Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Chin Med J Pulm Crit Care Med ; 2(1): 1-9, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39170962

ABSTRACT

Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, methylation sites, proteins, and even the microbiome components. This review provides an insightful overview of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced statistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and personalized treatment strategies for this heterogeneous condition.

2.
Sci Rep ; 14(1): 18797, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138354

ABSTRACT

The cellular origin of clear cell ovarian carcinoma (CCOC), a major histological subtype of ovarian carcinoma remains elusive. Here, we explored the candidate cellular origin and identify molecular subtypes using integrated genomic/epigenomic analysis. We performed whole exome-sequencing, microarray, and DNA methylation array in 78 CCOC samples according to the original diagnosis. The findings revealed that ARID1A and/or PIK3CA mutations were mutually exclusive with DNA repair related genes, including TP53, BRCA1, and ATM. Clustering of CCOC and other ovarian carcinomas (n = 270) with normal tissues from the fallopian tube, ovarian surface epithelium, endometrial epithelium, and pelvic peritoneum mesothelium (PPM) in a methylation array showed that major CCOC subtypes (with ARID1A and/or PIK3CA mutations) were associated with the PPM-lile cluster (n = 64). This cluster was sub-divided into three clusters: (1) mismatch repair (MMR) deficient with tumor mutational burden-high (n = 2), (2) alteration of ARID1A (n = 51), and (3) ARID1A wild-type (n = 11). The remaining samples (n = 14) were subdivided into (4) ovarian surface epithelium-like (n = 11) and (5) fallopian tube-like (considered as high-grade serous histotype; n = 3). Among these, subtypes (1-3) and others (4 and 5) were found to be associated with immunoreactive signatures and epithelial-mesenchymal transition, respectively. These results contribute to the stratification of CCOC into biological subtypes.


Subject(s)
Adenocarcinoma, Clear Cell , DNA Methylation , DNA-Binding Proteins , Mutation , Ovarian Neoplasms , Transcription Factors , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/pathology , Genomics/methods , Class I Phosphatidylinositol 3-Kinases/genetics , Epigenomics/methods , Exome Sequencing , Middle Aged
3.
Article in English | MEDLINE | ID: mdl-39147981

ABSTRACT

PURPOSE: Tinnitus, the perception of sound without any external sound source, is a prevalent hearing health concern. Mounting evidence suggests that a confluence of genetic, environmental, and lifestyle factors can influence the pathogenesis of tinnitus. We hypothesized that alteration in DNA methylation, an epigenetic modification that occurs at cytosines of cytosine-phosphate-guanine (CpG) dinucleotide sites, where a methyl group from S-adenyl methionine gets transferred to the fifth carbon of the cytosine, could contribute to tinnitus. DNA methylation patterns are tissue-specific, but the tissues involved in tinnitus are not easily accessible in humans. This pilot study used saliva as a surrogate tissue to identify differentially methylated CpG regions (DMRs) associated with tinnitus. The study was conducted on healthy young adults reporting bilateral continuous chronic tinnitus to limit the influence of age-related confounding factors and health-related comorbidities. METHODS: The present study evaluated the genome-wide methylation levels from saliva-derived DNA samples from 24 healthy young adults with bilateral continuous chronic tinnitus (> 1 year) and 24 age, sex, and ethnicity-matched controls with no tinnitus. Genome-wide DNA methylation was evaluated for > 850,000 CpG sites using the Infinium Human Methylation EPIC BeadChip. The association analysis used the Bumphunter algorithm on 23 cases and 20 controls meeting the quality control standards. The methylation level was expressed as the area under the curve of CpG sites within DMRs.The FDR-adjusted p-value threshold of 0.05 was used to identify statistically significant DMRs associated with tinnitus. RESULTS: We obtained 25 differentially methylated regions (DMRs) associated with tinnitus. Genes within or in the proximity of the hypermethylated DMRs related to tinnitus included LCLAT1, RUNX1, RUFY1, NUDT12, TTC23, SLC43A2, C4orf27 (STPG2), and EFCAB4B. Genes within or in the proximity of hypomethylated DMRs associated with tinnitus included HLA-DPB2, PM20D1, TMEM18, SNTG2, MUC4, MIR886, MIR596, TXNRD1, EID3, SDHAP3, HLA-DPB2, LASS3 (CERS3), C10orf11 (LRMDA), HLA-DQB1, NADK, SZRD1, MFAP2, NUP210L, TPM3, INTS9, and SLC2A14. The burden of genetic variation could explain the differences in the methylation levels for DMRs involving HLA-DPB2, HLA-DQB1, and MUC4, indicating the need for replication in large independent cohorts. CONCLUSION: Consistent with the literature on comorbidities associated with tinnitus, we identified genes within or close to DMRs involved in auditory functions, chemical dependency, cardiovascular diseases, psychiatric conditions, immune disorders, and metabolic syndromes. These results indicate that epigenetic mechanisms could influence tinnitus, and saliva can be a good surrogate for identifying the epigenetic underpinnings of tinnitus in humans. Further research with a larger sample size is needed to identify epigenetic biomarkers and investigate their influence on the phenotypic expression of tinnitus.

