samples were obtained at the following four grain maturity stages: milk (S1), soft dough (S2), hard dough (S3), and physiological maturity (S4). The results revealed a good correlation between Phoma and TA occurrence during grain development. The samples showed Phoma contamination with frequencies ranging from 2.4% (S1) to 87.4% (S4), and the molecular identification revealed P. sorghina as the only Phoma specie isolated. Tenuazonic acid was found in sorghum grains at all maturity stages. In S2, S3 and S4, 100% of the samples showed TA contamination with levels ranging from 20 to 1234µg/kg. Low levels of TA were detected in 36% of the samples collected at S1 stage. This is the first report of tenuazonic acid in Brazilian sorghum grains.


Subject(s)
Mycotoxins/chemistry , Sorghum/chemistry , Tenuazonic Acid/chemistry , Brazil , Chromatography, Liquid
SELECTION OF CITATIONS
SEARCH DETAIL