4.
Am J Reprod Immunol ; 92(2): e13908, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39119763

ABSTRACT

PROBLEM: Preeclampsia (PE) and fetal growth restriction (FGR) are often associated with maternal inflammation and an increased risk of cardiovascular and metabolic disease in the affected mothers. The mechanism responsible for this increased risk of subsequent disease may involve reprogramming of innate immune cells, characterized by epigenetic modifications. METHOD OF STUDY: Circulating monocytes from women with PE, FGR, or uncomplicated pregnancies (control) were isolated before labor. Cytokine release from monocytes following exposure to lipopolysaccharide (LPS) and the presence of lysine 4-trimethylated histone 3 (H3K4me3) within TNF promoter sequences were evaluated. Single-cell transcriptomic profiles of circulating monocytes from women with PE or uncomplicated pregnancies were assessed. RESULTS: Monocytes from women with PE or FGR exhibited increased IL-10 secretion and decreased IL-1ß and GM-CSF secretion in response to LPS. While TNFα secretion was not significantly different in cultures of control monocytes versus those from complicated pregnancies with or without LPS exposure, monocytes from complicated pregnancies had significantly decreased levels of H3K4me3 associated with TNF promoter sequences. Cluster quantification and pathway analysis of differentially expressed genes revealed an increased proportion of anti-inflammatory myeloid cells and a lower proportion of inflammatory non-classical monocytes among the circulating monocyte population in women with PE. CONCLUSIONS: Monocytes from women with PE and FGR exhibit an immune tolerance phenotype before initiation of labor. Further investigation is required to determine whether this tolerogenic phenotype persists after the affected pregnancy and contributes to increased risk of subsequent disease.


Subject(s)
Fetal Growth Retardation , Immunity, Innate , Lipopolysaccharides , Monocytes , Pre-Eclampsia , Humans , Female , Pregnancy , Adult , Monocytes/immunology , Pre-Eclampsia/immunology , Lipopolysaccharides/immunology , Fetal Growth Retardation/immunology , Histones/metabolism , Cells, Cultured , Epigenesis, Genetic , Cellular Reprogramming , Tumor Necrosis Factor-alpha/metabolism , Promoter Regions, Genetic/genetics , Cytokines/metabolism
5.
Proc Natl Acad Sci U S A ; 121(32): e2404536121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39088396

ABSTRACT

Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.


Subject(s)
CD8-Positive T-Lymphocytes , Gammaherpesvirinae , Animals , CD8-Positive T-Lymphocytes/immunology , Gammaherpesvirinae/genetics , Gammaherpesvirinae/immunology , Cattle , Malignant Catarrh/virology , Malignant Catarrh/immunology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology
6.
Curr Cardiol Rep ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158785

ABSTRACT

PURPOSE OF REVIEW: This review aims to explore recent advances in single-cell omics techniques as applied to various regions of the human heart, illuminating cellular diversity, regulatory networks, and disease mechanisms. We examine the contributions of single-cell transcriptomics, genomics, proteomics, epigenomics, and spatial transcriptomics in unraveling the complexity of cardiac tissues. RECENT FINDINGS: Recent strides in single-cell omics technologies have revolutionized our understanding of the heart's cellular composition, cell type heterogeneity, and molecular dynamics. These advancements have elucidated pathological conditions as well as the cellular landscape in heart development. We highlight emerging applications of integrated single-cell omics, particularly for cardiac regeneration, disease modeling, and precision medicine, and emphasize the transformative potential of these technologies to advance cardiovascular research and clinical practice.

7.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39101486

ABSTRACT

Multi-omics (genomics, transcriptomics, epigenomics, proteomics, metabolomics, etc.) research approaches are vital for understanding the hierarchical complexity of human biology and have proven to be extremely valuable in cancer research and precision medicine. Emerging scientific advances in recent years have made high-throughput genome-wide sequencing a central focus in molecular research by allowing for the collective analysis of various kinds of molecular biological data from different types of specimens in a single tissue or even at the level of a single cell. Additionally, with the help of improved computational resources and data mining, researchers are able to integrate data from different multi-omics regimes to identify new prognostic, diagnostic, or predictive biomarkers, uncover novel therapeutic targets, and develop more personalized treatment protocols for patients. For the research community to parse the scientifically and clinically meaningful information out of all the biological data being generated each day more efficiently with less wasted resources, being familiar with and comfortable using advanced analytical tools, such as Google Cloud Platform becomes imperative. This project is an interdisciplinary, cross-organizational effort to provide a guided learning module for integrating transcriptomics and epigenetics data analysis protocols into a comprehensive analysis pipeline for users to implement in their own work, utilizing the cloud computing infrastructure on Google Cloud. The learning module consists of three submodules that guide the user through tutorial examples that illustrate the analysis of RNA-sequence and Reduced-Representation Bisulfite Sequencing data. The examples are in the form of breast cancer case studies, and the data sets were procured from the public repository Gene Expression Omnibus. The first submodule is devoted to transcriptomics analysis with the RNA sequencing data, the second submodule focuses on epigenetics analysis using the DNA methylation data, and the third submodule integrates the two methods for a deeper biological understanding. The modules begin with data collection and preprocessing, with further downstream analysis performed in a Vertex AI Jupyter notebook instance with an R kernel. Analysis results are returned to Google Cloud buckets for storage and visualization, removing the computational strain from local resources. The final product is a start-to-finish tutorial for the researchers with limited experience in multi-omics to integrate transcriptomics and epigenetics data analysis into a comprehensive pipeline to perform their own biological research.This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [16] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Subject(s)
Cloud Computing , Epigenomics , Humans , Epigenomics/methods , Epigenesis, Genetic , Transcriptome , Computational Biology/methods , Gene Expression Profiling/methods , Software , Data Mining/methods
8.
Immunity ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39137779

ABSTRACT

Due to its stimulatory potential for immunomodulatory CD4+ regulatory T (Treg) cells, low-dose interleukin-2 (IL-2) immunotherapy has gained considerable attention for the treatment of autoimmune diseases. In this investigator-initiated single-arm non-placebo-controlled phase-2 clinical trial of low-dose IL-2 immunotherapy in systemic lupus erythematosus (SLE) patients, we generated a comprehensive atlas of in vivo human immune responses to low-dose IL-2. We performed an in-depth study of circulating and cutaneous immune cells by imaging mass cytometry, high-parameter flow cytometry, transcriptomics, and targeted serum proteomics. Low-dose IL-2 stimulated various circulating immune cells, including Treg cells with a skin-homing phenotype that appeared in the skin of SLE patients in close interaction with endothelial cells. Analysis of surface proteins and transcriptomes revealed different IL-2-driven Treg cell activation programs, including gut-homing CD38+, skin-homing HLA-DR+, and highly proliferative inflammation-homing CD38+ HLA-DR+ Treg cells. Collectively, these data define the distinct human Treg cell subsets that are responsive to IL-2 immunotherapy.

9.
Methods Mol Biol ; 2846: 181-189, 2024.
Article in English | MEDLINE | ID: mdl-39141237

ABSTRACT

Cleavage Under Targets and Tagmentation (CUT&Tag) provides high-resolution sequencing libraries for profiling diverse chromatin components. This protocol details the steps to generate CUT&Tag libraries from fresh or frozen tissues. This CUT&Tag workflow has nine main steps: isolation of nuclei from tissues, binding of nuclei to Concanavalin A-coated beads, binding of the primary antibody, binding of the secondary antibody, binding pA-Tn5 adapter complex, tagmentation, DNA extraction, PCR, and post-PCR cleanup and size selection. This protocol enabled us to generate and sequence CUT&Tag libraries across a broad range of fresh and frozen tissue types.


Subject(s)
Epigenomics , Epigenomics/methods , Humans , Gene Library , Chromatin/genetics , Chromatin/metabolism , Animals , High-Throughput Nucleotide Sequencing/methods , Cell Nucleus/genetics , Cell Nucleus/metabolism , Freezing , Polymerase Chain Reaction/methods
11.
Genome Biol ; 25(1): 211, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118163

ABSTRACT

BACKGROUND: The Pharyngeal Endoderm (PE) is an extremely relevant developmental tissue, serving as the progenitor for the esophagus, parathyroids, thyroids, lungs, and thymus. While several studies have highlighted the importance of PE cells, a detailed transcriptional and epigenetic characterization of this important developmental stage is still missing, especially in humans, due to technical and ethical constraints pertaining to its early formation. RESULTS: Here we fill this knowledge gap by developing an in vitro protocol for the derivation of PE-like cells from human Embryonic Stem Cells (hESCs) and by providing an integrated multi-omics characterization. Our PE-like cells robustly express PE markers and are transcriptionally homogenous and similar to in vivo mouse PE cells. In addition, we define their epigenetic landscape and dynamic changes in response to Retinoic Acid by combining ATAC-Seq and ChIP-Seq of histone modifications. The integration of multiple high-throughput datasets leads to the identification of new putative regulatory regions and to the inference of a Retinoic Acid-centered transcription factor network orchestrating the development of PE-like cells. CONCLUSIONS: By combining hESCs differentiation with computational genomics, our work reveals the epigenetic dynamics that occur during human PE differentiation, providing a solid resource and foundation for research focused on the development of PE derivatives and the modeling of their developmental defects in genetic syndromes.


Subject(s)
Cell Differentiation , Endoderm , Epigenesis, Genetic , Human Embryonic Stem Cells , Humans , Endoderm/cytology , Endoderm/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Pharynx/cytology , Pharynx/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Transcription Factors/genetics , Mice
12.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125988

ABSTRACT

Inflammatory bowel disease (IBD) represents heterogeneous and relapsing intestinal conditions with a severe impact on the quality of life of individuals and a continuously increasing prevalence. In recent years, the development of sequencing technology has provided new means of exploring the complex pathogenesis of IBD. An ideal solution is represented by the approach of precision medicine that investigates multiple cellular and molecular interactions, which are tools that perform a holistic, systematic, and impartial analysis of the genomic, transcriptomic, proteomic, metabolomic, and microbiomics sets. Hence, it has led to the orientation of current research towards the identification of new biomarkers that could be successfully used in the management of IBD patients. Multi-omics explores the dimension of variation in the characteristics of these diseases, offering the advantage of understanding the cellular and molecular mechanisms that affect intestinal homeostasis for a much better prediction of disease development and choice of treatment. This review focuses on the progress made in the field of prognostic and predictive biomarkers, highlighting the limitations, challenges, and also the opportunities associated with the application of genomics and epigenomics technologies in clinical practice.


Subject(s)
Biomarkers , Epigenesis, Genetic , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Prognosis , Epigenomics/methods , Genomics/methods , Genetic Predisposition to Disease
13.
Stroke ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129597

ABSTRACT

BACKGROUND: TGF (transforming growth factor)-ß pathway is central to blood-brain barrier development as it regulates cross talk between pericytes and endothelial cells. Murine embryos lacking TGFß receptor Alk5 (activin receptor-like kinase 5) in brain pericytes (mutants) display endothelial cell hyperproliferation, abnormal vessel morphology, and gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH), leading to perinatal lethality. Mechanisms underlying how ALK5 signaling in pericytes noncell autonomously regulates endothelial cell behavior remain elusive. METHODS: Transcriptomic analysis of human brain pericytes with ALK5 silencing identified differential gene expression. Brain vascular cells isolated from mutant embryonic mice with GMH-IVH and preterm human IVH brain samples were utilized for target validation. Finally, pharmacological and genetic inhibition was used to study the therapeutic effects on GMH-IVH pathology. RESULTS: Herein, we establish that the TGFß/ALK5 pathway robustly represses ANGPT2 (angiopoietin-2) in pericytes via epigenetic remodeling. TGFß-driven SMAD (suppressor of mothers against decapentaplegic) 3/4 associates with TGIF1 (TGFß-induced factor homeobox 1) and HDAC (histone deacetylase) 5 to form a corepressor complex at the Angpt2 promoter, resulting in promoter deacetylation and gene repression. Moreover, murine and human germinal matrix vessels display increased ANGPT2 expression during GMH-IVH. Isolation of vascular cells from murine germinal matrix identifies pericytes as a cellular source of excessive ANGPT2. In addition, mutant endothelial cells exhibit higher phosphorylated TIE2 (tyrosine protein kinase receptor). Pharmacological or genetic inhibition of ANGPT2 in mutants improves germinal matrix vessel morphology and attenuates GMH pathogenesis. Importantly, genetic ablation of Angpt2 in mutant pericytes prevents perinatal lethality, prolonging survival. CONCLUSIONS: This study demonstrates that TGFß-mediated ANGPT2 repression in pericytes is critical for maintaining blood-brain barrier integrity and identifies pericyte-derived ANGPT2 as an important pathological target for GMH-IVH.

14.
J Cancer Prev ; 29(2): 32-44, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38957589

ABSTRACT

Cancer drug resistance is associated with metabolic adaptation. Cancer cells have been shown to implicate acetylated polyamines in adaptations during cell death. However, exploring the mimetic of acetylated polyamines as a potential anticancer drug is lacking. We performed intracellular metabolite profiling of human breast cancer MCF-7 cells treated with doxorubicin (DOX), a well known anticancer drug. A novel and in-house vertical tube gel electrophoresis assisted procedure followed by LC-HRMS analysis was employed to detect acetylated polyamines such as N1-acetylspermidine. We designed a mimetic N1-acetylspermidine (MINAS) which is a known substrate of histone deacetylase 10 (HDAC10). Molecular docking and molecular dynamics (MDs) simulations were used to evaluate the inhibitory potential of MINAS against HDAC10. The inhibitory potential and the ADMET profile of MINAS were compared to a known HDAC10 inhibitor Tubastatin A. N1-acetylspermidine, an acetylated form of polyamine, was detected intracellularly in MCF-7 cells treated with DOX over DMSO-treated MCF-7 cells. We designed and curated MINAS (PubChem CID 162679241). Molecular docking and MD simulations suggested the strong and comparable inhibitory potential of MINAS (-8.2 kcal/mol) to Tubastatin A (-8.4 kcal/mol). MINAS and Tubastatin A share similar binding sites on HDAC10, including Ser138, Ser140, Tyr183, and Cys184. Additionally, MINAS has a better ADMET profile compared to Tubastatin A, with a high MRTD value and lower toxicity. In conclusion, the data show that N1-acetylspermidine levels rise during DOX-induced breast cancer cell death. Additionally, MINAS, an N1-acetylspermidine mimetic compound, could be investigated as a potential anticancer drug when combined with chemotherapy like DOX.

16.
JHEP Rep ; 6(7): 101094, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39022385

ABSTRACT

Primary liver cancer, more specifically hepatocellular carcinoma (HCC), remains a significant global health problem associated with increasing incidence and mortality. Clinical, biological, and molecular heterogeneity are well-known hallmarks of cancer and HCC is considered one of the most heterogeneous tumour types, displaying substantial inter-patient, intertumoural and intratumoural variability. This heterogeneity plays a pivotal role in hepatocarcinogenesis, metastasis, relapse and drug response or resistance. Unimodal single-cell sequencing techniques have already revolutionised our understanding of the different layers of molecular hierarchy in the tumour microenvironment of HCC. By highlighting the cellular heterogeneity and the intricate interactions among cancer, immune and stromal cells before and during treatment, these techniques have contributed to a deeper comprehension of tumour clonality, hematogenous spreading and the mechanisms of action of immune checkpoint inhibitors. However, major questions remain to be elucidated, with the identification of biomarkers predicting response or resistance to immunotherapy-based regimens representing an important unmet clinical need. Although the application of single-cell multi-omics in liver cancer research has been limited thus far, a revolution of individualised care for patients with HCC will only be possible by integrating various unimodal methods into multi-omics methodologies at the single-cell resolution. In this review, we will highlight the different established single-cell sequencing techniques and explore their biological and clinical impact on liver cancer research, while casting a glance at the future role of multi-omics in this dynamic and rapidly evolving field.

17.
Genome Biol ; 25(1): 190, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026229

ABSTRACT

BACKGROUND: Interactions among cis-regulatory elements (CREs) play a crucial role in gene regulation. Various approaches have been developed to map these interactions genome-wide, including those relying on interindividual epigenomic variation to identify groups of covariable regulatory elements, referred to as chromatin modules (CMs). While CM mapping allows to investigate the relationship between chromatin modularity and gene expression, the computational principles used for CM identification vary in their application and outcomes. RESULTS: We comprehensively evaluate and streamline existing CM mapping tools and present guidelines for optimal utilization of epigenome data from a diverse population of individuals to assess regulatory coordination across the human genome. We showcase the effectiveness of our recommended practices by analyzing distinct cell types and demonstrate cell type specificity of CRE interactions in CMs and their relevance for gene expression. Integration of genotype information revealed that many non-coding disease-associated variants affect the activity of CMs in a cell type-specific manner by affecting the binding of cell type-specific transcription factors. We provide example cases that illustrate in detail how CMs can be used to deconstruct GWAS loci, assess variable expression of cell surface receptors in immune cells, and reveal how genetic variation can impact the expression of prognostic markers in chronic lymphocytic leukemia. CONCLUSIONS: Our study presents an optimal strategy for CM mapping and reveals how CMs capture the coordination of CREs and its impact on gene expression. Non-coding genetic variants can disrupt this coordination, and we highlight how this may lead to disease predisposition in a cell type-specific manner.


Subject(s)
Chromatin , Humans , Chromatin/genetics , Chromatin/metabolism , Genome, Human , Genome-Wide Association Study , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation , Genetic Variation
18.
BMC Biol ; 22(1): 147, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965555

ABSTRACT

BACKGROUND: Physical activity is well known for its multiple health benefits and although the knowledge of the underlying molecular mechanisms is increasing, our understanding of the role of epigenetics in long-term training adaptation remains incomplete. In this intervention study, we included individuals with a history of > 15 years of regular endurance or resistance training compared to age-matched untrained controls performing endurance or resistance exercise. We examined skeletal muscle DNA methylation of genes involved in key adaptation processes, including myogenesis, gene regulation, angiogenesis and metabolism. RESULTS: A greater number of differentially methylated regions and differentially expressed genes were identified when comparing the endurance group with the control group than in the comparison between the strength group and the control group at baseline. Although the cellular composition of skeletal muscle samples was generally consistent across groups, variations were observed in the distribution of muscle fiber types. Slow-twitch fiber type genes MYH7 and MYL3 exhibited lower promoter methylation and elevated expression in endurance-trained athletes, while the same group showed higher methylation in transcription factors such as FOXO3, CREB5, and PGC-1α. The baseline DNA methylation state of those genes was associated with the transcriptional response to an acute bout of exercise. Acute exercise altered very few of the investigated CpG sites. CONCLUSIONS: Endurance- compared to resistance-trained athletes and untrained individuals demonstrated a different DNA methylation signature of selected skeletal muscle genes, which may influence transcriptional dynamics following a bout of acute exercise. Skeletal muscle fiber type distribution is associated with methylation of fiber type specific genes. Our results suggest that the baseline DNA methylation landscape in skeletal muscle influences the transcription of regulatory genes in response to an acute exercise bout.


Subject(s)
DNA Methylation , Exercise , Muscle, Skeletal , Resistance Training , Humans , Male , Exercise/physiology , Adult , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Epigenesis, Genetic , Physical Endurance/genetics
19.
Best Pract Res Clin Rheumatol ; : 101972, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971692

ABSTRACT

Osteoarthritis (OA) is the most common form of arthritis with well recognized multifactorial nature. While several environmental factors such as older age, obesity and previous joint injury are strongly associated with its development, a genetic influence on OA has been recognized for over 80 years. Identification of genes associated with OA has received considerable attention over the last two decades, aided by the rapidly evolving genotyping and sequencing technologies. More than 300 genomic loci have been identified to be associated with OA at different joints. These findings are likely to help our better understanding of the pathogenesis of OA and lead to important therapeutic and diagnostic advances in this most common disabling rheumatic disorder. This article will review the data that support the role of genetic factors in common idiopathic OA.

SELECTION OF CITATIONS
SEARCH DETAIL